
Automatic Sequential Pa�ern Mining in Data Streams

Koki Kawabata∗

ISIR, Osaka University
koki88@sanken.osaka-u.ac.jp

Yasuko Matsubara∗

ISIR, Osaka University
yasuko@sanken.osaka-u.ac.jp

Yasushi Sakurai∗

ISIR, Osaka University
yasushi@sanken.osaka-u.ac.jp

ABSTRACT

Given a large volume of multi-dimensional data streams, such as

that produced by IoT applications, �nance and online web-click

logs, how can we discover typical patterns and compress them

into compact models? In addition, how can we incrementally dis-

tinguish multiple patterns while considering the information ob-

tained from a pattern found in a streaming setting? In this paper,

we propose a streaming algorithm, namely StreamScope, that is

designed to �nd intuitive patterns e�ciently from event streams

evolving over time. Our proposed method has the following prop-

erties: (a) it is e�ective: it operates on semi-in�nite collections of

co-evolving streams and summarizes all the streams into a set of

multiple discrete segments grouped by their similarities. (b) it is

automatic: it automatically and incrementally recognizes such pat-

terns and generates models for each of them if necessary; (c) it

is scalable: the complexity of our method does not depend on the

length of the data streams. Our extensive experiments on real data

streams demonstrate that StreamScope can �nd meaningful pat-

terns and achieve great improvements in terms of computational

time and memory space over its full batch method competitors.

CCS CONCEPTS

• Information systems → Data mining;

ACM Reference Format:

Koki Kawabata, Yasuko Matsubara, and Yasushi Sakurai. 2019. Automatic

Sequential Pattern Mining in Data Streams. In The 28th ACM International

Conference on Information and Knowledge Management (CIKM’19), Novem-

ber 3–7, 2019, Beijing, China. ACM, New York, NY, USA, 10 pages. https://

doi.org/10.1145/3357384.3358002

1 INTRODUCTION

Pattern discovery in time series has attracted a considerable amount

of interest because it has been widely used in numerous appli-

cations such as sensor monitoring [19, 26], online social activity

[18], medical data analysis [16] and �nancial data analysis [27].

However, recently, the emergence of small intelligent devices has

opened up newopportunities for various types of applications, such

as automated factories, smart cities and connected healthcare, namely

the “Internet of Things (IoT)” [10, 24]. Machines are getting in on

∗Arti�cial Intelligence Research Center, The Institute of Scienti�c and Industrial Re-
search (ISIR), Osaka University. Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full cita-
tion on the �rst page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM ’19, November 3–7, 2019, Beijing, China

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6976-3/19/11. . . $15.00
https://doi.org/10.1145/3357384.3358002

the act. This sudden explosion of intelligent connected devices im-

poses new requirements on data stream mining, which include (a)

real-time modeling, and (b) automatic mining. The ideal method

should capture the dynamics of time-series data, e�ciently and

automatically over IoT data streams. It should also enable us to

perform model estimation and advanced analytics, such as anom-

aly detection, forecasting, and pattern recognition, without any pa-

rameter tuning steps.

For example, consider a large collection of observations contin-

uously generated by sensors in an automated factory. The most

important goal is to acquire knowledge of sequence patterns re-

�ecting various aspects of the systems such as ordinary processing

and signs of accidents, which may have not appeared in the histor-

ical/training data, and also to quickly utilize this knowledge for

subsequent pattern recognition. In this situation, the data sources

generate data with no end in sight, making it di�cult to e�ciently

identifymeaningful (i.e., frequent, periodic and abnormal) patterns

over one or multiple attributes. Given such data streams, how can

we adaptively recognize newly arrived patterns as well as already

known ones? How do we e�ciently and exactly identify such dy-

namical patterns?

This paper focuses on an important time series analysis task,

namely, automatic and e�cient pattern discovery that can reveal

all meaningful patterns, whichwe refer to as a regime, consisting of

a semi-in�nite time-evolving data streams. Intuitively, we design

a streaming algorithm, called StreamScope, thus allowing us to

deal with the following informal problem.

Informal Problem 1. Given a data stream X , which is com-

posed of a series of multi-dimensional vectors, i.e., X = {x1, . . . ,xt },

our challenging problem has the following components:

• spli�ingX into a set of segments by the cut points of multiple

meaningful patterns,

• estimating the number of similar segment groups, i.e., regimes,

• summarizing all such dynamical patterns into model pa-

rameters,

quickly and automatically in a streaming setting.

1.1 Preview of our results

Figure 1 shows the online pattern discovery result of StreamScope.

The top of Figure 1 shows the original motion capture stream cor-

responding to left/right legs and arms. The data stream consists of

four intuitive motion patterns: walking, stretching left, right, and

both arms.

As shown in the bottom of Figure 1, our method can incremen-

tally �nd these four patterns (i.e., regimes) and in terms of the time-

position of each transition (i.e., the colored rectangles in the �gure).

More speci�cally, our method �rst discovers the motion “walking”

and summarizes the feature as regime #1. After the motion has

been changed to “stretching arms” at time tick 1300, our method

Session: Long - Sequential Data Analysis CIKM ’19, November 3–7, 2019, Beijing, China

1733

https://doi.org/10.1145/3357384.3358002
https://doi.org/10.1145/3357384.3358002
https://doi.org/10.1145/3357384.3358002

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Time

0

0.5

1

V
a
lu

e

L-arm

R-arm

L-leg

R-leg

Walking(both)(left)(right)(both)Walking Stretching arms (left)

1
2

3
4

Figure 1: Online pattern discovery with StreamScope: the original motion sensor streams (top), and the output of ourmethod

(bottom). At every time tick, the method incrementally identi�es intuitive motions (such as walking and stretching arms) and

classi�es them into groups, namely regimes. If necessary, it automatically generates a new regime with no prior knowledge.

autonomously generates regime #2 for the new pattern because the

two regimes give us better summarization for the data stream. Sim-

ilarly, as the kinds of stretching arms increases, regime #2 becomes

insu�cient for capturing the features. Thus, it employs regime #3

and #4 at time tick 3600. If a pattern is observed again (i.e., stretch-

ing both arms and walking), then it can recognize the change with

the models of already estimated regimes and assign the part of the

stream as a segment into the most suitable regime.

As a consequence, our method can perform incremental seg-

mentation and dynamicmodeling simultaneously, without any prior

knowledge and user intervention.

1.2 Contributions

In this paper, we present an online method, namely, StreamScope,

for automatic pattern discovery in co-evolving data streams. In

summary, the contributions of this paper are as follows:

• E�ective: it e�ciently and correctly realizes pattern discov-

ery in a streaming fashion. Our method can �nd high-level

patterns, i.e., the dynamics not only within a single pattern

but also between patterns.

• Automatic: for each pattern it can automatically and incre-

mentally estimate the number, transitional points andmodel

parameters. All of these characteristics are unknown in ad-

vance.

• Scalable: thanks to our proposed incremental update strat-

egy, it is fast and the computational time and memory space

are independent of the entire length of the input streams.

We evaluate our approach on real datasets and show that it discov-

ers meaningful patterns e�ectively and e�ciently.

Outline. The remainder of this paper is organized as follows. We

�rst introduce related work, followed by problem statement, our

proposed model and algorithms, experiments and conclusions.

2 RELATEDWORK

Time series pattern discovery has been studied especially in rela-

tion to database and data mining [3, 6, 28, 34]. Table 1 shows the

relative advantages of our method. We loosely classify the related

work into two groups.

Modeling dynamics and segmentation. Traditional approaches

applied to time series modeling include hidden Markov models

Table 1: Capabilities of approaches. Only StreamScope

meets all requirements.

H
M
M
/+
+

p
H
M
M
/T
IC
C

A
u
t
o
P
l
a
it

C
l
u
S
t
r
e
a
m
/+
+

M
o
t
if
/+
+

A
D
S
+

S
t
r
e
a
m
S
c
a
n

S
t
r
e
a
m
S
c
o
p
e

Data stream - - - X X - X X

Online optimization - - - X X X - X

Data compression X X X X - - - X

Segmentation - X X - X X X X

Regime identi�cation - - X - - - - X

Parameter free - - X - - - - X

(HMM), autoregression (AR), linear dynamical systems (LDS), and

their variants [5, 15, 17]. More recent advances are based onmodel-

ing non-linear behavior on co-evolving time series [21, 23]. How-

ever, they are incapable of multiple distinct patterns in large IoT

sensor data. For modeling such patterns, there has also been study

on segmenting time series by their similar dynamics.Wang et al. [31]

presented a pattern-based hidden Markov model (pHMM), which

converts a time series into a sequence of line segments, and learns

a Markov model from the sequence. Hallac et al. [11] proposed

Toeplitz inverse covariance-based clustering (TICC). It is based on

a Markov random �eld (MRF), and can �nd interpretable clusters,

each of which captures the interdependencies between multivari-

ate observations in a typical subsequence of that cluster. However,

these methods need parameter tuning for error thresholds, model

structure, the number of clusters, etc.

To achieve automatic mining, the minimum description length

(MDL) principle has been applied in various contexts [14, 20, 29].

In particular, AutoPlait [20] can automatically identify the intu-

itive number of high-level patterns (i.e., regimes) using hierarchi-

cal HMM-basedmodel, but unfortunately, none of above are stream-

ing methods. The ideal method should require no parameter set-

tings and analyze data in an online fashion.

Data mining on streams. The processing and mining of data

streams have also attracted signi�cant interest [12, 32, 33]. Gh-

esmoune et al. [7] provides a comprehensive overview of basic

Session: Long - Sequential Data Analysis CIKM ’19, November 3–7, 2019, Beijing, China

1734

clustering approaches for data streams, such as CluStream [1] and

DenStream [4]. EDMStream [8] has recently proposed, which can

adaptively change cluster centers to handle time-varying data dis-

tribution known as concept drift [24]. However, these algorithms

process each data point individually and ignore temporal depen-

dency between data, which is unsuitable for extracting the dynam-

ics of time-evolving streams. Time series motif discovery is a well-

studied research topic [13, 25, 30], which enables us to detect the

frequently occurring subsequences in time series e�ciently. ADS+

[34] provides a new adaptive indexing approach for big data se-

ries, where the index is built incrementally and adaptively. How-

ever, these methods use distance-based metrics (e.g., DTW and Eu-

clidean distance), thus they cannot summarize the dynamics of the

patterns into compact models. Although StreamScan [22] is able to

identify variable length patterns with HMM on data streams, it re-

quires query models for the pattern we want to �nd.

In conclusion, none of the above methods satisfy all the require-

ments, namely, anytime incremental operation, scalability on mas-

sive streams, adaptivity, and automation for intuitive pattern dis-

covery.

3 PROBLEM FORMULATION

In this section, we formally describe the problem we want to solve

for automatic stream mining of sequential patterns. Table 2 lists

the symbols used in this paper. The data stream we consider is a

collection of d-dimensional vectors X = {x1, . . . ,xt }, where xt =

{xi }
d
i=1 arrives at each time tick t .

Given a data stream X , our goal is to partition it into a set of

m non-overlapping segments denoted by S = {s1, . . . , sm }, where

si consists of the start and end position, i.e., s = {ts , te }, and m

denotes the number of segments.

We also want to assign each segment si to any one of r groups

of segments (namely regimes), where, r is the number of regimes.

Here, the regime assignment of each segment is denoted by F =

{ f (1), . . . , f (m)}, where f (i) is the regime index of i-th segment

(i.e., 1 ≤ f (i) ≤ r).

For example, in Figure 1, the data stream consists ofm = 8 seg-

ments, each of which belongs to one of the r = 4 regimes, e.g.,

f (1) = 1, f (2) = 2, f (3) = 4, f (4) = 2, · · · .

In this paper, we assume that data streams contains two levels

of dynamics, namely, within-regime transitions and across-regime

transitions.

To represent dynamic time-evolving pattern in a single regime

(i.e., within-regime transitions), we propose using a hiddenMarkov

model (HMM)1 [2]. An HMM is a well-known stochastic model

used in many applications such as speaker recognition and the

analysis of biological sequences. It assumes the system to be a

Markov process with discrete hidden states. AnHMMwithk states

is composed of initial probabilities π = {πi }
k
i=1, transition probabil-

ities A = {ai j }
k
i, j=1, and output probabilities B = {bi (xt)}

k
i=1. Con-

sequently, a single regime dynamics can be described as a set of

parameters: θ = {π ,A,B}.

1In our setting, we assume a Gaussian distribution for the output probability, which is

able to handle multi-dimensional vectors at each time tick (i.e.,B = {N (µi , σ
2
i) }

k
i=1).

Table 2: Symbols and de�nitions.

Symbol De�nition

d Number of dimensions

xt d-dimensional vector at time tick t

X Co-evolving data stream, i.e., X = {x1, . . . ,xt }

m Number of segments

S Segment set, i.e., S = {s1, . . . , sm }

F Segment-membership, i.e., F = { f (1), . . . , f (m)}

r Number of regimes

θi Model parameters governing i-th regime

ki Number of hidden states in θi

Φ Regime transitions, i.e., Φ = {ϕi j }
r
i, j=1

Θ Model set of r regimes, i.e., Θ = {θ1, . . . ,θr ,Φ}

C Candidate solution, i.e., C = {m, r ,S,Θ,F }

For the upper level, we assume that there are across-regime tran-

sitions between multiple distinct regimes θ1, · · · ,θr . Here, we de-

�ne a regime transition matrix Φ = {ϕi j }
r
i, j=1, which consists of the

regime transition probabilities ϕi j from the i-th regime θi to the

j-th regime θ j . Each probability is computed as ϕi j = ni j/Σs ∈Si |s |

where Σs ∈Si |s | indicates the total length of the segments belong-

ing to regime θi , and ni j shows the regime-switch count from

θi to θ j . Finally, the entire model parameters can be de�ned as

Θ = {θ1, . . . ,θr ,Φ}.

Finally, we adapt all of the above components for dynamic sum-

marization on data streamX . Speci�cally, lettingC = {m, r ,S,Θ,F }

be a compact representation ofX , which we refer to as a candidate

solution. The problem we want to solve is as follows.

Problem 1. Given ad-dimensional data streamX = {x1, . . . ,xt },

where t is the most recent time tick, continuously optimize the can-

didate solution C, namely,

• the number of segmentsm and their switching positions,

S = {s1, . . . , sm },

• the number of regimes r and their model parameters,

Θ = {θ1, . . . ,θr ,Φ}, and

• the segment membership of each segment,

F = { f (1), . . . , f (m)},

in a streaming (i.e., online) setting.

4 AUTOMATIC PATTERN MINING

In this section, we �rst present how we can de�ne a good sum-

mary of co-evolving event streams, and then show our optimiza-

tion problem, which consists of dynamically estimating a compact

description of data streams in an automatic way.

4.1 O�line Data Compression

Here, we assume that we can access and process whole input time

series X (i.e., batch processing) to simplify the discussion. Intu-

itively, our goal is to keep the description ofX compact and reason-

able using C. This approach indicates that optimal model should

minimize the total description cost:

CostT (X ;C) = CostM (C) +CostC (X |C), (1)

Session: Long - Sequential Data Analysis CIKM ’19, November 3–7, 2019, Beijing, China

1735

whereCostM (C) is the description cost of C, andCostC (X |C) is the

data coding cost given the model C. Thus, we apply the minimum

description length (MDL) principle [9], which makes it possible to

evaluate how well our model compressesX . We begin by de�ning

the two components of the total cost more concretely.

Model description cost. The model description cost is the num-

ber of bits needed to describe the model. If we use more powerful

model architecture, the total cost becomes higher. For our full pa-

rameter set C, the number of dimensions, segments and regimes

requires log∗ (d) + log∗ (m) + log∗ (r) bits2. The segment member-

ship of the regimes requiresCostM (F) =m log(r) bits. The length

of each segment s needsCostM (S) =
∑m
i=1 log

∗ |si | bits. The model

parameter set Θ needs: CostM (Θ) =
∑r
i=1CostM (θi) + CostM (Φ),

where a singlemodelθ requires the sum of log∗ (k) bits for the num-

ber of hidden states, and CF (k + k
2
+ 2kd) for a Gaussian HMM,

i.e., {π ,A,B}. Here,CF is the �oating point cost3. The regime tran-

sition matrix also requires CostM (Φ) = CF · r
2.

Finally, the total model description costCostM (C) is the sum of

the above terms:

CostM (C) = log∗ (d) + log∗ (m) + log∗ (r)

+CostM (S) +CostM (Θ) +CostM (F) (2)

Data encoding cost. Given a full parameter set Θ, data compres-

sion using Hu�man coding assigns a number of bits to each value

in X , which is a negative log-likelihood. The encoding cost of X

givenθ is computed by:CostC (X |θ) = − log P (X |θ), where P (X |θ)

is the likelihood of X . Thus, the total encoding cost is:

CostC (X |C) =

m
∑

i=1

CostC (X [si]|Θ)

=

m
∑

i=1

− log(ϕvu (ϕuu)
|si |−1P (X [si]|θu)), (3)

where the i-th and (i−1)-th segments are governed by theu-th and

v-th regimes, respectively. X [si] is a subsequence of segment si .

4.2 Online Optimization Objective

Next, we focus on how to evaluate the total cost CostT (X ;C) ef-

�ciently. In a streaming setting, we cannot store and process all

historical data because its size becomes extremely large as time

progresses. To search for the optimal segments/regimes incremen-

tally, we only consider the increase in the total cost when the set

of new stream elements is added to X . We roughly refer to this as

the most recent subsequence Xc = X [t ′ : t] (i.e., 1 ≪ t ′ < t). As-

suming that the two numbers m and r have increased tom+ and

r+, respectively, given Xc at time tick t , we de�ne the additional

description cost in Equation (1) as follows:

∆CostT (Xc ;C) = log∗ (m+) − log
∗ (m) + log∗ (r+) − log

∗ (r)

+ ∆CostM (S) + ∆CostM (Θ) + ∆CostM (F)

+CostC (Xc |Θ). (4)

2Here, log∗ is the universal code length for integers.
3We used 4 × 8 bits in our setting.

Here ∆CostM (·) represents the increase in description length for

new entries in the set:

∆CostM (S) =

m+−1
∑

i=m

log∗ |si |, (5)

∆CostM (Θ) =

r+
∑

i=r+1

CostM (θi) +CF · r
2
+
−CF · r

2, (6)

∆CostM (F) =m+ log(r+) −m log(r). (7)

A key advantage of applying our techniques to data streams is that

it can jointly estimate the number of regimeswhile processing. The

above updating strategy is designed to �exibly deal with the num-

ber of regimes inXc . If we representXc only with existing regimes,

i.e., r+ = r , then the additional cost ∆CostM (Θ) = 0, otherwise, fur-

ther cost is required corresponding to the number and complexity

of the new regimes θ . This observation indicates that more com-

plex or duplicate regimes requires a higher cost to employ. Our

objective function is likely to keep the entire model structure rea-

sonable.

5 STREAMING ALGORITHMS

We now present our proposed StreamScope for the fast and auto-

matic pattern discovery of time-evolving data streams.

5.1 Overview

Although we have proposed our incremental coding scheme, i.e.,

Equation (4), it is still di�cult to globally optimize the score be-

cause the number of all possible combinations of candidate seg-

ments/regimes in the whole input X becomes extremely rich. So,

how e�ciently can we monitor time-evolving streams while main-

taining the quality of a full model set C?

To tackle this important problem, we carefully design an on-

line optimization algorithm, namely StreamScope, which utilizes

two sub-algorithms and maintains the model parameter set C. In

StreamScope, we de�ne the most recent subsequence Xc as the

latest pattern we found, i.e., Xc = X [t ′ : t] where t ′ and t show

the last regime switching point and current time tick, respectively.

GivenXc , the decision for its model update can be decided via two

procedures, namely,

(1) SegmentAssignment: This quickly searches the most suit-

ablemodel/regime to represent arriving dataxt without any

modi�cation or addition of regimes.

(2) RegimeGeneration: This considers inner/outer extensions

of regimes by estimating new model(s) θ that capture dy-

namical patterns in Xc .

Most importantly, since these procedures are completely separate

from each other, we can decide how the entire model C updates by

applying either of the outputs minimizing Equation (4). If Xc in-

cludes di�erent dynamics from existing regimes, the model struc-

ture should be adapted to the dynamics even if it incurs the extra

costs of model extensions. We describe StreamScope in detail af-

ter presenting the two algorithms in steps.

5.2 SegmentAssignment

As the simplest case scenario, we �rst assume that we know sev-

eral patterns/regimes and their model parameters. Our �rst goal is

Session: Long - Sequential Data Analysis CIKM ’19, November 3–7, 2019, Beijing, China

1736

to identify which of the patterns is arriving at any given moment.

Given ad-dimensional vector xt at time tick t and a model parame-

ter set of r regimes Θ = {θ1, . . . ,θr ,Φ}, we want to �nd cut points

that divide X into individual patterns (i.e., segments), so that we

can minimize CostC (X |Θ).

Algorithm 1 shows the overall procedure for the incremental as-

signment, namely, SegmentAssignment. In the �rst step, we com-

pute the likelihood value P (xt |Θ) as follows:

P (xt |Θ) = max
1≤i≤r

{ max
1≤j≤ki

{pt ;i ;j }}, (8)

pt ;i ;j = max

ϕui ·max
v
{pt−1;u ;v } · πi ;j · bi ;j (xt)

ϕii ·max
u
{pt−1;i ;u · ai ;uj } · bi ;j (xt)

(9)

where: pt ;i ;j is the maximum probability of state j of regime θi at

time tick t . πi ;j is the initial probability of state j of θi . bi ;j (xt)

is the output probability of xt for state j of θi , and ai ;uj is the

transition probability from state u to state j in θi . At time tick t =

1, the probability for each regime is given by p1;i ;j = ϕii · πi j ·

bi ;j (x1). Next, we retain the cut points using a candidate set L =

{L1,L2, . . . } for each state of all the regimes, where Li denotes the

tuple of the location ti and the regime indexwi of the i-th cut point,

which it visited (i.e., Li = {ti ,wi }). The entire candidate set is:

Lt ;i ;j =

{

Lt−1;u ;v ∪ {L} // if regime switches

Lt−1;i ;j // otherwise
(10)

where Lt ;i ;j shows the candidate set for state j of θi at time tick

t . We can incrementally update these likelihood and candidate cut-

point sets using a dynamic programming approach that maximizes

the probabilities solely from previous regimes and states.

γ–guarantee. If the regime that gives the maximum likelihood is

switched to another regime, the time tick t is a cut point, i.e., a start-

ing point of the new segment. However, this determinant cannot be

optimum due to noise and uncertainness about similar patterns. To

avoid a misassignment due to the temporal maximum likelihood,

we propose γ–guarantee, which provides the cut-point set with a

guarantee of exactness by using a time interval γ . If we �nd the

�rst candidate cut point switching to the i-th regime at time tick t ,

the determinant cut point is obtained at time tick t+γ . The interval

γ is typically set to a half the average length of segments.

Lemma 5.1. For a given model Θ = {θ1, . . . ,θr ,Φ} and stream

X [1 : t + γ], the exactness of the cut point set until time tick t is

guaranteed at time tick t + γ .

Proof. P (xt+γ |Θ) shows the maximum likelihood at time tick

t+γ . SegmentAssignment computes the likelihood of every regime

each with states for each time tick. At the same time, it also reports

all candidate cut points without omission. Therefore, at time tick

t +γ , the cut-point set giving the maximum probability P (xt+γ |Θ)

is equivalent to a Viterbi path, that is, the optimal cut-point set.

The cut point set until time tick t is thus exactly optimal at time

tick t + γ . �

Algorithm 1 SegmentAssignment (xt ,Θ)

Input: (a) New vector xt at time tick t

(b) Regime parameter set Θ = {θ1, . . . , θr , Φ}

Output: (a) Number of segmentsm

(b) Segment set S

(c) Segment membership F

1: m ← 0; S ← ∅; F ← ∅;

2: /* Find candidate cut-points with Equations (9) and (10) */

3: for i = 1 : r do

4: Compute pt ;i ;j for state j = 1 to ki ;

5: Update Lt ;i ;j for state j = 1 to ki ;

6: end for

7: if the �rst regime transition is found then

8: tγ ← t + γ ;

9: end if

10: if t = tγ then

11: /* Add segments into the optimal regime */

12: Lbest ← arg max
Lt ;i ;j |1≤i≤r ,1≤j≤ki

P (xt |Θ); // Equation (8)

13: for each cut point Li = {ti , wi } ∈ Lbest do

14: Create a new segment s = {ts , ti };

15: Add s into S; f (m + 1) = wi ; m ←m + 1;

16: ts ← ti + 1;

17: end for

18: Lt ← ∅;

19: end if

20: return {m, S, F };

5.3 RegimeGeneration

In this step, our goal is to �nd the local optimal number of seg-

ments, regimes and their model parameters thus minimizing the

cost ∆CostT (Xc ;C) = ∆CostM (C) +CostC (Xc ;C). RegimeGener-

ation (Algorithm 2) initially regards Xc as a single regime, i.e.,

m0 = 1,S0 = {1, |Xc |}, and estimates the model parameter θ0.

Given the initial parameter set {m0,S0,θ0}, it greedily tries to di-

vide Xc by iterating the following two steps until a stack Q for

keeping candidate regimes becomes empty.

(1) The algorithm �rst �nds a new candidate pair {θ1,θ2,Φ}.

Given the candidate regimes {θ1,θ2,Φ}, it iterates �nding

the cut points of segments, {S1,S2}, by computing themaxi-

mum likelihood (i.e., Equation (8)) and re-estimating {θ1,θ2,Φ},

while ∆CostT (Xc [S0]|θ1,θ2,Φ) is improved.

(2) If the total cost of applying the candidate pair is lower that

than when applying only θ , the algorithm stores the new

candidate set {m1,S1,θ1} and {m2,S2,θ2} into Q to further

divide the candidate regimes. Otherwise, it updates the pa-

rameters in C based on {m0,S0,θ0}.

Note that we use the Baum-Welch algorithm whenever we under-

take the parameter estimation of a single regime θ in the above

procedure. Since the Baum-Welch algorithm needs the number of

hidden states k in a model θ to be speci�ed, we vary k = 1, 2, . . .

while the cost, ∆CostT (X [S]|θ), can be decreased. This approach

prevents over�tting and provides a reasonable k without any prior

information.

Model initialization. When we start the iterations with a candi-

date regime including segments S, we uniformly take several sam-

ple segments fromXc [S] and estimate themodel parametersθs for

Session: Long - Sequential Data Analysis CIKM ’19, November 3–7, 2019, Beijing, China

1737

Algorithm 2 RegimeGeneration (Xc)

Input: Subsequence Xc

Output: Candidate solution C

1: Q ← ∅; // Stack for candidate regimes

2: m0 ← 1; S0 ← {1, |Xc | }; θ0 ←ModelEstimation(Xc);

3: Push an entry {m0, S0, θ0 } into Q;

4: while stack Q , ∅ do

5: Pop an entry {m0, S0, θ0 } from Q;

6: {θ1, θ2 } ←ModelInitialization(Xc [S0]); // Equation (11)

7: repeat

8: for xt ∈ Xc [S0] do

9: {m∗, S∗, F ∗ } ←SegmentAssignment(xt , θ1, θ2, Φ2×2);

10: end for

11: S1 ← {si ∈ S
∗ |f (i) = 1, i = 1, . . . ,m∗ };

12: S2 ← {si ∈ S
∗ |f (i) = 2, i = 1, . . . ,m∗ };

13: θ1 ←ModelEstimation(Xc [S1]);

14: θ2 ←ModelEstimation(Xc [S2]);

15: Update regime transition matrix Φ2×2;

16: until convergence;

17: if ∆CostT (Xc ; S1, S2, θ1, θ2) < ∆CostT (Xc ; S0, θ0) then

18: /* Recursively try to split new regimes */;

19: Push entries {m1, S1, θ1 }, {m2, S2, θ2 } into Q;

20: else

21: S ← S ∪ S0; Θ← Θ ∪ θ0; r ← r + 1;

22: f (i) = r, for each i =m + 1, . . . ,m +m0; m ←m +m0;

23: Update Φr×r ;

24: end if

25: end while

26: return C = {m, r, S, Θ, F };

each of them. The most appropriate pair is chosen by computing

the coding cost of all possible pairs:

{θ1,θ2} = arg min
θs1,θs2 |s1,s2∈X

CostC (Xc [S]|θs1 ,θs2), (11)

where X = {s1, s2, . . . } is a set of samples taken from Xc [S].

5.4 StreamScope

Now,we explain how to e�ciently identify regimes in a large event

stream. Our �nal goal is to answer the questions: (a) when should

we estimate model parameter θ for new regimes and con�rm their

necessity for an e�ective pattern mining? And (b) how can we ob-

tain the compact description C at each time tick from the outputs

of the two algorithms we have discussed?

Now, we address the �rst question. Algorithm 3 shows the over-

all procedure of StreamScope. Given a vector xt and the candi-

date solution C, it �rst executes SegmentAssignment to detect

regime transitions. Recall that it retains candidate transition points

i.e., Equation (10). StreamScope tries to estimate new regimes by

using RegimeGeneration, at the same time as the candidates are

veri�ed, which can reveal that the current regime is switching to

new regime not to one of the existing regimes.

Online update of full parameter set. Here, we describe how

to update C based on the output of SegmentAssignment (i.e.,

CS) or RegimeGeneration (i.e., CR). Given the two candidates,

StreamScope compares the extra costs, i.e., Equation (4), then de-

cides which candidate it applies to C.

Algorithm 3 StreamScope (xt ,C)

Input: (a) New observation xt at time tick t

(b) Previous candidate solution C = {m, r, S, Θ, F }

Output: Updated candidate solution C

1: Xc ← Xc ∪ xt ;

2: /* (I) Assign xt into an existing regime */

3: {mS , SS , FS } ←SegmentAssignment (xt , Θ);

4: CS = {mS , r, SS , Θ, FS };

5: if t = tγ then

6: /* (II) Generate new regime(s) */

7: CR = {mR, rR, SR, ΘR, FR } ←RegimeGeneration (Xc);

8: /* (III) Online update according to Equation (4) */

9: if ∆CostT (Xc ; CS) < ∆CostT (Xc ; CR) then

10: for i = 1 :mS do

11: w ← f (i) ∈ FS ; {ts , te } ← si ∈ SS ;

12: θw ←ModelUpdate (Xc [ts : te], θw);

13: end for

14: S ← S ∪ SS ; F ← F ∪ FS ; m ←m +mS ;

15: else

16: w ← f (m) ∈ F ; Sw ← {si ∈ SR |w = f (i) ∈ FR };

17: θw ←ModelUpdate (Xc [Sw], θw);

18: Θ← Θ ∪ ΘR ; r ← r + rR − 1;

19: S ← S ∪ SR ; F ← F ∪ FR ; m ←m +mR − 1;

20: end if

21: Update regime transition matrix Φr×r ;

22: Xc ← X [sm]; tγ ← t + γ ;

23: end if

24: return C = {m, r, S, Θ, F };

• If StreamScope uses CS , the regime parameters θ used in

Xc are updated using their own new segments, more specif-

ically, it incrementally computes the means, variances and

probabilities for hidden states based on a series of predicted

states with θ forXc . Then, it merges new segment informa-

tion {mS ,SS ,FS } with {m,S, F } in C.

• If CR is chosen, it requires renovation with regard to Θ in

addition to the updates on newmR segments. Since Stream-

Scope monitors regime switching from the latest pattern

to the next, Xc de�nitely includes a known dynamical pat-

tern, which denoted by a regime θw in C. Therefore, the

algorithm online updates θw using new segments Sw inXc .

Then, it employs the other regimes in ΘR as members of Θ.

In both cases, the transition matrix Φ is also updated using the

regime switching count in Xc .

5.4.1 Theoretical analysis. Let n be the length of a subsequence

Xc and k be the maximum number of hidden states in the regimes

Θ, i.e., k = max{ki }
r
i=1.

Lemma 5.2. The time complexity of StreamScope is O (drk2 +

dr2k) at per time tick.

Proof. StreamScope �rst runs SegmentAssignment, which

updates the likelihood from all the k previous states in a regime

and all the other r − 1 regimes for each regime and dimension.

The inner state transition in a regime and regime switch require

O (dk2) and O (drk), respectively, thus the total time complexity is

O (drk2 + dr2k). If the algorithm estimates regime parameter θ , it

iteratively performs the Baum-Welch algorithm and calculation of

Session: Long - Sequential Data Analysis CIKM ’19, November 3–7, 2019, Beijing, China

1738

the coding cost in Xc . This process requires O (#iter × n × dk2),

where #iter is the number of iterations for RegimeGeneration.

Since #iter and n are small values, which are negligible. Thus, the

complexity of StreamScope is O (drk2 + dr2k). �

Lemma 5.3. StreamScope requires O (drk + rk2 + r2) space per

time tick.

Proof. To maintain the cumulative likelihood for all r regimes,

StreamScope maintains two arrays of r × k numbers for a single

trellis structure. This computation also needs r × (k+k2+2kd)+r2

space to maintain the parameters inΘ. StreamScope also requires

n × d space for Xc to estimate new regime(s) θ but the space is

considered a small constant. Thus, the total memory required for

StreamScope is O (drk + rk2 + r2). �

These lemmas show that StreamScope scales quadraticallywith

respect to the numbers r and k . However, from the experiments in

Section 6, we will learn that this bound is exaggerated. In practice

the numbers stay relatively small because they are decided so that

they compress the data well through the e�ect of our proposed cod-

ing scheme Equation (4). The runtime of StreamScope therefore

stays approximately constant, and is independent of the length of

the data stream X .

6 EXPERIMENTS

In this section, we describe the experiments we undertook to evalu-

ate the performance of our proposed method, StreamScope, with

real data streams. We designed the experiments to answer the fol-

lowing questions:

(1) Q1. E�ectiveness: How successful is our method in discover-

ing typical patterns in given input streams?

(2) Q2. Accuracy: How well does our method detect the cut

points and regimes?

(3) Q3. Scalability: How does our method scale in terms of com-

putational time?

We conducted our experiments on an Intel Xeon E5 2.7GHz with

64GB memory, running Linux. To learn initial modelΘ of Stream-

Scope, we applied RegimeGeneration to 10% of an input data

stream. We used the following three datasets.

#MoCap was obtained from the CMU motion capture database4,

which consists of 64-dimensional vectors.We used a set of 20 streams,

containing aboutm = 100 segments in total. Each stream includes

from 4 to 8 patterns. In our setting, we chose four dimensions cor-

responding to left-right arms and legs.

#Bicycle is a set of measurements from a 3-axis accelerometer

�xed to a bicycle handle. The values are 25Hz and we use the abso-

lute values for the frontal (i.e., z-axis) measurements. This dataset

contains 10 streams with aboutm = 200 segments that we labeled

with �ve driving patterns including going straight, turning and

stopping on paved/unpaved roads.

#Workout consists of 7-dimensional streams of uni�ed 3-axis ac-

celeration and 4-dimensional EMG collected at 25Hz with an arm-

band for smart gesture control, considering the task of distinguish-

ing four kinds of calisthenics: arm curl, rowing, side raise and push

4http://mocap.cs.cmu.edu/

up, and intervals between them. We used a set of 10 streams, con-

taining aboutm = 100 segments.

The values of each dataset were normalized so that they had the

same mean and variance (i.e., z-normalization).

6.1 Q1: E�ectiveness

We �rst demonstrate the e�ectiveness of the proposed method in

terms of capturing intuitive patterns using real datasets.

Motion sensor stream analysis. Here we show that how e�ec-

tively StreamScopeworks on a realmotion sensor stream. Figure 2

(a), (b) and (c) show outputs of our method for three streams: “Ex-

ercise”, “Boxing” and “Basketball”, respectively.

Figure 2 (a) consists of four kinds of regimes related to exer-

cise such as walking and running. Initially, the algorithm employs

regime #1 for walking and starts monitoring the data stream. If

it is no longer able to capture X with only existing regime, and

the dynamics have changed signi�cantly (e.g., segment #1→#2 and

segment #4→#5), it adopts the segmentation by RegimeGenera-

tion and increases the number of regimes to maintain. Otherwise,

it adopts SegmentAssignment to assign new observations into a

suitable regime, then updates the regime parameters incrementally.

Finally, StreamScope successfully found six segments (i.e.,m = 6)

and four regimes (i.e., r = 4), which corresponded to meaning-

ful human activities. Our method also successfully divides the two

event streams, Figure 2 (b) and (c), into their own unique motions

such as “punching” and “dribble”. Most importantly, our method

needs no proior knowledge of dynamical patterns in data streams.

Driving pattern recognition. Figure 3 shows the original sen-

sor stream and our online segmentation result using the #Bicycle

dataset. StreamScope estimates regime #1/#2 for stable driving

and regime #3/#4 for bumpy driving on a gravel road. Our method

can automatically and precisely identify such typical regime pat-

terns, and also �nd the sudden event “stopping”. Note that our

segmentation and pattern recognition are independent of the oc-

currence frequency of dynamical patterns. It is bene�cial that our

method can deal with unexpected situations such as the tra�c ac-

cidents and heart attacks.

Analysis of �tness tracking streams. Lastly, Figure 4 shows the

analytical result for the #Workout data stream. In this realistic sce-

nario, users introduce their own intervals between four training

motions, thus our approach can robustly recognize all the main

motions (regime #1/#2/#4/#5) as well as extract the other subse-

quences assigned to regime #3. As shown in the �gure, our method

requires no user intervention to handle variable length patterns,

which expands its applicability of our method.

6.2 Q2: Accuracy

We �rst evaluate the quality of our method in terms of segmenta-

tion and clustering accuracy.We compare our method with pHMM

[31], AutoPlait [20] and TICC [11], which are o�ine algorithms

but state-of-the-art for simultaneous segmentation and clustering

of time series. Note that pHMM requires two parameters, ϵr and

ϵc , which correspond to the �tting error threshold. Therefore, we

varied the two parameters from 0.1 to 10.0 to tune the quality of its

segments and clusters. For tuning TICC, we varied the smoothness

penalty β = 0, 1, . . . , 2000, and set the sparsity level in the model

Session: Long - Sequential Data Analysis CIKM ’19, November 3–7, 2019, Beijing, China

1739

1000 2000 3000 4000 5000 6000 7000
Time

0

0.5

1

V
a
lu

e

L-arm

R-arm

L-leg

R-leg
1

2
3

4

WalkingRunningSittingWalkingWalking Sit/stand up

(a) Exercise

500 1000 1500 2000 2500 3000 3500 4000

Time

0

0.5

1

V
a
lu

e

L-arm

R-arm

L-leg

R-leg

1
2

3
4

PunchingWalking Jumping Walking Walking Kicking

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time

0

0.5

1

V
a

lu
e

L-arm

R-arm

L-leg

R-leg

1
2

3

Dribble Shoot Dribble Two hand dribble Dribble

(b) Boxing (c) Basketball

Figure 2: StreamScope is e�cient: StreamScope can incrementally �nd regime switching (e.g., “stand up”→“walking”,

“sitting”→“running” in “Exercise” data stream) for a wide variety of motion data streams. It retains the latest pattern and

realises its dynamics has changed in real time. All the patterns it found are compressed into a compact model, which are

updated and generated while online processing.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
Time

0

0.5

1

V
a

lu
e

Lateral acc. Longitudinal acc. Vibration strengthGoing straight Turning

1
2

3
4

5

Bumpy

area

Figure 3: Driving pattern discovery of StreamScope for bicycles: Given the 3-dimensional sensor stream (top), our method

�nds “going straight” and “turning” on a paved/unpaved road (i.e., regimes #1/#3 and #2/#4, respectively). The approach incre-

mentally generates regime #5 for the pattern “stopping”.

500 1000 1500 2000 2500 3000

Time

0

0.5

1

V
a

lu
e ACC-X

ACC-Y

ACC-Z

EMG-1

EMG-2

EMG-3

EMG-41
2

3
4

5

Arm curl Side raise Push upRowingIntervals

Figure 4: StreamScope can e�ciently �nd important user activities in order, i.e., four kinds of training motions from a high

dimensional data stream including 3-axis acceleration (i.e., ACC) and biological information (i.e., EMG). The algorithm also

points out another pattern regime #3 (i.e., intervals) automatically.

Session: Long - Sequential Data Analysis CIKM ’19, November 3–7, 2019, Beijing, China

1740

#Mocap #Bicycle #Workout
0

0.2

0.4

0.6

0.8

1

M
a
c
ro

-F
1
 s

c
o
re

StreamScope AutoPlait TICC-2 TICC-4 TICC-8 pHMM

Figure 5: Segmentation accuracy with respect to macro-F1
score: our online method performs as well as the other of-

�ine methods (higher is better).

#Mocap #Bicycle #Workout
0

0.2

0.4

0.6

0.8

1

A
c
c
u

ra
c
y

StreamScope AutoPlait TICC-2 TICC-4 TICC-8 pHMM

Figure 6: Clustering accuracy of StreamScope: the number

of true regime labels correctly inferred with respect to the

total number of observations (higher is better).

λ = 10 and window size w = 5. Moreover, since TICC needs to

specify the number of clusters K , we also varied the numbers be-

tween 2, 4 and 8, namely TICC-K , to test its parameter sensitivity.

Segmentation accuracy. Figure 5 shows the segmentation accu-

racy with respect to the macro-F1 score, which is the average of

the F1 scores for all data streams. The F1 score is given by har-

monic mean of the precision/recall de�ned as the ratio of reported

correct cuts vs. the total number of reported/correct cuts, respec-

tively. Overall, our proposed method outperforms the other o�ine

methods because it can capture high-level patterns, i.e., regimes,

regardless of its online approach thanks to our e�ective updating

strategy for data stream summarization.

Clustering accuracy. Next, Figure 6 shows the clustering perfor-

mance using the measure of accuracy, ACC , which is computed

from the confusionmatrix,CM , for prediction regime labels against

true regime labels:ACC =
∑

i=1CMii/
∑

i, j=1CMi j . The ideal con-

fusion matrix will be diagonal, in which case ACC = 1. Given the

incorrect number of clusters, the TICC algorithmmisses important

patterns, especially forMoCap data streams because of their varia-

tion in the number between streams. Thus, our automatic approach

is e�ective to �nd multiple sequential patterns in the realistic sit-

uation where the number of patterns in streams is unknown and

variable.

6.3 Q3: Scalability

We also compare thewall clock time of StreamScopewith those of

AutoPlait, TICC, and pHMM. The left of Figure 7 indicates the wall

clock time of an experiment performed on a large MoCap dataset

with four dimensions and various sequence lengths t . Note that

the computation time of our method suddenly increases. This is

because StreamScope updates the model parameter set as needed,

however, it is signi�cantly faster than its competitors. When our

1 2 3 4

Time 10
4

10
-4

10
-2

10
0

10
2

10
4

W
a
ll

c
lo

c
k
 t
im

e
 (

s
)

StreamScope

AutoPlait

TICC

pHMM

1 2 3 4

Time 10
4

10
4

10
5

10
6

M
e
m

o
ry

 s
p
a
c
e
 (

b
y
te

)

StreamScope

O(n)

Figure 7: Scalability of StreamScope: (left) Wall clock time

vs. sequence length t . it consistently surpasses its competi-

tors. (right) Memory space consumption vs. sequence length

t . it can continuously model and identify time-evolving pat-

terns in data streams with a small space.

method does not need to update the parameters, it is also the fastest

algorithm, (i.e., up to four orders of magnitude), since the likeli-

hood computation scales constantly with the number of regimes

and each state. Overall, our online algorithm is much faster than

the full-batch algorithm.

The right of Figure 7 shows the space requirements of Stream-

Scope. The requirement of our method depends on the number of

regimes r and its inner states k . On the other hand, as the num-

ber of samples increases, the requirement of competitors begins

to diverge to in�nity; the complexity of the other competitors de-

pends on data size n. As we expected, StreamScope only needs

approximately constant space to keep track of the regime transi-

tions, which constituted a large improvement.

7 APPLICATIONS

In this section, we present an example of pattern discovery with

our method as regards web-click activities, i.e., GoogleTrends5. The

dataset we use is a multi-dimensional stream on related queries,

and each dimension consists of the weekly search volumes for the

query on Google over thirteen years.

Event detection. Figure 8 (a) shows a d = 4 dimensional stream.

Each dimension represents keywords on rain gear (i.e., umbrel-

las, raincoats, rain boots and rain hats). “Umbrella” is searched for

throughout the year and the others exhibit yearly periodicity be-

cause of their seasonality. In March 2007, the search count for um-

brella suddenly increased caused by an abnormal event, namely,

that a song named “Umbrella” was released. StreamScope success-

fully detected this event as regime #2.

Trend discovery. Figure 8 (b) shows our result for another data

stream related to somemajor smartphones (e.g., iPhone andNexus).

StreamScope captures the following key trends in relation to the

smartphone industry caused by some latent events with the ob-

served stream: (#1) Blackberry was used among businessmen as a

pioneering smartphone, (#2) iPhone impacted and its market grew

when it entered themarket in June 2007, (#3) Android smartphones

represented by the Nexus and Galaxy series entered the market

from 2010, (#4) The competitive relationship between iOS and An-

droid, and (#5) represents the recent global share of smartphones.

5https://trends.google.com/trends/

Session: Long - Sequential Data Analysis CIKM ’19, November 3–7, 2019, Beijing, China

1741

2004 2006 2008 2010 2012 2014 2016

Time (weekly)

0

0.5

1

V
a
lu

e

Umbrella Rain coat Rain boots Rain hat

1
2

3

Mar 2007: a song "Umbrella" was released.

(a) “Rain gear”

2004 2006 2008 2010 2012 2014 2016

Time (weekly)

0

0.5

1

V
a
lu

e

Blackberry iPhone Nexus Galaxy LG optimus G

1
2

3
4

5

(3) Nov 2012(2) Jun 2010(1) Jun 2007

(b) “Smartphone”

Figure 8: Application to real web data: StreamScope spots

meaningful changeovers on GoogleTrends. (a) Rain gear-

related keywords: it discovers one sudden event in 2007 (i.e.,

a hit song); (b) smartphone-related keywords: it �nds �ve

phases of smartphone market share (i.e., #1: Blackberry, #2:

iPhone, #3: Android, #4: iOS vs Android, #5: Recent share).

8 CONCLUSIONS

In this paper, we have proposed a streaming algorithm, Stream-

Scope, for automatic pattern discovery inmulti-dimensional streams.

As the processing progresses, our algorithm partitions time-series

streams into a set of segments at pointswhere characteristics change,

and then similar segments are grouped into a regime. The advan-

tages of StreamScope are as follows:

• It is E�ective: our experiments with several datasets show

that StreamScope successfully �nds segments/regimes that

match human intuition.

• It is Automatic: it can handle arbitrary semi-in�nite data

streams, and automaticallymaintain the number r of regimes

by exploiting our novel coding scheme.

• It is Scalable: the computational time does not depend on

the length of the input streams.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees for their

valuable comments and helpful suggestions. This work was sup-

ported by JSPSKAKENHIGrant-in-Aid for Scienti�c ResearchNum-

ber JP19J11125, JP18H03245, JP17H04681, JP16K12430, PRESTO JST.

REFERENCES
[1] Charu C. Aggarwal, Jiawei Han, JianyongWang, and Philip S. Yu. 2003. A Frame-

work for Clustering Evolving Data Streams (VLDB). 81–92.
[2] Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning (Infor-

mation Science and Statistics). Springer.
[3] George E.P. Box, Gwilym M. Jenkins, and Gregory C. Reinsel. 1994. Time Series

Analysis: Forecasting and Control (3rd ed.). Prentice Hall, Englewood Cli�s, NJ.

[4] Feng Cao, Martin Estert, Weining Qian, and Aoying Zhou. 2006. Density-based
clustering over an evolving data stream with noise. In SDM. SIAM, 328–339.

[5] Joel Janek Dabrowski, Ashfaqur Rahman, Andrew George, Stuart Arnold, and
John McCulloch. 2018. State Space Models for Forecasting Water Quality Vari-
ables: An Application in Aquaculture Prawn Farming. In KDD. 177–185.

[6] Ian Fox, Lynn Ang, Mamta Jaiswal, Rodica Pop-Busui, and Jenna Wiens. 2017.
Contextual Motifs: Increasing the Utility of Motifs Using Contextual Data. In
KDD. 155–164.

[7] Mohammed Ghesmoune, Mustapha Lebbah, and Hanene Azzag. 2016. State-of-
the-art on clustering data streams. Big Data Analytics 1, 1 (2016), 13.

[8] Shufeng Gong, Yanfeng Zhang, and Ge Yu. 2017. Clustering Stream Data by
Exploring the Evolution of Density Mountain. PVLDB 11, 4 (2017), 393–405.

[9] Peter D Grünwald, In Jae Myung, and Mark A Pitt. 2005. Advances in minimum
description length: Theory and applications. MIT press.

[10] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. 2013. Internet of Things (IoT): A Vision, Architectural Elements,
and Future Directions. Future Gener. Comput. Syst. 29, 7 (2013), 1645–1660.

[11] David Hallac, Sagar Vare, Stephen Boyd, and Jure Leskovec. 2017. Toeplitz In-
verse Covariance-Based Clustering of Multivariate Time Series Data. In KDD.
215–223.

[12] Ahsanul Haque, Zhuoyi Wang, Swarup Chandra, Bo Dong, Latifur Khan, and
Kevin W. Hamlen. 2017. FUSION: An Online Method for Multistream Classi�-
cation. In CIKM. 919–928.

[13] Eamonn J. Keogh, Selina Chu, David Hart, and Michael J. Pazzani. 2001. An
Online Algorithm for Segmenting Time Series. In ICDM. 289–296.

[14] Jae-Gil Lee, Jiawei Han, and Kyu-Young Whang. 2007. Trajectory clustering: a
partition-and-group framework. In SIGMOD. 593–604.

[15] Lei Li, B. Aditya Prakash, and Christos Faloutsos. 2010. Parsimonious Linear
Fingerprinting for Time Series. PVLDB 3, 1 (2010), 385–396.

[16] Zitao Liu and Milos Hauskrecht. 2017. A Personalized Predictive Framework for
Multivariate Clinical Time Series via Adaptive Model Selection. In CIKM. 1169–
1177.

[17] Alysha M De Livera, Rob J Hyndman, and Ralph D Snyder. 2011. Forecasting
time series with complex seasonal patterns using exponential smoothing. J.
Amer. Statist. Assoc. 106, 496 (2011), 1513–1527.

[18] Michael Mathioudakis, Nick Koudas, and Peter Marbach. 2010. Early online
identi�cation of attention gathering items in social media. InWSDM. 301–310.

[19] Yasuko Matsubara and Yasushi Sakurai. 2019. Dynamic Modeling and Forecast-
ing of Time-evolving Data Streams. In KDD. 458–468.

[20] Yasuko Matsubara, Yasushi Sakurai, and Christos Faloutsos. 2014. AutoPlait:
Automatic Mining of Co-evolving Time Sequences. In SIGMOD.

[21] Yasuko Matsubara, Yasushi Sakurai, and Christos Faloutsos. 2015. The Web as
a Jungle: Non-Linear Dynamical Systems for Co-evolving Online Activities. In
WWW.

[22] Yasuko Matsubara, Yasushi Sakurai, Naonori Ueda, and Masatoshi Yoshikawa.
2014. Fast and Exact Monitoring of Co-Evolving Data Streams. In ICDM 2014.
390–399.

[23] YasukoMatsubara, Yasushi Sakurai, WillemG. van Panhuis, and Christos Falout-
sos. 2014. FUNNEL: automatic mining of spatially coevolving epidemics. InKDD.
105–114.

[24] Gianmarco De Francisci Morales, Albert Bifet, Latifur Khan, Joao Gama, andWei
Fan. 2016. IoT Big Data Stream Mining. In KDD, Tutorial. 2119–2120.

[25] AbdullahMueen and Eamonn J. Keogh. 2010. Online discovery andmaintenance
of time series motifs. In KDD. 1089–1098.

[26] Spiros Papadimitriou and Philip S. Yu. 2006. Optimal multi-scale patterns in time
series streams. In SIGMOD. 647–658.

[27] Tobias Preis, Helen Susannah Moat, and H. Eugene Stanley. 2013. Quantifying
Trading Behavior in Financial Markets Using Google Trends. Sci. Rep. 3 (04
2013).

[28] Yasushi Sakurai, Yasuko Matsubara, and Christos Faloutsos. 2015. Mining and
Forecasting of Big Time-series Data. In SIGMOD, Tutorial. 919–922.

[29] Mohammad Shokoohi-Yekta, Yanping Chen, Bilson Campana, Bing Hu, Jesin Za-
karia, and Eamonn Keogh. 2015. Discovery of Meaningful Rules in Time Series.
In KDD. 1085–1094.

[30] Machiko Toyoda, Yasushi Sakurai, and Yoshiharu Ishikawa. 2013. Pattern dis-
covery in data streams under the time warping distance. VLDB J. 22, 3 (2013),
295–318.

[31] Peng Wang, Haixun Wang, and Wei Wang. 2011. Finding semantics in time
series. In SIGMOD. 385–396.

[32] Byoung-Kee Yi, N.D. Sidiropoulos, Theodore Johnson, H.V. Jagadish, Christos
Faloutsos, and Alexandros Biliris. 2000. Online Data Mining for Co-Evolving
Time Sequences. ICDE (2000), 13–22.

[33] Yunyue Zhu and Dennis Shasha. 2002. StatStream: Statistical Monitoring of
Thousands of Data Streams in Real Time. In VLDB. 358–369.

[34] Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas. 2014. Indexing for
interactive exploration of big data series. In SIGMOD. 1555–1566.

Session: Long - Sequential Data Analysis CIKM ’19, November 3–7, 2019, Beijing, China

1742

	Abstract
	1 Introduction
	1.1 Preview of our results
	1.2 Contributions

	2 Related Work
	3 Problem Formulation
	4 Automatic Pattern Mining
	4.1 Offline Data Compression
	4.2 Online Optimization Objective

	5 Streaming Algorithms
	5.1 Overview
	5.2 SegmentAssignment
	5.3 RegimeGeneration
	5.4 StreamScope

	6 Experiments
	6.1 Q1: Effectiveness
	6.2 Q2: Accuracy
	6.3 Q3: Scalability

	7 Applications
	8 Conclusions
	Acknowledgments
	References

