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Abstract

The goal of this paper is to monitor numerical streams,
and to find subsequences that are similar to a given query
sequence, under the DTW (Dynamic Time Warping) dis-
tance. Applications include word spotting, sensor pat-
tern matching, and monitoring of bio-medical signals (e.g.,
EKG, ECG), and monitoring of environmental (seismic and
volcanic) signals. DTW is a very popular distance measure,
permitting accelerations and decelerations, and it has been
studied for finite, stored sequence sets. However, in many
applications such as network analysis and sensor monitor-
ing, massive amounts of data arrive continuously and it is
infeasible to save all the historical data.

We propose SPRING, a novel algorithm that can solve
the problem. We provide a theoretical analysis and prove
that SPRING does not sacrifice accuracy, while it requires
constant space and time per time-tick. These are dramatic
improvements over the naive method. Our experiments on
real and realistic data illustrate that SPRING does indeed
detect the qualifying subsequences correctly and that it can
offer dramatic improvements in speed over the naive imple-
mentation.

1. Introduction

Data streams have attracted the interest of various com-
munities (theory, database, data mining, and networking),
due to their many important applications, such as finan-
cial analysis, network monitoring, mobile services, and sen-
sor network management. The most fundamental support
needed in these applications is efficient monitoring of time-
series data streams. Since the data streams arrive online at
high bit rates and are potentially unbounded in size, the re-
source limitations unavoidably imply a trade-off – it is prac-
tically impossible to keep all historical data in the allotted
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Figure 1. Illustration of stream monitoring
under the DTW distance. The left and
right columns show the query sequence and
stream, respectively.

memory, but fast query processing must be ensured.
These applications require a subsequence-matching

mechanism to monitor data streams. And in addition, since
the sampling rates of streams are frequently different and
their time period varies in practical situations, the mecha-
nism should be robust against noise and provide scaling of
the time axis. In this paper, we address the problem of ef-
ficiently monitoring multiple numerical streams under the
DTW (Dynamic Time Warping) distance. DTW is one of
the most useful distance measures because of its character-
istics: DTW is a transformation that allows sequences to
be stretched along the time axis to minimize the distance
between the sequences.

Many algorithms have been proposed to monitor data
streams in an online fashion. However, to the best of our
knowledge, this is the first study that investigates time warp-
ing for monitoring data streams. Intuitively, this problem is
equivalent to subsequence matching in an online fashion.

The problem is illustrated in Figure 1. The query se-
quence is the sinusoid pattern at the left. The stream, shown
on the right, consists of three flat and noisy parts and two
(noisy) sinusoids, not of the same period. Our system is
able to spot the sinusoids after some stretching or shrinking.
The matches are marked with vertical lines. Our system not
only works continuously, in a streaming fashion, but also
has dramatically better performance than a straightforward
implementation in terms of speed and memory. The perfor-
mance of our system does not depend on the past length of
the data stream. The savings can reach and exceed several
orders of magnitude.



Our contributions are as follows:

1. We present SPRING, a new, streaming method for sub-
sequence matching in data streams. The method is
fast, accurate, and nimble, requiring constant space
and time per time-tick.

2. We carefully define the problem of disjoint queries, a
cross between best-match and range queries, so that it
is suitable for a streaming setting.

3. We carried out extensive experiments on real and re-
alistic data, which show that SPRING works as ex-
pected; SPRING is up to 650,000 times faster than the
naive method.

The remainder of the paper is organized as follows. Sec-
tion 2 describes related work on data streams and DTW.
In Section 3 we formally define the problem of monitoring
data streams under the DTW distance. We then describe
SPRING, our method for solving this problem. Section 4
discusses the accuracy and complexity of SPRING. Sec-
tion 5 reviews the results of the experiments, which clearly
show the effectiveness of SPRING. Section 6 is a brief con-
clusion.

2. Related Work

Related work falls broadly into two categories. The first
category includes work on DTW, where methods have been
developed for sequence matching, but the focus is typically
on indexing of stored data sets, not on stream processing.
The other category includes work on data streams. These
methods focus on comparing streams under various Lp dis-
tances, on clustering, and on summarizing. We review each
category.

2.1. Sequence indexing for DTW

The Dynamic Time Warping distance (DTW) is a very
popular distance function that allows for scaling along the
time axis [5, 7, 11, 12]. Many sequence-matching methods
for DTW have been proposed, especially in speech recog-
nition [15] and bioinformatics [11].

Within the database community, several indexing meth-
ods for DTW have been proposed, but the focus is mainly
on whole sequence matching. Yi et al. and Kim et al.
[19, 9] have proposed lower bounding measures for DTW
that guarantee no false dismissals. Keogh [8] proposed a
search method based on global constraints that appear in
dynamic programming. Global constraints (e.g., the Sakoe-
Chiba Band and the Itakura Parallelogram [15]) limit the
scope of the warping path. Zhu et al.’s search method [21]
is also based on global constraints and represents an im-
provement over the one proposed by Keogh [8]. Sakurai
et al. [17] proposed the FTW method with successive ap-
proximations, refinements and additional optimizations, to
accelerate “whole sequence” matching under DTW.

Wong et al. studied subsequence matching for DTW
[18]. They introduce a sliding window approach and pro-
pose indexing all possible prefixes with a spatial access
method. Clearly, their focus is on stored data sets, as op-
posed to data streams.

2.2. Pattern discovery in data streams

Although none of the streaming methods deals with
DTW, we review them here because they examine related
topics, such as pattern discovery, summarization, and lossy
compression for data streams

An interesting method using sketches to discover repre-
sentative trends in time-series was proposed by Indyk et al.
[4]. A representative trend is the section of a sequence with
the smallest sum of “distances” among all other sections of
the same length. This method uses random projections [6]
for dimensionality reduction and FFT to quickly compute
the sum of distances. Gilbert et al. [2] use wavelets to com-
press the data into a fixed amount of memory, by keeping
track of the largest Haar wavelet coefficients and carefully
updating them on-line. Guha et al. [3] solve the k-median
problem in a single pass over for data streams. Zhu et al.
[21] studied burst detection in streams. AWSOM [13] is
one of the first streaming methods for forecasting and is in-
tended to discover arbitrary periodicities in single time se-
quences.

Multiple streams have also attracted significant interest.
Ganti et al. [1] proposed a generic framework for streaming
mining. Zhu et al. [20] focused on monitoring multiple
streams in real time. Their proposed StatStream computes
the pairwise correlations among all streams. SPIRIT [14]
addressed the problem of capturing correlations and finding
hidden variables corresponding to trends in collections of
data streams. Sakurai et al. [16] proposed BRAID, which
efficiently detects lag correlations between data streams.

However, none of the above methods examines subse-
quence matching on streams, under the DTW distance.

3. Proposed Method

First, we define the problems and some fundamental con-
cepts, then we describe the intuition behind our approach,
and finally we give algorithms for solving the problems.

3.1. Preliminaries

3.1.1 Dynamic time warping

Intuitively, the Dynamic Time Warping (DTW) distance of
two sequences is the sum of tick-to-tick distances after the
two sequences have been optimally warped to match each
other. Let us formally consider the two sequences X =
(x1, x2, . . . , xn) of length n and Y =(y1, y2, . . . , ym) of
length m. Their DTW distance D(X,Y ) is defined as:



Table 1. Symbols and definitions
Symbol Definition

X Data sequence/stream of length n
xt Value/element of X at time t = 1, . . . , n

X[ts : te] Subsequence of X , including elements in
positions ts through te

Y Query sequence of length m
yi i-th element of Y
Y ′ Star-padding of Y

D(X, Y ) DTW distance between X and Y
ft(k, i) Distance of the element (k, i) in the t-th

time warping matrix of X and Y
d(t, i), di Distance of (t, i) in the matrix of X and Y ′

s(t, i), si Starting position of (t, i)

Figure 2. Illustration of subsequence match-
ing under the DTW distance. The black
squares denote the optimal warping path in
the time warping matrix. The naive solution
has to maintain the matrices starting from ev-
ery time-tick.

D(X,Y ) = f(n,m)

f(t, i) = ‖xt − yi‖ + min

⎧⎨
⎩

f(t, i − 1)
f(t − 1, i)
f(t − 1, i − 1)

(1)

f(0, 0) = 0, f(t, 0) = f(0, i) = ∞
(t = 1, . . . , n; i = 1, . . . , m)

where ‖xt − yi‖ = (xt − yi)2 is the distance between two
numerical values. Notice that any other choice (say, ab-
solute difference: ‖xt − yi‖ = |xt − yi|) would be fine;
our algorithms are completely independent of such choices.
The DTW distance is computed with the “time warping
matrix”, which stores the values of the function of Equa-
tion 1. Specifically, DTW requires O(nm) time since the
time warping matrix consists of nm elements. Note that the
space complexity is O(m) since the algorithm needs only
two columns (i.e., the current and previous columns) of the
time warping matrix to compute the DTW distance.

Given an evolving sequence X(= x1, . . . , xn) and a
fixed-length query sequence Y (= y1, . . . , ym), we want to
find the subsequences of X that are similar to Y in the sense
of the DTW distance. We will give the exact definitions
for this problem later (Section 3.1.2). A naive way of sub-

sequence matching would be to compute the time warping
matrices starting from every time-tick (See Figure 2). The
naive solution requires O(n2m) time to find the qualify-
ing subsequence of length l starting from xt (i.e., ending at
xt+l−1). We show that this approach can be considerably
improved without loss of accuracy.

3.1.2 Problem definition

A data stream X is a discrete, semi-infinite sequence of
numbers x1, x2, . . ., xn, . . ., where xn is the most recent
value. Notice that n increases with every new time-tick.
Let X[ts : te] denote the subsequence starting from time-
tick ts and ending at te. We want to find the subsequence
X[ts : te] that has high similarity to a fixed-length query
sequence Y (i.e., the subsequence with a small value of
D(X[ts : te], Y )).

When X is a fixed-length sequence, the problem can be
formulated as the usual two versions: “best-match query”,
and “range query”. The best-match version, with fixed-
length X , is an important stepping stone. Specifically, the
sub-problem we want to solve is as follows:

Problem 1 (Best-match query) Given sequences X of
length n and Y of length m, find the subsequence X[ts : te]
whose DTW distance from Y is the smallest among those of
all possible subsequences X[t : j], that is, D(X[ts : te], Y )
≤ D(X[t : j], Y ) for any pair of t = 1, . . . , n and
j = t, . . . , n.

The full problem we want to solve is one in which the
data sequence X is actually a stream of semi-infinite length.
In this case, the best-match query makes little sense, since
we can never be sure if the future will bring up a better
match than the one we have already found. The range query
version is suitable in the streaming case. However, a sub-
tle point should be noted: whenever the query Y matches
a subsequence of X (say X[ts : te]), we expect that there
will be several other matches by subsequences which heav-
ily overlap with the “local minimum” best match. Thus, in
the standard range query version, we propose adding a sec-
ond condition that aims to discard all these extra matches.
These matches would be doubly harmful: (a) they could po-
tentially flood the user with redundant information and (b)
they would slow down the algorithm by forcing it to keep
track of and report all these useless “solutions”.

We shall use the term “optimal” subsequence hereafter,
to denote exactly the subsequence that is the local best,
among a set of overlapping, qualifying subsequences of X .
Thus, the main problem we propose and solve in this work
is as follows:

Problem 2 (Disjoint query) Given a stream X (that is, an
evolving data sequence, which at the time of interest has
length n), a query sequence Y of fixed-length m, and a
threshold ε, report all subsequences X[ts : te] such that

1. the subsequences are close enough to the query se-
quence: D(X[ts : te], Y ) ≤ ε, and



2. among several overlapping matches, report only the
local minimum; that is, D(X[ts : te], Y ) is the small-
est value in the group of overlapping subsequences
that satisfy the first condition.

The additional challenge is to find a streaming solution,
which, at time n, will process a new value of X and report
each match as early as possible.

To simplify our presentation, we will focus on the best-
match query first, and then discuss how to handle the dis-
joint queries for data streams. Our basic ideas can be ap-
plied to both types of query.

3.1.3 Naive solution

For the best-match problem for a fixed length data sequence
X (Problem 1), the most straightforward (and slowest) so-
lution would be to consider all the possible subsequences
X[ts : te] (1 ≤ ts ≤ te ≤ n) and apply the standard DTW
dynamic programming algorithm, which requires O(n2)
matrices. The time complexity would be O(n3m) (or
O(n2m) per time-tick). Not only is this method extremely
expensive, but it also cannot be extended to the streaming
case. We refer to it as Super-Naive.

A better solution, but still not good enough, is as follows:
to find a qualifying subsequence X[ts : te], we would com-
pute the distance between Y and all possible subsequences
of X using O(n) matrices and then choose the minimum
distance. We refer to this method as Naive.

Let ft(k, i) be the distance of the element (k, i) in the t-
th time warping matrix, which starts from t. The minimum
distance of the subsequence matching between X and Y
can be obtained as follows:

D(X[ts : te], Y ) = fts
(te − ts + 1,m) = min(ft(k,m))

ft(k, i) = ‖xt+k−1 − yi‖ + min

⎧⎨
⎩

ft(k, i − 1)
ft(k − 1, i)
ft(k − 1, i − 1)

(2)

ft(0, 0) = 0, ft(k, 0) = ft(0, i) = ∞
(t = 1, . . . , n; k = 1, . . . , n − t + 1; i = 1, . . . , m).

Since the naive solution needs O(n) matrices, O(nm) num-
bers have to be updated for each time-tick.

The processing of disjoint queries has to be done in the
same way. The naive solution computes the distances of all
possible subsequences, and then chooses the one that gives
the minimum distance from each group of overlapping sub-
sequences.

3.2. Basic ideas

Our solution is based on the two ideas described below.

3.2.1 Star-padding

The naive solution creates a new time warping matrix for
every time-tick. Instead of the naive solution that needs

O(n) matrices, we propose using only a single matrix to
obtain the minimum distance of subsequences of X .

Our first proposed idea is to prefix the sequence Y with
a special value (“*”), that always gives zero distance. This
value stands for the “don’t care” interval, that is, the inter-
val (−∞ : +∞). Let Y = (y1, y2, . . . , ym) be a query
sequence. We introduce its augmented version Y ′:

Y ′ = (y0, y1, y2, . . . , ym) (3)

y0 = (−∞ : +∞).

We use Y ′ to compute the DTW distances of Y and subse-
quences of X , instead of operating on the original sequence
of Y .

Observation 1 Once we introduce the star-padding, we
need only a single time-warping matrix to find the best sub-
sequence of X .

Star-padding dramatically reduces both time and space
since we need to update only O(m) numbers per time-tick
to derive the minimum distance, instead of O(nm), which
the naive solution requires. As we show later (see Theo-
rem 1), star-padding guarantees that we obtain the minimum
distance.

3.2.2 Subsequence time warping matrix (STWM)

Star-padding is a good first step, and it can tell us (a) what
the ending of the matching subsequence is, and (b) what its
distance from the query sequence is. However, such appli-
cations often also need the starting time-tick of the match.

This is the motivation behind our second idea, the “sub-
sequence time warping matrix” (STWM): we augment the
time warping matrix and have each of its cells to record
the starting position of each candidate subsequence. More
specifically, the (t, i) cell of the usual time warping ma-
trix contains the value d(t, i), which is the best distance to
match the prefix of length t from X with the prefix of length
i from Y (i.e., t = 1, . . . , n; i = 1, . . . , m); our proposed
STWM will also record s(t, i), that is, the starting position
corresponding to d(t, i). In other words, the values s(t, i)
and d(t, i) in the STWM mean that the subsequence from
s(t, i) through t gives distance d(t, i), which is the best we
can achieve for the t- and i- prefix of X and Y , respec-
tively. We will give an arithmetical example of an STWM
later (Figure 5).

Observation 2 The subsequence time warping matrix
(STWM) includes the distance value and starting position
of each subsequence. Thus, we can identify the qualifying
subsequence in a stream fashion.

We update the starting position accompanied by the dis-
tance value as well as the distance value itself. By using the
matrix, we can identify which subsequence gave the mini-
mum distance during stream processing.

In brief, from the above discussion we can summa-
rize that our solution (i.e., the combination of star-padding



Figure 3. Illustration of SPRING. SPRING uses
only a single matrix to capture all qualifying
subsequences for disjoint queries.

and STWM) efficiently discards information about non-
qualifying subsequences using a single matrix.

3.3. SPRING

In this section, we propose algorithms for solving the
problems described in Section 3.1.2.

Our method, SPRING, efficiently detects high-similarity
subsequences in data streams. Figure 3 illustrates how
this is done. SPRING uses the STWM of X and Y ′, in
which each element (t, i) retains both distance and start-
ing position. SPRING reports all qualifying subsequences
for disjoint queries, while giving the most similar subse-
quence X[ts : te] for best-match queries. Before introduc-
ing our algorithms, we give the details of the star-padding
and STWM.

Given a sequence Y = (y1, . . . , ym), we have the star-
padding of Y , i.e., Y ′ = (y0, y1, . . . , ym) where y0 =
(−∞ : +∞). Let X be a sequence of length n, we can
then derive the minimum distance D(X[ts : te], Y ) from
the matrix of X and Y ′.

D(X[ts : te], Y ) = d(te,m) = min(d(t,m))
d(t, i) = ‖xt − yi‖ + dbest (4)

dbest = min

⎧⎨
⎩

d(t, i − 1)
d(t − 1, i)
d(t − 1, i − 1)

d(t, 0) = 0, d(0, i) = ∞
(t = 1, . . . , n; i = 1, . . . , m).

As well as the distance d(t, i), the matrix contains the start-
ing position:

s(t, i) =

⎧⎨
⎩

s(t, i − 1) (d(t, i − 1) = dbest)
s(t − 1, i) (d(t − 1, i) = dbest)
s(t − 1, i − 1) (d(t − 1, i − 1) = dbest).

(5)

We obtain the starting position of D(X[ts : te], Y ) as:

ts = s(te,m). (6)

The optimal warping path is obtained using the distance
computation, and the starting position of the best subse-
quence is propagated through the matrix on the optimal
warping path.

3.3.1 Algorithm

Let di and d′i be arrays of m distance values, and let si

and s′i be arrays of m integers. The DTW distance of each
subsequence can be incrementally computed as:

di = ‖xt − yi‖ + dbest (7)

dbest = min(di−1, d′i, d′i−1)

d0 = d′0 = 0

where di = d(t, i), and d′i = d(t − 1, i) at time-tick t.
Similarly, we obtain the starting position of the subsequence
as:

si =

⎧⎨
⎩

si−1 (di−1 = dbest)
s′i (d′i = dbest)
s′i−1 (d′i−1 = dbest)

(8)

where si = s(t, i), and s′i = s(t− 1, i). Thus, we update m
distance values and m integers for each time-tick.

The stream processing for best-match queries is straight-
forward; it simply uses Equations (7) and (8), and reports
the best subsequence when the user requires it.

For disjoint queries, the most straightforward algorithm
would be: as soon as we find a matching subsequence (i.e.,
with distance ≤ ε), we report it and then initialize the array
of di. This algorithm satisfies the first condition of Prob-
lem 2 (i.e., dm ≤ ε) and is useful if the user wants a quick
response. This algorithm, however, does not satisfy the sec-
ond condition of the problem. In fact, it may miss the op-
timal subsequence, if there are multiple overlapping subse-
quences within ε.

We introduce an new algorithm, which is carefully de-
signed to (a) guarantee no false dismissals for the second
condition of Problem 2 and (b) report each match as early
as possible. As Figure 4 illustrates, for each incoming data
point, we first incrementally update the distance di and de-
termine the starting position si according to the computa-
tion of di. The algorithm reports the subsequence after con-
firming that the current optimal subsequence cannot be re-
placed by the upcoming subsequences. The idea is to keep
track of the minimum distance, dmin, while investigating
the group of overlapping subsequences. We report the sub-
sequence that gives dmin when the arrays of di and si sat-
isfy

∀i, di ≥ dmin ∨ si > te (9)

which means that the captured optimal subsequence cannot
be replaced by the upcoming subsequences. Otherwise, the



Algorithm SPRING
input: a new value xt at t
output: qualifying subsequence if any
for i = 1 to m do

Compute di and si by Equations (7) (8);
if dmin ≤ ε then

if ∀i, di ≥ dmin ∨ si > te then
Report (dmin, ts, te);
// Reset dmin and the array of di

dmin = ∞;
for i = 1 to m do

if si ≤ te then
di = ∞;

endif
endif
if dm ≤ ε ∧ dm < dmin then

dmin = dm; ts = sm; te = t;
endif
Substitute d′

i for di;
Substitute s′i for si;

Figure 4. Algorithm for disjoint queries –
prints the optimal subsequences.

upcoming candidate subsequences do not overlap with the
captured optimal subsequence. We initialize dmin and the
array of di after the output.

Here, we use Figure 5 to illustrate how the algorithm
works.

Example 1 Assume that ε = 15, X =
(5, 12, 6, 10, 6, 5, 13), and Y = (11, 6, 9, 4). The ele-
ment (t, i) of the matrix contains d(t, i) and s(t, i). At
t = 3, we found candidate subsequence X[2 : 3] whose
distance d(3, 4) = 14 below ε. At t = 4, although the
distance d(4, 4) = 38 is larger than ε, we do not report
X[2 : 3] since d(4, 3) = 2, which means X[2 : 3] can be
replaced by the upcoming subsequences. We then capture
the optimal subsequence X[2 : 5] at t = 5. X[2 : 5] is
reported at t = 7 since we now know that none of the
upcoming subsequences will be/is the optimal subsequence.
Finally, because subsequences starting from t = 7 may be
candidates for the next group, we do not initialize d(7, 1).

4. Theoretical Analysis

Our upcoming experiments show that SPRING can ef-
ficiently spot qualifying subsequences. In this section, we
do a theoretical analysis to demonstrate the accuracy and
complexity of SPRING.

4.1. Accuracy

Theorem 1 Given sequences X and Y , the DTW distance
between X and Y ′ (i.e., the star-padding of Y ) is the mini-
mum distance between Y and all subsequences of X .

54 110 14 38 6 7 88y4 = 4
(1) (2) (2) (2) (2) (2) (2)
53 46 10 2 10 17 18y3 = 9
(1) (2) (2) (2) (4) (4) (4)
37 37 1 17 1 2 51y2 = 6
(1) (2) (2) (4) (4) (4) (4)
36 1 25 1 25 36 4y1 = 11
(1) (2) (3) (4) (5) (6) (7)

xt 5 12 6 10 6 5 13
t 1 2 3 4 5 6 7

Figure 5. Illustration of the proposed algo-
rithm. The upper number shows the distance
in each element of the matrix. The number in
parentheses shows the starting position.

Proof: Let X[ts : te] be the subsequence that gives the
minimum distance, then

fts
(te − ts + 1,m) = min(ft(k,m))

(t = 1, . . . , n; k = 1, . . . , n − t + 1).

From d(t, 0) = 0, we have

d(ts, 1) = fts
(1, 1).

Since the optimal warping path from element (ts, 1)
through (te,m) gives the minimum distance, Equation (4)
chooses the same warping path from (ts, 1). Thus, we have

d(te,m) = fts
(te − ts + 1,m).

�

Lemma 1 SPRING guarantees no false dismissals for best-
match queries.

Proof: By Theorem 1, the DTW distance between X and
Y ′ is equal to the minimum distance between Y and sub-
sequences of X . Since the subsequence time warping ma-
trix contains the starting position, SPRING spots the subse-
quence that gives the minimum distance. �

Lemma 2 SPRING guarantees no false dismissals for dis-
joint queries.

Proof: Let dmin be the minimum distance computed from
X[ts : te]. At time-tick t (t > te), the overlapping subse-
quences give a larger distance if

∀i, di ≥ dmin.

The upcoming candidate subsequences do not overlap with
X[ts : te] if

∀i, si > te.

SPRING (See Figure 4) reports X[ts : te] only if

∀i, di ≥ dmin ∨ si > te.



Thus, it does not miss the optimal subsequence.
SPRING initializes di whose elements satisfy si ≤ te

after reporting the optimal subsequence. Let s(t, i) ≤ te. If
the warping paths starting from s(t, i) and passing through
(t, i) give a distance that exceeds ε, the other subsequences
passing through (t, i) also give a larger distance. Otherwise,
all subsequences passing through (t, i) are included in the
group of overlapping subsequences, which means that there
is no need to report them. Thus, SPRING is guaranteed not
to discard the upcoming candidate subsequences. �

4.2. Complexity

Let X be an evolving sequence of length n and Y be a
sequence of fixed-length m.

Lemma 3 The naive solution requires O(nm) space and
O(nm) time per time-tick.

Proof: The naive solution has to maintain O(n) time warp-
ing matrices, and updates O(nm) numbers every time-
tick to identify qualifying subsequences. Thus, it requires
O(nm) time. Since the naive solution keeps two arrays of
m numbers for each matrix, overall, it needs O(nm) space.
�

Lemma 4 SPRING requires O(m) space and O(m) time
per time-tick.

Proof: SPRING keeps a single matrix, and updates O(m)
numbers every time-tick. Thus, SPRING requires O(m)
space and time. �

5. Experiments

To evaluate the effectiveness of SPRING, we carried out
experiments on real and synthetic data sets. Our experi-
ments were conducted on an Intel Xeon 2.8GHz with 1GB
of memory, running Linux.

The experiments were designed to answer the following
questions:

1. How successful is SPRING in capturing sequence pat-
terns?

2. How does it scale with the sequence lengths n in terms
of the computational time and memory space?

3. How well does SPRING handle multiple streams?

5.1. Discovery of sequence patterns

We present case studies on real and realistic data sets
to demonstrate the effectiveness of our approach in dis-
covering the qualifying subsequences for disjoint queries.
Figure 6 shows how SPRING detects the qualifying sub-
sequences. If multiple qualifying subsequences exist, we

point them all out. Table 2 shows the details of the exper-
imental results. In this table, ‘Distance’ means the DTW
distance between the query sequence and each subsequence.
‘Output time’ indicates the time-tick at which SPRING re-
ports the subsequence.

MaskedChirp

We used a synthetic data set, MaskedChirp, which consists
of discontinuous sine waves with white noise. We varied
the period of each disjoint sine wave in the sequence. We
chose this setting because it resembles real data, such as
voice data, which include sound and silent parts with vary-
ing time periods.

Figure 6 (a) shows that SPRING can perfectly identify
all sound parts (i.e., the subsequences from #1 to #4) and
that it is robust against noise.

Table 2 shows that the output time of each captured sub-
sequence is very close to its end position. For example, the
output time of subsequence #4 is 18844, which is close to its
end position 18052 (=15171 + 2882 - 1), while our method
guarantees the provision of the optimal subsequence. Note
that the output time does not depend on threshold ε.

Temperature

We used temperature measurements (degrees Celsius) in the
Critter data set, which comes from small sensors. The sen-
sors give a reading approximately every minute. In this data
set there are many missing values, which arise all the time.
This is the same data set that was used previously [16].

As shown in Figure 6 (b), there are two similar patterns
that significantly fluctuate with weather conditions (which
range from 20 to 32 degrees). SPRING is not sensitive at
all to the missing values. Actually, SPRING finds the days
when the temperature fluctuates from cool to hot.

Kursk

The data set for Figure 6 (c) consists of seismic recordings
from multiple sensors at different locations, which show
the explosion of the Russian submarine Kursk [10] in 2000.
Each sequence has single or multiple bursts.

The explosions shown in these sequences look similar;
however, the intervals between large spikes are slightly dif-
ferent. This phenomenon was due to differences in envi-
ronmental conditions such as underwater temperature. As
can be seen in the figure, SPRING is not affected by the
difference in the environmental conditions.

Sunspots

We know that sunspots appear in cycles. For example, dur-
ing one 30-year period within the so-called “Maunder Min-
imum”, only about 50 sunspots were observed, as opposed
to the normal 40,000-50,000 spots. The average number of
visible sunspots varies over time, increasing and decreasing
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Figure 6. Discovery of sequence patterns in MaskedChirp, Temperature, Kursk, and Sunspots. The left and
right columns show the query sequences and data sequences, respectively.

in a regular cycle of between 9.5 and 11 years, averaging
about 10.8 years 1.

Each value in Figure 6 (d) indicates the number of
sunspots per day. SPRING can capture bursty sunspot peri-
ods and identify the time-varying periodicity.

5.2. Performance

We did experiments to evaluate the efficiency and to ver-
ify the complexity of SPRING, which discussed in Sec-
tion 4.2.

Figure 7 compares SPRING and the naive implemen-
tation in terms of computation time for varying sequence
lengths n. Figure 8 shows the amount of memory space

1http://csep10.phys.utk.edu/astr162/lect/sun/sscycle.html

required to keep the time warping matrix (matrices). The
plots were generated using MaskedChirp, which allowed us
to control the sequence length. The length of the query se-
quence for these experiments was 256. The wall clock time
is the average processing time needed to update the time
warping matrix (matrices) for each time-tick and to capture
the qualifying subsequences.

As we expected, SPRING identifies the qualifying sub-
sequences much faster than the naive implementation (See
Figure 7). The trend shown in the figure agrees with our the-
oretical discussion in Section 4.2. Compared with O(nm),
which the naive implementation requires, SPRING achieves
a dramatic reduction in computation time: it requires con-
stant time; i.e., it does not depend on n. In fact, SPRING is
up to 650,000 times faster than the naive implementation.

SPRING is able to provide information about the ar-



Table 2. Results of disjoint queries.
Query sequences Matching subsequences

Data sets Threshold Starting OutputLength
ε position

Length Distance
time

MaskedChirp 2048 100 513 2015 10.05 3176
4614 2366 11.39 7601
9103 3969 18.59 14137

15171 2882 12.42 18844
Temperature 3000 1000 13293 3602 820.1 17830

24406 4073 6.5 28653
Kursk 4000 5.0e+9 28013 3981 7.06e+8 36711

Sunspots 2000 8.0e+5 2466 1717 5.67e+5 5591
6878 1599 5.45e+5 9509
9734 1587 4.87e+5 12257

13266 1994 5.48e+5 16532

0.001

0.01

0.1

1

10

100

1000

10000

1e+03 1e+04 1e+05 1e+06

W
al

l c
lo

ck
 ti

m
e 

(m
s)

Sequence length

Naive
SPRING

Figure 7. Wall clock time for disjoint queries as
a function of sequence length. SPRING is up to
650,000 times faster.
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Figure 8. Memory space consumption for dis-
joint queries as a function of sequence length.
SPRING can handle data streams with a small
constant memory space.

rangement (i.e., the warping path) of the optimal subse-
quence and the query sequence although we assume that
our method is required to keep track of the position of
the optimal subsequence. In Figure 8, SPRING(path)
indicates the space requirements of the former case, and
SPRING shows that of the latter. The space requirement
of SPRING(path) depends on the captured data. The fig-
ure, however, shows that it is clearly lower than that of the
naive implementation. As we expected, SPRING needs a
small constant space to keep track of the subsequence posi-
tion, which shows a dramatic improvement.

5.3. Extension to multiple streams

We extend SPRING to handle multiple streams (“vector”
streams), where each time-tick has not just a number, but a
whole vector of k numbers, and the query is also a set of k
sequences of m time-ticks. The driving application is mo-
tion capture data. A Motion Capture (or “mocap”) sequence
is created by recording motion information from a human
actor while the actor is performing an action (e.g., walking,
running, kicking). Special markers are placed on the joints

of the actor (e.g., knees, hips, elbows), and their x-, y- and z-
velocities are recorded, about 60 times per second. Eventu-
ally, a whole motion X is a time-evolving vector with k=62
dimensions and 60 samples per second, spanning several
seconds.

The query Y is again a k-dimensional time sequence
whose the goal is to find a matching subsequence within
X . The intuition is the following: if Y is a walking motion,
we want to find intervals in X that contain a walking-like
motion.

We used a single sequence of 7 consecutive motions (See
Figure 9), and other 4 sequences as query sequences, where
each query sequence contains one of the 4 motions; walk-
ing, jumping, punching, and kicking. The data were from
the CMU motion capture database 2. We modified the algo-
rithm of SPRING for the motion capture to report the start-
ing and ending positions of the range of overlapping subse-
quences. SPRING perfectly captures all 7 motions shown in
Figure 9 while still maintaining scalability. Due to the space
limitations we omit the detailed experimental results.

2http://mocap.cs.cmu.edu/
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Figure 9. Sequence of 7 motions.

6. Conclusions

We introduced the problem of subsequence matching un-
der DTW, over data streams, and we propose SPRING, a
new, fast algorithm to solve the problem. Notice that the
DTW distance has been studied for finite, stored sequence
sets (e.g., [8, 17, 21]). While we focus on stream processing
in this paper, SPRING can obviously be applied to stored
sequence sets, too, complementing the above solutions, and
potentially making them faster.

In conclusion, SPRING has the following characteris-
tics:

• It is fast and nimble: in contrast to the naive solution,
SPRING requires only a single matrix to find the qual-
ifying subsequences, and only constant space and time
per time-tick; that is, it does not depend on the past
length of data stream X .

• It guarantees no false dismissals.

• On real and realistic data, SPRING works as expected,
discovering the qualifying subsequences quickly and
accurately. Specifically, SPRING was up to 650,000
times faster.
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