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Introduction

n Data-stream applications
q Network analysis
q Sensor monitoring
q Financial data analysis
q Moving object tracking

n Goal
q Monitor numerical streams
q Find subsequences similar to the given query 

sequence
q Distance measure: Dynamic Time Warping (DTW)
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Introduction
n DTW is computed by dynamic programming

q Stretch sequences along the time axis to minimize the distance
q Warping path: set of grid cells in the time warping matrix
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Related Work

n Sequence indexing, subsequence matching
q Agrawal et al. (FODO 1998)
q Keogh et al. (SIGMOD 2001)
q Faloutsos et al. (SIGMOD 1994)
q Moon et al. (SIGMOD 2002)

n Fast sequence matching for DTW
q Yi et al. (ICDE 1998)
q Keogh (VLDB 2002)
q Zhu et al. (SIGMOD 2003)
q Sakurai et al. (PODS 2005)
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Related Work
n Data stream processing for pattern discovery

q Clustering for data streams
Guha et al. (TKDE 2003)

q Monitoring multiple streams
Zhu et al. (VLDB 2002)

q Forecasting
Papadimitriou et al. (VLDB 2003)

q Detecting lag correlations
Sakurai et al. (SIGMOD 2005)

n DTW has been studied for finite, stored sequence sets
n We address a new problem for DTW
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Overview

n Introduction / Related work
n Problem definition
n Main ideas
n Experimental results
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Problem Definition
n Subsequence matching for data streams

q (Fixed-length) query sequence Y=(y1 , y2 ,…, ym)
q Sequence (data stream) X=(x1 , x2 ,…, xn)
q Find all subsequences X[ts,te] such that e£)],:[( YttXD es
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Subsequence Matching
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Problem Definition
n Subsequence matching for data streams

q (Fixed-length) query sequence Y
q Sequence (data stream) X=(x1 , x2 ,…, xn)
q Find all subsequence X[ts,te] such that 

n Multiple matches by subsequences which heavily 
overlap with the “local minimum” best match
[ double harm ]
q Flood the user with redundant information
q Slow down the algorithm by forcing it to keep track of and 

report all these useless “solutions”
n Eliminate the redundant subsequences, and report 

only the “optimal” ones

e£)],:[( YttXD es
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Problem Definition

n Problem: Disjoint query
q Given a threshold e, report all X[ts:te] such that
1.

2. Only the local minimum
is the smallest value in the group of 

overlapping subsequences that satisfy the first condition
n Additional challenges: streaming solution

q Process a new value of X efficiently
q Guarantee no false dismissals
q Report each match as early as possible

e£)],:[( YttXD es

)],:[( YttXD es
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Overview

n Introduction / Related work
n Problem definition
n Main ideas
n Experimental results
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n Compute the time warping matrices starting from 
every time-tick
q Need O(n) matrices, O(nm) time per time-tick

n Disjoint query
q Compute all the possible subsequences and then choose 

the optimal ones
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Main idea (1)

n Star-padding
q Use only a single matrix

(the naïve solution uses  n matrices)
q Prefix Y with ‘*’, that always gives zero distance
q instead of Y=(y1 , y2 , …, ym), compute distances 

with Y’

q O(m) time and space (the naïve requires O(nm))
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Main idea (2)

n STWM (Subsequence Time Warping Matrix)
q Problem of the star-padding: we lose the information 

about the starting time-tick of the match
q After the scan, “which is the optimal subsequence?”

n Elements of STWM
q Distance value of each subsequence
q Starting position

n Combination of star-padding and STWM
q Efficiently identify the optimal subsequence in a 

stream fashion
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Main idea (3)

n Algorithm for disjoint queries
n Designed to: 

q Guarantee no false dismissals
q Report each match as early as possible
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Algorithm for disjoint queries

1. Update m elements (distance and starting position) 
at every time-tick

2. Keep track of the minimum distance dmin when a 
subsequence within e is found

3. Report the subsequence that gives dmin
if (a) and (b) are satisfied

(a) the captured optimal subsequence cannot be replaced 
by the upcoming subsequences

(b) the upcoming subsequences dot not overlap with the  
captured optimal subsequence
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Algorithm for disjoint queries
n distance (upper number), starting position (number in parentheses)
n X=(5,12,6,10,6,5,13), Y=(11,6,9,4), e = 20
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Algorithm for disjoint queries
n distance (upper number), starting position (number in parentheses)
n X=(5,12,6,10,6,5,13), Y=(11,6,9,4), e = 20
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Algorithm for disjoint queries
n distance (upper number), starting position (number in parentheses)
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Algorithm for disjoint queries
n Guarantee to report the optimal subsequence

(a) The captured optimal subsequence cannot be replaced
(b) The upcoming subsequences do not overlap with the   

captured optimal subsequence
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Algorithm for disjoint queries
n Guarantee to report the optimal subsequence

q Finally report the optimal subsequence X[2:5] at t=7
q Initialize the distance values (d2=51, d3=18, d4=88)
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Overview

n Introduction / Related work
n Problem definition
n Main ideas
n Experimental results
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Experimental Results 

n Experiments with real and synthetic data sets
q MaskedChirp,  Temperature, Kursk, Sunspots

n Evaluation
q Accuracy for pattern discovery
q Computation time 
q (Memory space consumption)
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Pattern Discovery

n MaskedChirp

Query sequence Data stream
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Pattern Discovery

n MaskedChirp SPRING identifies all sound 
parts with varying time periods

Query sequence Data streamThe output time of each captured 
subsequence is very close to its 

end position
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Pattern Discovery

n Temperature

Query sequence Data stream
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Pattern Discovery

n Temperature

Query sequence Data stream

SPRING finds the days when 
the temperature fluctuates from 

cool to hot



ICDE 2007 Y. Sakurai et al 30

Pattern Discovery

n Kursk

Query sequence Data stream
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Pattern Discovery

n Kursk

Query sequence Data stream

SPRING is not affected by the 
difference in the environmental 

conditions
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Pattern Discovery

n Sunspots

Query sequence Data stream
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Pattern Discovery

n Sunspots

Query sequence Data stream

SPRING can capture bursty 
periods and identify the time-

varying periodicity



ICDE 2007 Y. Sakurai et al 34

Computation time
n Wall clock time per time-tick

q Naïve method: O(nm)
q SPRING: O(m)，not depend on sequence length n
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Extension to multiple streams

n Motion capture data
q Place special markers on the joints of a human actor
q Record their x-, y-, z-velocities
q Use 16-dimensional sequences
q Capture motions based on the similarity of rotational 

energy

Erotation : rotational energy
I : moment of inertia
w : angular velocity

2

2
1 wIErotation =
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High-speed Motion Capture
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High-speed Motion Capture

n Recognize all motions in a stream fashion
q Entertainment applications, etc

Walk                  Swing                 Rotate              Swing                 Rotate

One-leg jump           Jump                 Walk                    Run                  Walk



ICDE 2007 Y. Sakurai et al 38

Conclusions

n Subsequence matching under the DTW 
distance over data streams

1. High-speed, and low memory consumption
q O(m) time and space; not depend on n

2. Accuracy
q Guarantee no false dismissals

n Stored data sets
q SPRING can be applied to stored sequence sets



Appendix
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Mini-introduction to DTW
n DTW allows sequences to be stretched along the 

time axis
q Minimize the distance of sequences
q Insert ‘stutters’ into a sequence
q THEN compute the (Euclidean) distance

‘stutters’:original
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Mini-introduction to DTW
n DTW is computed by dynamic programming

q Warping path: set of grid cells in the time warping 
matrix

data sequence P of length 
N

query sequence Q of length M

pN

qM

pi

qj
q1

p1

P

Q

p1 pi pN
q1

qj

qM

p-stutters

q-stutters

Optimum warping path
(the best alignment)
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Mini-introduction to DTW
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n DTW is computed by dynamic programming
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Pattern Discovery

n Humidity

Query sequence Data stream
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Pattern Discovery

n Humidity

Query sequence Data stream
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Two Algorithms of  SPRING

n SPRING-optimal

e  = 10,000

e  = 15,000

Query sequence
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Two Algorithms of  SPRING

n SPRING-first

e  = 10,000

e  = 15,000

Query sequence
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Memory space consumption
n Memory space for time warping matrix (matrices)

q Naïve method: O(nm)
q SPRING: O(m)，not depend on sequence length n
q SPRING (path): clearly lower than that of the naïve method


