
SPIRAL: Efficient and Exact Model Identification
for Hidden Markov Models

Yasuhiro Fujiwara
NTT Cyber Space

Laboratories
1-1 Hikari-no-oka,

Yokosuka-Shi, Kanagawa,
239-0847 Japan

fujiwara.yasuhiro
@lab.ntt.co.jp

Yasushi Sakurai
NTT Communication Science

Laboratories
2-4 Hikaridai, Seika-Cho,
"Keihanna Science City",
Kyoto, 619-0237 Japan

yasushi.sakurai
@acm.org

Masashi Yamamuro
NTT Cyber Space

Laboratories
1-1 Hikari-no-oka,

Yokosuka-Shi, Kanagawa,
239-0847 Japan

yamamuro.masashi
@lab.ntt.co.jp

ABSTRACT
Hidden Markov models (HMMs) have received considerable atten-
tion in various communities (e.g, speech recognition, neurology
and bioinformatic) since many applications that use HMM have
emerged. The goal of this work is to identify efficiently and cor-
rectly the model in a given dataset that yields the state sequence
with the highest likelihood with respect to the query sequence. We
propose SPIRAL, a fast search method for HMM datasets. To re-
duce the search cost, SPIRAL efficiently prunes a significant num-
ber of search candidates by applying successive approximations
when estimating likelihood. SPIRAL is based on three ideas; (1)
it clusters states of models to compute approximate likelihood, (2)
it uses several granularities and approximate likelihood values in
search processing, and (3) it focuses on just the promising likeli-
hood computations by pruning out low-likelihood state sequences.
We perform several experiments to verify the effectiveness of SPI-
RAL. The results show that SPIRAL is more than 500 times faster
than the naive method.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

General Terms
Algorithms, Theory

Keywords
Hidden markov model, likelihood, upper bound

1. INTRODUCTION
The hidden Markov model is a ubiquitous tool for represent-

ing probability distributions over sequences of observations. Since
HMMs, which assess sequence data as sequences of state tran-
sitions, are robust against noise, significant applications that use

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’08, August 24–27, 2008, Las Vegas, Nevada, USA.
Copyright 2008 ACM 978-1-60558-193-4/08/08 ...$5.00.

HMMs have emerged, such as mental task classification and bio-
logical analysis. The goal of this work is efficient identification
of the model whose state sequence has the highest likelihood, for
the given query sequence, from datasets exactly (i.e., an HMM that
actually has a high-probability path for the given sequence is not
missed by the algorithm.). To the best of our knowledge, this is
the first study to address the HMM search problem that guarantees
exactness.

1.1 Problem motivation
We address the following problem in this paper:

PROBLEM 1. Given an HMM dataset, and a sequence X =
(x1, x2, . . . , xn) of arbitrary length, find the model whose state
sequence has the highest likelihood, estimated with respect to X ,
from the dataset.

Increasing the speed of computing HMM likelihood remains a
major goal for the speech recognition community, where the Viterbi
algorithm [20] is used to compute the likelihood. This problem is a
hurdle to be overcome for the following motivating applications.

1.1.1 Mental task classification
The Brain Computer Interface (BCI), which is mainly designed

to help disabled people control personal computers using biofeed-
back, is a completely new approach in the field of neurology [9].
Biofeedback is a coaching and training process that helps people
learn how to change patterns of behavior, to take greater responsi-
bility for their health and for their mental, physical, emotional and
spiritual functioning. In contrast to biofeedback, it is undesirable
for disabled people to have to adapt to computers. The basic idea
behind BCI is that the computer adapts rather than the person.

Electroencephalogram (EEG) signals are weak voltages result-
ing from the spatial summation of electrical potentials in the brain
cortex, which can easily be detected by electrodes suitably placed
on the scalp surface. They result from the superposition of three
main types of brain potential: oscillatory, event-related, and slow
potential shifts. Different components of the EEG signal have been
widely demonstrated to have measurable correlates with the brain
activity involved in specific mental tasks.

Mental task classification using EEG is an approach to under-
standing human brain functions. The HMM is a major tool for
EEG since it has the capability to classify probabilistic and statisti-
cal signals. In the classification, artifacts, such as body movement
and respiration, are removed from the original signals by digital
filtering, correlation analysis or independent component analysis

[19]. One HMM is prepared, and its parameters are trained with
the refined data and manually labeled. For classification, a query
sequence is fitted to all the trained models, and is classified as be-
longing to the model with the highest likelihood [25].

1.1.2 Biological analysis
One of the most important contributions of biological sequences

to evolutionary analysis is the discovery that sequences of differ-
ent organisms are often related. Similar genes are conserved across
widely divergent species, often performing a similar or even iden-
tical function, and with functions altered through the forces of nat-
ural selection [17]. Sequence searches for large datasets have be-
come a mainstay of bioinformatics, and sequencing projects in which
the entire genomic DNA sequence of an organism is obtained have
become quite commonplace [5]. Search techniques can also be
especially useful for determining the function of genes whose se-
quences have been established in the laboratory but for which there
is no biological information. In these searches, the sequence of
the gene of interest is compared with every sequence in a sequence
dataset, and similar ones are identified. Alignments with the best-
matching sequences are shown and scored. If a query sequence can
be readily aligned with a dataset sequence of a known function,
structure, or biochemical activity, the query sequence is predicted
to have similar properties.

The primary advantage of HMMs is that they can be automati-
cally estimated, or trained, from unaligned sequences. Therefore,
since their introduction to the computational biology community,
HMMs have gained increasing acceptance as a means of sequence
modeling, multiple alignment, and profiling [3]. HMMs can also
be used to model protein families, or families of other molecular
sequences such as DNA and RNA [10]. When modeling proteins,
we observe the amino acid in the query sequence of the protein. For
all models in the dataset, likelihoods are computed with the Viterbi
algorithm. If a model has the highest likelihood in the dataset, the
query sequence is assigned to the family of the model.

In addition to the applications mentioned above, HMMs have
been used in many fields such as car traffic modeling in road traf-
fic engineering [14], anomaly detection in computer science [15],
scene classification for video analysis [12], isolated word recog-
nizer in speech recognition [20], gesture recognition in motion-
based image processing and recognition [6], and handwritten char-
acter recognition in optical character recognition [11]. Our pro-
posed method is applicable to all of these areas.

1.2 Contribution
We propose a novel method called SPIRAL for a fast likelihood

search. In order to reduce search cost, (1) we merge multiple states
to shrink the trellis structure, (2) we compute the approximate like-
lihood with several granularities, and (3) we prune low-likelihood
state sequences that will not yield a fruitful model. SPIRAL has
the following attractive characteristics based on the above ideas:

• High-speed searching: The solution based on the Viterbi al-
gorithm is prohibitively expensive for large HMM datasets.
SPIRAL uses carefully designed approximations to efficiently
identify the most likely model.

• Exactness: SPIRAL does not sacrifice accuracy; it returns
the best model without any omissions.

• No restriction on model type: It achieves a high level of
search performance for any type of model.

To achieve both high performance and output exactness, SPIRAL
first prunes many models with approximate likelihoods at low com-
putation cost. The exact likelihood computations are limited to the

minimum necessary, which yields a dramatic reduction in the to-
tal search cost. Our experiments compared the proposed method
with the method based on the Viterbi algorithm. As expected, the
experiments demonstrate the superiority of SPIRAL. Specifically,
SPIRAL is more than 500 times faster.

The remainder of this paper is organized as follows. Section 2
describes related work on HMMs and data engineering. Section 3
introduces SPIRAL. Section 4 reviews the results of our experi-
ments. Section 5 is a brief conclusion.

2. RELATED WORK
The basic theory of the HMM was published by Baum and his

colleagues in the the late 1960’s and early 1970’s, but has been well
understood and used in the speech recognition field only since the
early 1980’s [20]. Although numerous studies have been published
in various research areas [22, 7], none of the described techniques
meet the conditions listed in Section 1.

Computing the likelihoods for HMMs in a reasonable time re-
mains a major goal for the speech recognition community. Contin-
uous density HMMs typically have 8-64 Gaussian components, and
the likelihood of each component must be separately computed,
which incurs a high CPU cost. Hunt et al. studied a technique
for reducing the number of Gaussian components by using LDA
(Linear Discriminant Analysis) [13]. It is well known that Gaus-
sian models are statistically accurate if the input feature vector is
near the Gaussian mean. Based on this idea, Bocchieri presented a
method that computes the likelihoods of only the Gaussian neigh-
bors, rather than the likelihood of all Gaussians [4]. Replacing con-
tinuous density HMMs with discrete HMMs is a useful approach
to reducing the computation cost, since the likelihoods of a discrete
HMM can be computed by looking them up in a scalar quantized
probability table [21]. But unfortunately, it still incurs excessive
CPU cost, especially for large datasets, since it computes all possi-
ble likelihoods.

The Beam search algorithm is a popular approach to reducing
the computational expense of an exhaustive dynamic programming
search such as the Viterbi algorithm and has been employed in
many studies [18, 8]. The basic idea of the Beam search is that
a path passing through states whose likelihood is much less than
the highest one would not be likely to become the best path in a dy-
namic programming search (Viterbi path in the Viterbi algorithm).
The Beam search defines a pruning beam width that sets states to
be disregarded according as their likelihood. It is clear from the
naivety of the pruning criterion that this reduction technique has
the undesirable property of possibly causing the loss of the best
path.

3. PROPOSED METHOD
In this paper, we mainly focus on a query designed to identify

the model that has the highest likelihood accurately from HMM
datasets. But SPIRAL can also efficiently support range queries
and K-nearest neighbor queries as described in section 3.6.

3.1 Hidden Markov Model
Unlike the regular Markov model, in which each state corre-

sponds to an observable event, an HMM is used when the observa-
tion is a probabilistic function of the state. An HMM is composed
of the following probabilities:

• Initial state probability: π={πi}
The probability where the state is ui (i = 1, · · · , m) at time
t = 1.

• State transition probability: a={aij}
The probability where the state transits from state ui to uj .

Symbols Definitions

xt Value of sequence X at time t (t = 1, · · · , n)
n Sequence length of X
ui i-th state of an HMM (i = 1, · · · , m)
m Number of states
π={πi} Initial state probability of ui

a={aij} State transition probability from ui to uj

b(v)={bi(v)} Symbol probability of symbol v in state ui

P Exact likelihood
P ′ Approximate likelihood

Table 1: Definition of main symbols.

(a) Ergodic HMM

(b) Left-right HMM

Figure 1: HMM types.

・ ・ ・ ・

・ ・ ・ ・

・ ・ ・ ・

・ ・ ・ ・

・ ・ ・ ・

・ ・ ・ ・

・ ・ ・ ・

・ ・ ・ ・

m

n

Figure 2: Trellis structure.

• Symbol probability: b(v)={bi(v)}
The probability where symbol v is output in state ui.

We use the following urn-and-ball example to explain the basic
HMM concept.

EXAMPLE 1. Assume there are m urns that represent m states
and in each urn there are balls of different colors. Also assume
that the observation sequence of length n is created by randomly
extracting a ball from an urn. There can be multiple combinations
of state (urn) sequence that correspond to the same observation se-
quence (sequence of different ball colors). This is where the “Hid-
den" concept lies, since the exact state transition sequence corre-
sponding to one observation sequence is unknown. To find one cer-
tain state transition sequence, some restrictions need to be applied,
such as “the state sequence that has the highest probability". In
this example, the probability of extracting a certain ball color from
each urn is b(v). The urn selection probabilities are π and a.

HMMs are classified by the structure of the transition probabili-
ties a as shown in Figure 1, where the white circles represent states,
and the arrows represent transitions. Ergodic HMMs, or fully con-
nected HMMs, have a property whereby every state can be reached
from every other state. As shown in Figure 1 (a), for an m = 4
state model, this model type has a property whereby every aij co-
efficient is positive. Hence, for Figure 1 (a), we have

a =

2
64

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

3
75 . (1)

The left-right HMM is another type of HMM where the state
transitions have a property whereby, as time increases, the state
number increases or stays the same. The fundamental property of
all left-right HMMs is: (1) the state transition probability is aij = 0
for j < i (that is, transitions to lower number states are prohibited).
(2) For the initial state probabilities, π1 = 1 (i.e., πi = 0 for i 6= 1)
since the left-right HMMs always begin with the first state. (3)
An additional constraint is that possible transitions are limited to a
small number of states. For example, aij = 0 for j > i + 2 in
Figure 1 (b), which means possible transitions are limited to three

states. Overall, the state transition probabilities for Figure 1 (b) are
given by

a =

2
64

a11 a12 a13 0
0 a22 a23 a24

0 0 a33 a34

0 0 0 a44

3
75 . (2)

The well-known Viterbi algorithm is a dynamic programming
algorithm for estimating the likelihood of sequence X . The maxi-
mum probability yielded by a single state sequence corresponds to
that likelihood. The state sequence, which gives the likelihood, is
called the Viterbi path. For a given model, the likelihood P of X
is computed as follows,

P = max
1≤i≤m

(pin) (3)

pit =


max1≤j≤m(pj(t−1) · aji) · bi(xt) (2 ≤ t ≤ n)
πi · bi(x1) (t = 1).

where pit is the maximum probability of state ui at time t. The like-
lihood is computed based on the trellis structure shown in Figure 2,
where states lie on the vertical axis, and sequences are aligned
along the horizontal axis. The likelihood is computed using a dy-
namic programming approach that maximizes the probabilities from
previous states (i.e., each state probability is computed using all
previous state probabilities, associating transition probabilities, and
symbol probabilities).

EXAMPLE 2. Assume the following model and sequence.

π =

2
4

1
0
0

3
5 , a =

2
4

0.5 0.5 0
0.5 0.25 0.25
0 0 1

3
5 ,

b(1) =

2
4

1
0.75
0

3
5 , b(2) =

2
4

0
0.25
0

3
5 , b(3) =

2
4

0
0
1

3
5

X = (1, 1, 2, 3).

From the Viterbi algorithm, we have

p11=1, p12=0.5, p13=0, p14=0
p21=0, p22=0.75·0.5, p23=(0.5)2·0.25, p24=0
p31=0, p32=0, p33=0, p34=(0.5)2·(0.25)2.

The state sequence (u1, u1, u2, u3) gives the maximum probability.
Consequently, we have P = (0.5)3 · (0.25)2.

The Viterbi algorithm generally needs O(nm2) time since it
compares m transitions to obtain the maximum probability for ev-
ery state, that is, it requires O(m2) in each time tick. The naive
solution would be to compute the likelihood for every model using
the Viterbi algorithm, and then choose the most likely model (i.e.,
the model that shows the highest likelihood). This would incur ex-
cessive CPU time due to (1) the large size of datasets and (2) the
large number of states in trellis structures.

3.2 Ideas behind SPIRAL
Our solution is based on the three ideas, described below.

Likelihood approximation. We introduce approximations to
reduce the high cost of the Viterbi algorithm solution. Instead of
computing the exact likelihood of every model, we approximate
the likelihood, thus efficiently pruning out low likelihood models.

The first idea is to reduce the model size. For given m states and
granularity g, we create m/g states by merging ‘similar’ states in
the model (See Figure 3 (a)), which requires O(nm2/g2) time to

n

g
m

・ ・ ・ ・

・ ・ ・ ・

・ ・ ・ ・

・ ・ ・ ・

・ ・ ・ ・ ・

・ ・ ・ ・ ・

・ ・ ・ ・ ・

・ ・ ・ ・ ・

・ ・ ・ ・ ・

・ ・ ・ ・ ・

・ ・ ・ ・ ・

・ ・ ・ ・ ・

(a) State clustering (c) Transition pruning

・ ・ ・ ・

・ ・ ・ ・

・ ・ ・ ・

・ ・ ・ ・

・ ・ ・ ・

・ ・ ・ ・

・ ・ ・ ・

・ ・ ・ ・

・ ・ ・ ・

・ ・ ・ ・

・ ・ ・ ・

・ ・ ・ ・

(b) Multi-granularities

Figure 3: Basic ideas behind SPIRAL.

obtain the approximate likelihoods instead of O(nm2) time, which
the Viterbi algorithm solution requires. We use a clustering ap-
proach to find groups of similar states, then create compact models.
We refer to them as degenerate models.

This new idea has the following two major advantages. First,
we can find likely models without any omissions even though we
use approximations. Search omissions are avoided completely by
the use of the upper bounding likelihood. This means that we can
safely discard unpromising models along with their approximate
likelihoods at low CPU cost.

The second advantage is that this idea does not depend on model
type. We can estimate the approximate likelihoods for any model
type since we do not use any probability constraints. The choice of
model type depends on the user or application.

Multi-granularities. Instead of operating on the degenerate model
of a single granularity, we propose using multiple granularities to
optimize the trade-off between accuracy and comparison speed for
the datasets. As the size of the models increases, accuracy im-
proves (i.e., the upper bounding likelihood decreases), but the like-
lihood computation time increases. Therefore, we generate models
of multiple granularities that form a geometric progression: g =
1, 2, 4, . . . , m, where g = 1 gives the exact likelihood while g =
m means the coarsest approximation. We then gradually increase
the size of the models (i.e., we use a model with a smaller g), which
improves the accuracy of the approximate likelihood, as the search
progresses (See Figure 3 (b)).

Low-likelihood models (i.e., unlikely models) are pruned by coarse-
grained approximation, whereas fine-grained approximation is needed
to evaluate high-likelihood models. Therefore, we apply fine-grained
approximation only to the models that remain after coarse-grained
approximation. Consequently, we can balance the competing goals
of accuracy and computation time for all the models in the datasets.
This approach reinforces the first idea by adjusting the granularity
of each model according to its exact likelihood, and we can identify
the best model for large number of models since the exact likeli-
hood computations are limited to the minimum number necessary
with this idea.

Transition pruning. Although our approximation technique is
able to discard most unlikely models, we still rely on exact likeli-
hood computation to guarantee the correctness of the search results.
Here we focus on reducing the cost of this computation.

The Viterbi path shows the state sequence that gives the like-
lihood. Even though the Viterbi algorithm does not compute the
complete set of paths, the trellis structure includes an exponential
number of paths. Thus, the exhaustive exploration of all paths is not
computationally feasible, especially for large model sets. We there-

fore ask the question, which paths in the structure are not promising
to explore? This can be answered by using a threshold (say θ).

Our search algorithm maintains a candidate (i.e., best-so-far)
likelihood before reporting the final likelihood. We use θ as the
best-so-far highest likelihood. θ is updated and increases when a
promising model is found during search processing. We exclude
the unlikely paths in the trellis structure by using θ, since θ never
decreases during search processing. If the upper bounding like-
lihood of paths that pass through a state is less than θ, that state
cannot be contained in the Viterbi path, we can safely discard the
paths.

We can prune off all viable paths in which case likelihood com-
putaion can be stopepd early, and while m states may need search
for the next observation, the range of computation is less than the
Viterbi algorithm which require O(m2) times in each time tick.

From the monotonically increasing property of θ, we can search
for the most likely model efficiently over a long sequence. This is
an attractive characteristic considering that the sequence could be
very long given the user or application requirements.

This technique can be applied to approximate likelihood com-
putation as well as to exact computation. This means that we can
compute the approximate likelihood more efficiently.

3.3 Likelihood approximation

3.3.1 State clustering
Attempts to minimize model complexity by aggregating states

have been reported in the field of reinforcement learning [23]. We
reduce the size of the trellis structure by merging similar states in
order to compute likelihoods at low computation cost. To achieve
this, we adopt a clustering approach. Given granularity g, we try to
find m/g clusters for the m original states. We first describe how
to compute the probabilities of a new degenerate model, and show
our clustering method.

We merge all the states in a cluster and create a new state. For
the new state, we choose the highest probability among the proba-
bilities of the states to compute the upper bounding likelihood (de-
scribed in Section 3.3.2). We obtain the probabilities of a new state
uc by merging all the states in a cluster C as follows:

π′c = max
ui∈C

(πi), a′cc = max
ui∈C, uk∈C

(aik),

a′cj = max
ui∈C

(aij) for any uj /∈ C, (4)

a′jc = max
ui∈C

(aji) for any uj /∈ C,

b′c(v) = max
ui∈C

(bi(v)).

We use the following example to explain state clustering.

EXAMPLE 3. Assume that we have the same model as Exam-
ple 2. Let two clusters C1 and C2, and the original states u1 and u2

be elements of C1; u3 is in C2. We obtain the new state probability
by taking the maximum value of the original probabilities:

π′1 = max(π1, π2), a′11 = max(a11, a12, a21, a22),

a′12 = max(a13, a23), a′21 = max(a31, a32),

b′1(1) = max(b1(1), b2(1)), b′1(2) = max(b1(2), b2(2)),

b′1(3) = max(b1(3), b2(3)).

Thus, we have

π′=
»

1
0

–
, a′=

»
0.5 0.25
0 1

–
,

b′(1)=

»
1
0

–
, b′(2)=

»
0.25
0

–
, b′(3)=

»
0
1

–
.

We use the following vector of features with clustering Fi of
state ui.

Fi = (πi; ai1, . . . , aim, a1i, . . . , ami; bi(v1), . . . , bi(vs)).

where s is the number of symbols. We choose this vector to reduce
approximation error. The highest probabilities are the probabilities
of a new state. And the greater the number of difference probabil-
ities possessed by the two models, the greater the vector becomes.
We can find a good clustering arrangement using this vector.

In our experiments, we used the well-known k-means method to
cluster states 1 where the Euclidean distance is used as a distance
measure. But we can exploit BIRCH [24] instead of the k-means
method, the L1 distance as a distance measure, or SVD to reduce
the dimensionality of the vector of features. The clustering method
is completely independent of SPIRAL, and beyond the scope of this
paper.

3.3.2 Upper bounding likelihood
We compute approximate likelihood P ′ from degenerate mod-

els that have m′(= m/g) states. Given a degenerate model, we
compute the approximate likelihood as follows:

P ′ = max
1≤c≤m′

(p′cn) (5)

p′ct =


max1≤j≤m′(p

′
j(t−1) · a′jc) · b′c(xt) (2 ≤ t ≤ n)

π′c · b′c(x1) (t = 1).

where p′ is the maximum probability of states.

THEOREM 1. For any HMM model, the following inequality
holds.

P ≤ P ′. (6)

Proof: For each original state ui (1 ≤ i ≤ m), we have

pi1 ≤ π′c · b′c(x1) = p′c1, (1 ≤ c ≤ m′).

If 2 ≤ t ≤ n, we have

pit ≤ max
1≤j≤m′

(p′j(t−1) · a′jc) · b′c(xt) = p′ct.

Thus,

P ≤ max
1≤c≤m′

(p′cn) = P ′.

2

Theorem 1 provides SPIRAL with the property of exactness. We
provide the proof of this property in Section 3.7.

3.4 Multi-granularities
In the previous section, we presented an algorithm that computed

the approximate likelihood of a degenerate model with a single
granularity. However, we can exploit multiple granularities instead
of a single granularity. Here, we describe the gradual refinement of
the likelihood approximation with multiple granularities.

We use h + 1 distinct granularities that form a geometric pro-
gression gi = 2i (i = 0, 1, 2, . . . , h). We therefore generate
trellis structures of a model that have bm/gic states. gh represents
the smallest (coarsest) model2 while g0 corresponds to the original
model, which gives the exact likelihood. gi becomes geometrically
smaller to give larger size structures, and consequently, the approx-
imation accuracy improves.
1We repeated the clustering procedure until there were no more
changes.
2Note that the coarsest granularity is gh = 2blog2 mc. The coarsest
model has one state.

In search processing, we first compute the coarsest structure for
all models. We then obtain the candidate and the exact likelihood
θ. If a model has an approximate likelihood smaller than θ, that
model is pruned with no further computation. Otherwise, we com-
pute a finer-grained structure for that model, and check whether the
approximate likelihood is smaller than θ. We iterate this check un-
til we reach g0. For example, if the original HMM has 16 states,
SPIRAL computes the likelihoods of models that have 1, 2, 4, 8, 16
states in series until the model is pruned. Consequently, we can
prune unlikely models with appropriate granularity according to
likelihood. Later we describe a search algorithm based on this ap-
proach.

3.5 Transition pruning
We introduce an algorithm for computing likelihoods efficiently.

We utilize two important properties.

• Likelihoods are monotone non-increasing.
The likelihood of a state is less than or equal to the like-
lihoods of any transited states. This property comes from
Equations (3) and (5).

• The threshold θ is monotone non-decreasing.
In search processing, we first finds a model based on the ap-
proximate likelihood, and set the initial θ from the model.
We maintain the candidate before reporting the final result.
When we find a high-likelihood model whose exact likeli-
hood is greater than θ, the candidate is updated; this makes θ
larger. Therefore, we realize the second property by insisting
that θ keeps increasing or remains unchanged.

We exploit the above two properties in effectively pruning paths
in the trellis structure. We introduce eit, which indicates a con-
servative estimate of the likelihood pit, to prune unlikely paths as
follows:

eit =


pit · (amax)n−t ·Qn

j=t+1 bmax(xj) (1 ≤ t ≤ n− 1)
pin (t = n)

where amax and bmax(v) are the maximum values of the state tran-
sition probability and symbol probability:

amax = max
i,j

(aij) (i = 1, . . . , m; j = 1, . . . , m) (7)

bmax(v) = max
i

bi(v) (8)

The estimate is exactly the same as the maximum probability of ui

when t = n. The estimate eit, exploiting the product of a series of
the maximum values of the state transition probability and symbol
probability, has the upper bounding property assuming the Viterbi
path passes through uj at time t.

THEOREM 2. For paths that pass through state ui(i = 1, . . . , m)
at time t(1 ≤ t ≤ n), the following inequality holds state uj(j =
1, . . . , m) at time n.

pjn ≤ eit (9)

Proof: If 1 ≤ t ≤ n− 1, for a state sequence that passes through
state ui at time t, the following equation holds at time t+1 for any
state uj(1 ≤ j ≤ m):

pj(t+1) = pit · aij · bj(xt+1) ≤ pit · amax · bmax(xt+1)

Similarly, the following equation holds at time t + 2:

pj(t+2) ≤ pit · (amax)2 ·
t+2Y

k=t+1

(bmax(xk))

Algorithm TransitionPruning
add all models to S2;
for t := 1 to n do
S1 := ∅;
for i := 1 to m do

compute eit from the transitions of S2;
if eit ≥ θ then

add ui to S1;
end for
// terminate the likelihood computation
if S1 = ∅ then

return max1≤i≤m(eit);
S2 := S1;

end for
return max1≤i≤m(ein)

Figure 4: Likelihood computation algorithm. The algorithm
prunes unlikely paths against a given threshold θ.

Consequently, given a state sequence that passes through state ui at
time t, the following equation holds at time n for any state uj(1 ≤
j ≤ m):

pjn ≤ pit · (amax)n−t ·
nY

k=t+1

bmax(xk) = eit

And if t = n, pin = ein. which completes the proof. 2

This property enables SPIRAL to search the model exactly, which
provides the proof in Section 3.7.

In search processing, if eit gives a value smaller than θ (i.e, the
best-so-far highest likelihood in the search processing), state ui at
time t for the model cannot be contained in the Viterbi path. Ac-
cordingly, unlikely paths can be pruned with safety. Figure 4 shows
the algorithm for the likelihood computation. The algorithm prunes
unlikely paths in the trellis structure with θ. We can similarly apply
this algorithm to the approximate likelihood computation as well as
to the exact computation. Threshold θ is updated when searching
the model. We show the algorithm in the next section.

We use two arrays S1 and S2 for dynamic programming to keep
track of transitions. We also use θ to improve the efficiency. The
algorithm initializes the first array, S1, every time tick. If the like-
lihood estimate of ui at t (i.e., eit) does not exceed θ, the state is
not included in S1, which means we do not need to take the state
into account at t + 1. If S1 is empty, we terminate the likelihood
computation since the given model cannot yield a search result. We
can optionally compute the state sequence by backtracking to the
maximum probability if the user requires it.

Now let us use the following example to explain how to prune
transition paths.

EXAMPLE 4. Assume that we have the same model as Exam-
ple 2 and θ = 0.25. The path through u2 at t = 1 is not promising
since e21 = p21 · (13) · (1 ·0.75 ·1) = 0 is lower than θ. Therefore,
we do not take this path into account when we compute the proba-
bilities at t = 2. Similarly, we exclude the path through u3 at t = 1
and the path through u3 at t = 2. At t = 3, for all states, the like-
lihood estimates are lower than θ, so we terminate the likelihood
computation and determine that this is not a likely model.

3.6 Search algorithm
Our approach to achieving both high performance and output

exactness is to (1) prune low-likelihood models using their approx-
imate likelihoods, which guarantees exactness, and then (2) ensure
the candidate model with the exact likelihood computations, which
are limited to the minimum number necessary.

Algorithm Search
θ := 0;
// find one model as the initial candidate
for each model M ∈Dataset do

compute Ph for M ;
if Ph ≥ θ then

θ := Ph;
Mbest := M ;

end if
end for
// compute the initial value of θ
compute P0 for Mbest;
θ := P0;
// search for the highest likelihood model
for each M ∈Dataset do

for i := h− 1 to 0 do
compute Pi for M with TransitionPruning;
if Pi < θ then

break;
else if i = 0 then

Mbest := M ;
θ := P0;

end if
end for

end for
return Mbest;

Figure 5: Search algorithm of SPIRAL.

SPIRAL first finds a candidate for the high-likelihood model
based on the upper bounding likelihood computed with the coarsest
granularity. This is because the approximation quality is improved
if θ is close to the final likelihood of the search result early in the
search process. The first model to be found is regarded as the initial
candidate for the search from which we obtain the initial θ.

Figure 5 shows the search algorithm of SPIRAL. In this figure,
Pi indicates the likelihood of granularity gi. We first compute the
approximate likelihoods of gh for all models, and then choose the
best candidate in terms of approximate likelihood. We obtain the
initial value of θ by computing the exact likelihood of the candi-
date. We continue to compute approximate likelihood values while
gradually enhancing the accuracy. If the approximate likelihood is
smaller than θ, we prune the model since it cannot be a qualifying
model as the search result. The exact likelihood P0 is computed
only when the approximate likelihood of g1 is greater than or equal
to θ. If P0 is larger than θ, we update the candidate and θ, which
makes the search more efficient.

Although we described only a search algorithm for identifying
the model that has the highest likelihood, SPIRAL can be applied to
range queries and K-nearest neighbor queries. For range queries,
we would utilize a search range as θ, instead of the best likelihood
used in the above search algorithm (i.e., we do not use the candi-
date). And we would utilize the best K-th likelihood instead of the
best likelihood for K-nearest neighbor queries.

3.7 Theoretical Analysis
In this section we provide a theoretical analysis to show the ac-

curacy and complexity of SPIRAL. Let m be the number of states,
n be the sequence length, and s be the number of symbols.

3.7.1 Accuracy

LEMMA 1. SPIRAL guarantees exactness when identifying the
model whose state sequence has the highest likelihood for the given
query sequence.

Proof: Let Mbest be the best model in the dataset and θmax be
the exact likelihood of Mbest (i.e., θmax is the highest likelihood).

Also let Pi be the likelihood of a model M for granularity gi and θ
be the best-so-far highest likelihood in the search processing.

From Theorems 1 and 2, we obtain P0 ≤ Pi, for any granularity
gi, for any M . For Mbest, θmax ≤ Pi holds. In the search process-
ing, since θmax ≥ θ, the approximate likelihood of Mbest is not
lower than θ. The algorithm discards M if (and only if) Pi < θ.
Therefore, the best model Mbest cannot be pruned in the search
processing. 2

3.7.2 Complexity

LEMMA 2. Given a query sequence and model, the Viterbi al-
gorithm requires O(m2+ms) space and O(nm2) time to compute
the likelihood.

Proof: The Viterbi algorithm keeps m values for the initial state
probability, m2 values for the state transition probability, and ms
values for the symbol probability. Thus, it needs O(m2 + ms)
space. To compute the likelihood, the Viterbi algorithm computes
the maximum probability from all the m previous states for every
state in each time tick. Therefore, it requires O(nm2) time. 2

LEMMA 3. SPIRAL requires O(m2 + ms) space to compute
the likelihood.

Proof: SPIRAL keeps m/2i (i = 0, 1, 2, . . . , log m) values for
the initial state probability for granularity gi. Since

Plog m
i=0 m/2i =

2(1− 1/2log m)m ≈ 2m, SPIRAL needs O(m) space for the ini-
tial state probability. Similarly, SPIRAL requires O(ms) space
for the symbol probability and O(m2) space for the state transi-
tion probability. Consequently, the space complexity of SPIRAL is
O(m2 + ms). 2

LEMMA 4. SPIRAL requires at least O(n) time and at most
O(nm2) time to compute the likelihood.

Proof: When the search algorithm uses the coarsest approxi-
mation, the likelihood computation requires O(n) time. SPIRAL
needs O(nm2/4i) (i = 0, 1, 2, . . . , log m) time for granularity gi.
Thus, for the worst case scenario when the algorithm uses the trel-
lis structures of all granularities, SPIRAL requires O(nm2) time
since

Plog m
i=0 nm2/4i ≈ 4/3nm2. 2

Lemmas 2, 3 and 4 show theoretically that SPIRAL needs the
same order of memory space as the Viterbi algorithm, while SPI-
RAL can be up to m2 times faster. In practice, the search cost
depends on the granularity SPIRAL uses for the likelihood approx-
imation. In the next section, we show the effectiveness of our ap-
proach by presenting results from our extensive experiments.

4. EXPERIMENTAL EVALUATION
We performed experiments to demonstrate SPIRAL’s effective-

ness. We compared SPIRAL with the Viterbi algorithm and the
Beam search algorithm. We refer to the Viterbi algorithm imple-
mentation as Viterbi and the Beam search algorithm implementa-
tion as Beam. The models were trained by the Baum-Welch algo-
rithm [16].

We evaluated the search performance based mainly on wall clock
time. All experiments were conducted on a 1.66GHz Intel Core 2
PC with 2GB of main memory using the same codebase. Each re-
sult reported here is the average of 250 trials. We used the following
three standard datasets for the experiments.

• EEG:
This dataset was taken from a large study that examined the
EEG correlates of the genetic predisposition to alcoholism

downloaded from the UCI website [1]. It contains measure-
ments from 64 electrodes placed on subjects’ scalps that were
sampled at 256 Hz (3.9-msec epoch) for 1 second, that is,
the length of each sequence is 256. In our experiments, we
quantized EEG values every 10 microvolts, resulting in 50
elements. We computed the probabilities of models from a
dataset of subjects(co2a0000365, co2a0000368, co2a0000369,
co2c0000338, co2c0000339, and co2c0000340), and we ex-
tracted query from dataset(co2a0000364 and co2c0000337).

• Chromosome:
We used DNA strings of human chromosomes 2, 18, 21, and
22, which were obtained from the well-known NCBI web-
site [2]. We collected data sequences with consecutive non-
overlapping windows of length 256 from each chromosome.
These DNA strings are composed of the letters {A,C,G,T,N}
where N is unknown. We treat N as a different symbol, result-
ing in a symbol size of 5. In our experiments, a query dataset
is obtained from chromosome 2, and models are trained with
the rest of the dataset.

• Traffic:
This dataset is loop sensor measurements of the Freeway Per-
formance Measurement System found on the UCI website
[1]. This loop sensor dataset was collected in Los Angeles
from 10 April 2005 to 1 October 2005 (5 minute count ag-
gregates), and the symbol size is 91. We extracted sequences
with lengths of 256 from sensor measurements from April
10th to September 23th with 21 hours of consecutive over-
lapping windows to train the models. We similarly extracted
query sequences from sensor measurements from September
24th to October 1st.

We omitted the results of the left-right HMM due to space lim-
itations, but additional experiments confirmed the effectiveness of
SPIRAL for the left-right HMM.

4.1 Search cost
We assessed the search time needed for SPIRAL and Viterbi

since none of the previously published studies considered the like-
lihood search problem for HMMs accurately. We conducted trials
with various numbers of states and models because differences in
these numbers are expected to have a strong impact on the compu-
tation time for HMM datasets with Viterbi.

4.1.1 Wall clock time versus number of states
Figure 6 compares SPIRAL and Viterbi in terms of the wall clock

time for various numbers of states m for 10,000 models. These
figures show that SPIRAL offers greatly increased speed Viterbi
requires O(nm2) time for computing likelihoods while SPIRAL
requires O(nm2/g2) for computing approximate likelihoods. SPI-
RAL requires O(nm2) time to compute exact likelihoods for mod-
els that cannot be pruned through approximation. This cost, how-
ever, has no effect on the experimental results. This is because a
significant number of models are pruned by approximation. We
describe this in detail in Section 4.2. Our method is several orders
of magnitude faster than the Viterbi algorithm implementation un-
der all the conditions we examined. Specifically, SPIRAL is more
than 500 times faster.

4.1.2 Wall clock time versus number of models
Figure 7 shows the wall clock time as a function of the number of

models for EEG, where the number of states is m = 100. We omit-
ted the results for Chromosome and Traffic due to space limitations.
SPIRAL is so effective because it first computes the likelihoods of

0.1

1

10

100

1000

25 50 75 100

Number of states

W
a
l
l

c
l
o
c
k

t
i
m

e

[
s
]

SPIRAL Viterbi

0.1

1

10

100

1000

25 50 75 100

Number of states

W
a
l
l

c
l
o
c
k

t
i
m

e

[
s
]

SPIRAL Viterbi

0.1

1

10

100

1000

25 50 75 100

Number of states

W
a
l
l

c
l
o
c
k

t
i
m

e

[
s
]

SPIRAL Viterbi

(a) EEG (b) Chromosome (c) Traffic

Figure 6: Wall clock time versus number of states.

0.1

1

10

100

1000

2500 5000 7500 10000

Number of models

W
a
l
l

c
l
o
c
k

t
i
m

e

[
s
]

SPIRAL Viterbi

Figure 7: Wall clock time versus number of
models.

1

10

100

1000

10000

EEG Chromosome Traffic

N
u
m

b
e
r

o
f

c
o
m

p
u
t
a
t
i
o
n
s

g=64 g=32

g=16 g=8

g=4 g=2

g=1

Figure 8: Number of likelihood computa-
tions versus granularity.

0.1

1

10

100

EEG Chromosome Traffic

W
a
l
l

c
l
o
c
k

t
i
m

e

[
s
]

SPIRAL without trasition pruning

SPIRAL

Figure 9: Wall clock time of transition
pruning method.

all the models with the coarsest granularity to find the final likeli-
hood θ, which is exploited in pruning, relatively early in the search
process.

4.2 Effect of likelihood approximation
SPIRAL first prunes low-likelihood (unpromising) models using

multiple granularities of approximation. The number of exact like-
lihood computations (and also the number of fine-grained approxi-
mations) are the dominant factors in the search cost. Accordingly,
we evaluated the number of exact computations (and approxima-
tions) needed in SPIRAL. Figure 8 shows the number of approx-
imate and exact likelihood computations for 10,000 models. The
number of states is m = 100 in this figure.

This figure indicates that SPIRAL has strong pruning power;
it excludes most of the unlikely models with approximations of
g = 64, g = 32, and g = 16, and reduces the number of candidate
models with those of the subsequent granularities. Consequently,
there a very few exact computations. Owing to this high approxi-
mation quality, SPIRAL achieves excellent search performance as
shown in Figures 6 and 7.

4.3 Effect of transition pruning
As mentioned in Section 3.5, we exclude unlikely paths from

the trellis structure to efficiently compute exact and approximate
likelihoods. To show the effectiveness of this idea, we removed
the path-pruning technique from SPIRAL, and examined the wall
clock time. Figure 9 shows the result for 10,000 models of 100.

The results show that the transition pruning method can provide
an efficient search especially for the ergodic HMMs; SPIRAL is up
to 19 times faster when we use the transition pruning method.

4.4 SPIRAL vs Beam search
One major advantage of SPIRAL is that it guarantees exactness.

But this may trigger the following simple question: “Can SPIRAL

identify models faster than another approach that does not guaran-
tee exactness?” To answer the this question, we conducted compar-
ative experiments with the well-known Beam search algorithm.

We varied the beam width for the Beam search algorithm. Fig-
ures 10 and 11 show the wall clock time and the likelihood error
ratio, respectively. These figures show results for 10,000 models of
100 states for EEG.

The results show that there is a trade-off between speed and ac-
curacy in the Beam search algorithm . That is, as the number of
states in a bandwidth decreases, the wall clock time decreases but
the computation error increases. The Beam search algorithm is an
approximation technique that can miss the best path for the original
trellis structure. SPIRAL also computes approximate likelihoods,
but unlike the Beam search algorithm, SPIRAL does not discard
the best path in each trellis structure, so the errors are 0. Although
SPIRAL guarantees exactness, it greatly reduces the computation
time. Specifically, SPIRAL is up to 27 times faster than the Beam
search algorithm in this experiment.

5. CONCLUSION
This paper addressed the problem of conducting a likelihood

search on a large set of Hidden Markov Models (HMMs). We
proposed SPIRAL, which is based on three ideas: (1) we prune
low-likelihood models in the HMM dataset by their approximate
likelihoods, which yields promising candidates in an efficient man-
ner. (2) We vary the approximation granularity for each model to
maintain a balance between computation time and approximation
quality. (3) With transition pruning, we discard unlikely paths in
the trellis structure, which improves the efficiency.

SPIRAL achieves all of the following goals:

• High-speed search: our experiments on real data show that it
clearly outperforms the naive implementation, achieving an
increase in speed of several orders of magnitude.

0.1

1

10

100

2 4 6 8 10

Beam width

W
a
l
l

c
l
o
c
k

t
i
m

e

[
s
]

Beam SPIRAL

Figure 10: Wall clock time versus bandwidth.

0

25

50

75

100

2 4 6 8 10

Beam width

L
i
k
e
l
i
h
o
o
d

e
r
r
o
r

r
a
t
i
o

[
%
] Beam SPIRAL

Figure 11: Likelihood error ratio versus bandwidth.

• We prove that it guarantees exactness.

• It can handle any HMM model type.

Our experiments show that SPIRAL works as expected, and finds
high-likelihood HMMs with high speed; Specifically, it is signifi-
cantly (more than 500 times) faster than the naive implementation.

6. REFERENCES
[1] http://archive.ics.uci.edu/ml/.
[2] http://www.ncbi.nlm.nih.gov.
[3] P. Baldi, Y. Chauvin, T. Hunkapiller, and M. A. McClure.

Hidden markov models of biological primary sequence
information. Proceedings of the National Academy of
Science, 91:1059–1063, Feb. 1994.

[4] E. Bocchieri. Vector quantization for the efficient
computation of continuous density likelihoods. In ICASSP,
pages 692–695, 1993.

[5] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison.
Biological Sequence Analysis: Probabilistic Models of
Proteins and Nucleic Acids. Cambridge University Press,
1999.

[6] S. Eickeler, A. Kosmala, and G. Rigoll. Hidden Markov
Model Based Continuous Online Gesture Recognition. In
ICPR, pages 1206–1208, 1998.

[7] R. Esposito and D. P. Radicioni. CarpeDiem: an algorithm
for the fast evaluation of SSL classifiers. In ICML, pages
257–264, 2007.

[8] F. Jelinek. Statistical Methods for Speech Recognition. The
MIT Press, 1999.

[9] G. Pfurtscheller, D. Flotzinger, and C. Neuper.
Differentiation between finger, toe and tongue movement in
man based on 40 Hz EEG. Electroencephalography and
Clinical Neurophysiology, pages 456–460, 1994.

[10] D. Haussler, A. Krogh, I. S. Mian, and K. Sjolander. Protein
modeling using hidden Markov models: analysis of globins.
In HICSS 39, pages 792–802, 1993.

[11] J. Hu, M. K. Brown, and W. Turin. HMM Based On-Line
Handwriting Recognition. IEEE Trans. Pattern Anal. Mach.
Intell., 18(10):1039–1045, 1996.

[12] J. Huang, Z. Liu, and Y. Wang. Joint scene classification and
segmentation based on hidden Markov model. IEEE
Transactions on Multimedia, 7(3):538–550, 2005.

[13] M. Hunt and C. Lefebvre. A comparison of several acoustic
representations for speechrecognition with degraded and
undegraded speech. In ICASSP, pages 262–265, 1989.

[14] J. Kwon and K. Murphy. Modeling Freeway Traffic with
Coupled HMMs. Tech. Rep., University of California at
Berkeley, 2000.

[15] T. Lane. Hidden Markov Models for Human/Computer
Interface Modeling. In IJCAI-99 Workshop on Learning
About Users, pages 35–44, 1999.

[16] S. E. Levinson, L. R. Rabiner, and M. M. Sondhi. An
Introduction to the Application of the Theory of Probabilistic
Functions of a Markov Process to Automatic Speech
Recognition. Bell Syst. Tech. J, 62:1035–1074, 1982.

[17] D. W. Mount. Bioinformatics: sequence and genome
analysis. Cold Spring Harbor Laboratory Press, 2001.

[18] H. Ney, D. Mergel, A. Noll, and A. Paesler. Data driven
search organization for continuous speech recognition. IEEE
Trans. Signal Processing., 40(2):272–281, 1992.

[19] D. Novak, Y. H. T. Al-Ani, and L. Lhotska.
Electroencephalogram processing using Hidden Markov
Models. In EUROSIM, 2004.

[20] L. R. Rabiner and B. H. Juang. An introduction to hidden
Markov models. IEEE ASSP Magazine, 3:4–16, 1986.

[21] S. Sagayama, K. Knill, and S. Takahashi. On the use of
scalar quantization for fast HMM computation. In ICASSP,
pages 213–216, 1995.

[22] S. M. Siddiqi and A. W. Moore. Fast inference and learning
in large-state-space HMMs. In ICML, pages 800–807, 2005.

[23] S. P. Singh, T. Jaakkola, and M. I. Jordan. Reinforcement
Learning with Soft State Aggregation. In NIPS, pages
361–368, 1994.

[24] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An
Efficient Data Clustering Method for Very Large Databases.
In SIGMOD Conference, pages 103–114, 1996.

[25] S. Zhong and J. Ghosh. HMMs and Coupled HMMs for
multi-channel EEG classification. In IEEE Int. Joint Conf. on
Neural Networks, pages 1154–1159, 2002.

