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ABSTRACT

Given a large, semi-in�nite collection of co-evolving data sequences

(e.g., IoT/sensor streams), which containsmultiple distinct dynamic

time-series patterns, our aim is to incrementally monitor current

dynamic patterns and forecast future behavior. We present an intu-

itive model, namely OrbitMap, which provides a good summary

of time-series evolution in streams. We also propose a scalable

and e�ective algorithm for �tting and forecasting time-series data

streams. Our method is designed as a dynamic, interactive and �ex-

ible system, and is based on latent non-linear di�erential equations.

Our proposed method has the following advantages: (a) It is e�ec-

tive: it captures important time-evolving patterns in data streams

and enables real-time, long-range forecasting; (b) It is general: our

model is general and practical and can be applied to various types

of time-evolving data streams; (c) It is scalable: our algorithm does

not depend on data size, and thus is applicable to very large se-

quences. Extensive experiments on real datasets demonstrate that

OrbitMap makes long-range forecasts, and consistently outper-

forms the best existing state-of-the-art methods as regards accu-

racy and execution speed.
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1 INTRODUCTION

Today, a massive amount of time-stamped data is generated and

collected by many advanced technologies and services, including

the Internet of Things (IoT) [8, 12], Web-based online data-driven

marketing [25, 35, 40], and more [36, 39]. One of the most funda-

mental demands for data science and engineering is the e�cient

and e�ective analysis of big time-series data streams, such as real-

time, long-term forecasting without human intervention.
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In practice, real data streams contain various types of distinct,

dynamic time-series patterns of di�erent durations, and these pat-

terns usually involve latent relationships with each other. That is,

there are some kinds of hidden rules, or dynamic time-evolving

trends in streams. For example, with an IoT machine monitoring

system, we will probably observe some indicators or signs before

potential accidents or equipment failure. Similarly, as regards a hu-

man motion sensor data stream, we can observe multiple distinct

patterns (e.g., stretching, jogging, cooling down, resting), and these

patterns sometimes have dynamic transitions (e.g., jogging→ cool-

ing down → resting). It is essential to capture such dynamic pat-

terns and their relationships in streams if we are to forecast future

activities. Here, we refer to such distinct dynamic time-series pat-

terns as “regimes”. We also refer to latent relationships between

regimes as “dynamic space transitions”.

Our aim is to monitor a semi-in�nite collection of time-evolving

sequences, provide a good summary of time-series evolution in

streams and forecast long-term future values. We present Orbit-

Map [1], an intuitive model capable of dealing with the above tasks.

OrbitMap is designed to be a dynamic, interactive and �exible sys-

tem, and is based on latent non-linear di�erential equations. Infor-

mally, the problem we wish to solve is as follows:

Informal Problem 1. Given a data streamX of length tc , which

consists of d-dimensional vectors, i.e., X = {x (1), . . . ,x (tc )}, where

tc is the current time point, Forecast an ls -steps-ahead future value,

and more speci�cally,

• �nd major dynamic time-series patterns (i.e., regimes),

• �nd relationships between regimes (i.e., dynamic space transi-

tions),

• report an ls -steps-ahead future value, i.e., e (tc + ls ),

incrementally and quickly, at any point in time.

Preview of our results. Figure 1 shows the results we obtained

using OrbitMap with real human motion sensors. This dataset

consists of d = 4 dimensional event entries, which are collected

by four acceleration sensors (100 Hz), mounted on the right/left

legs and arms of a worker in a factory. Figure 1 (a) shows our �t-

ting result (solid colored lines) for the original data stream (gray

lines). The data streamwas composed of several distinct steps such

as “rotating” and “walking”. Our �t is even visually very good, and

captures dynamic time-evolving patterns. Given a sensor streamX ,

our goal is to (G1) identify current regimes and (G2) their transi-

tions in the stream, and (G3) forecast ls -steps-ahead future values,

continuously and automatically. Each goal is described below.

(G1) Regime identi�cation and segmentation: Figure 1 (b) shows snap-

shots of real-time regime identi�cation and segmentation at two

di�erent time points. Here, the vertical axes in the �gure show
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(a) Fitting result (solid lines) vs. original data stream (gray lines)

tc = 5000 tc = 9200

(b) Snapshots of real-time regime identi�cation and segmentation
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(c) Snapshots of dynamic space transitions at di�erent time points
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(d) Snapshots of ls = 200-steps-ahead future value forecasting

Figure 1: Modeling power of OrbitMap for a motion sen-

sor stream: It continuously and automatically �nds dynamic

patterns and forecasts ls -steps-ahead future values. (a) Our

model �ts the original stream very well, and (b) it identi�es

regimes and their transition points, i.e., segments. (c) It also

�nds dynamic space transitions at each time point. (d) Snap-

shots of ls -steps-ahead future value prediction at three dif-

ferent time points, where, the red vertical axes tc , tc +ls show

the current and ls -steps-ahead time points, respectively.

the transition points of each regime. Our method can incremen-

tally and automatically identify typical regimes (e.g., #1 rotating,

#3 walking, #2 lifting) and their transition points (i.e., segments)

in a given sensor stream.

(G2) Dynamic space transitions: Figure 1 (c) shows snapshots of

the dynamic relationship network between regimes, where, each

node represents each regime contained in a data stream, and each

edge between nodes indicates that there is a transition between

two regimes. A larger node indicates a more frequently appear-

ing regime, and a thicker edge indicates a stronger relationship.

The leftmost �gure shows the transition network at time point

tc = 3320, consisting of four regimes, and the middle and right

�gures show how it grows at di�erent time points. In addition, the

blue and red nodes show the two most recent regimes at the cur-

rent time point, e.g., in the leftmost �gure, the blue node corre-

sponds to #2 lifting, while the red node corresponds to #4 wiping.

Most importantly, the transition network evolves over time as a

new regime appears in the stream (e.g., #5 resting at tc = 3840).

(G3) ls -steps-ahead future value prediction: Figure 1 (d) shows snap-

shots of the ls = 200-steps-ahead future forecasting at three dif-

ferent time points. Our estimated variables are shown by bold col-

ored lines (the originals are shown in gray), blue vertical axes tp , ts

Table 1: Capabilities of approaches.
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show the transition points of recent regimes, and red vertical axes

tc , tc + ls show the current and ls -steps-ahead time points, respec-

tively (please see Figure 3 for a detailed explanation of the axes). As

shown in the �gure, ourmethod can predict upcoming regime tran-

sitions, and generate long-term future values, incrementally, con-

tinuously and automatically. Here, we emphasize that unlike the

other existing dynamic modeling approaches, e.g., Markov chain

models and Bayesian networks, which are based on discrete and

stochastic modeling, our model captures dynamic, continuous and

numerical time-series patterns by using latent non-linear di�eren-

tial equations.Wewill explain the functions of dynamic space tran-

sitions in detail in Figure 2.

Contributions. In this paper, we focus on a challenging problem,

namely, the dynamic modeling and forecasting of time-evolving

data streams, and present OrbitMap, which has the following de-

sirable properties:

(1) E�ective: it �nds important time-evolving patterns (i.e., regimes)

and their latent relationships (i.e., dynamic space transitions)

in data streams, and performs long-range forecasts.

(2) General: we applyOrbitMap to various types of time-evolving

data streams including sensors and Web activities.

(3) Scalable: it requires a constant time per time point for �t-

ting and forecasting data streams.

We also perform our experiments on real IoT data streams in smart

factories, and demonstrate the practicality and e�ectiveness of our

method (please see section 6).

Outline. The rest of the paper is organized in the conventional

way: next we describe related work, before moving on to our pro-

posed model, algorithms, experiments and conclusions.

2 RELATED WORK

Time-series data analysis is an important topic that has attracted

huge interest in countless �elds such as social activity mining [21,

25, 27, 40], online text [15, 16], medical analysis [7, 10, 11, 28, 39],

sensor network monitoring [13, 31, 32, 37], and more [6, 14, 19,

36]. Recent studies have focused on non-linear time-series analysis

with the aim of understanding the dynamics of IoT data streams

and social media [21, 22, 24, 25, 27].

Table 1 illustrates the relative advantages of our method. Only

OrbitMapmeets all requirements. HiddenMarkovmodels (HMM)

and other dynamic statistical models are capable of compression

and capturing time-evolving patterns in time sequences. Similarly,

a Bayesian network (BN) [33, 34] is a probabilistic model designed

to represent the conditional dependencies of di�erent variables.



However, these approaches are stochastic (as opposed to determin-

istic) and discrete, and thus cannot describe dynamic and continu-

ous activities, or forecast future dynamic patterns. pHMM [38] and

AutoPlait [23] are based on HMMs, and have the ability to capture

the dynamics of sequences and perform segmentation, however,

they are not designed to capture long-range non-linear evolutions

of co-evolving data streams. Data-driven, non-linear forecasting

methods, such as SMiLer [41] and F4 [3] tend to provide results

that are hard to interpret, and are incapable of modeling dynamic

patterns in streams.

Traditional modeling and forecasting approaches typically use

linear methods, such as autoregressive integrated moving average

(ARIMA), linear dynamical systems (LDS), Kalman �lters (KF) and

their derivatives including AWSOM [30], TBATS [20], PLiF [18],

TriMine [26] and more [6]. Note that these methods are funda-

mentally unsuitable for our setting; they are all based on linear

equations, and are thus incapable of modeling data governed by

non-linear equations. Similarly, the switching state space model,

and the switching Kalman �lter (SKF) model [2, 29] are designed

as a combination of the hidden Markov model with a set of linear

dynamical systems. It can handle multiple distinct patterns in time

series, but is not intended to capture dynamic space transitions,

and thus cannot model continuous and deterministic behavior be-

tween multiple regimes. RegimeCast [22] focuses on the real-time

forecasting of event streams, but is not intended to perform regime

identi�cation and segmentation. Moreover, it cannot capture tran-

sitions between di�erent dynamic patterns.

Deep learning has become one of the most popular methodolo-

gies in data analysis tasks [4, 5, 9, 42]. Recurrent neural networks

(RNNs) encounter di�culties in modeling long-range dependen-

cies. Long short-term memory (LSTM) and gated recurrent units

(GRUs) alleviate this problem, however all DNN variants require

a prohibitively high computation cost, especially training cost, for

data stream analysis, which is hard to forecast in real time. In ad-

dition, most of them require sensitive parameter tuning.

In short, none of the existing methods focuses speci�cally on

the modeling and forecasting of the non-linear dynamics of co-

evolving multiple patterns in data streams.

3 PROPOSED MODEL

In this section, we present our proposed model. Assume that we re-

ceive a collection of time-evolving sequences, such as IoT/sensor

data streams. As we mentioned in the introduction section, real

data streams contain various types of distinct, dynamic time-evolving

patterns of di�erent durations. In this paper, we refer to such a dy-

namic time-evolving pattern as a “regime”. Also, these patterns (i.e.,

regimes) usually have latent relationships with each other, namely,

“dynamic space transitions”. That is, we need to identify any sud-

den discontinuity in a given data stream, recognize the current

regime immediately, and also capture dynamic space transitions

between regimes, so that we can predict future dynamics, �exibly

and adaptively, at any time. Consequently, we need to capture the

following properties: (P1) regimes, i.e., time-evolving patterns and

(P2) dynamic space transitions between multiple distinct regimes.

So, what is the simplest mathematical model that can capture both

(P1) and (P2)? We provide the answers below.

3.1 Proposed solution: OrbitMap

Figure 2 shows an illustration of our proposed model. Intuitively,

we assume that there are multiple, distinct regimes in data streams,

and they have dynamic space transitions. Here, we describe our

model in details.

3.1.1 Time-evolving dynamics in a single regime (P1) . We begin

with the �rst step (P1), where we have only a single regime.

Figure 2 (a) shows how our model evolves over time in a single

regime. In short, our basic model has the following properties.

• A regime dynamical model θ : each regime has its own dy-

namic latent space s (shown as black/red arrows in a regime

in Figure 2 (a)), and it can be described with non-linear dif-

ferential equations.

In the �gure, we only plot k = 3 dimensions for the visualization.

In our model, we assume two classes of time-evolving sequences.

• Latent variables s (t ), i.e., a k-dimensional latent vector at

time point t (i.e., s (t ) = {si (t )}
k
i=1), which evolves over time

as a dynamical systemθ .We also refer to S = {s (1), · · · , s (t )}

as a “latent space trajectory”, (i.e., “orbit”, shown as red ar-

rows in the �gure).

• Estimated variables e (t ), i.e., a d-dimensional vector at time

point t (i.e., e (t ) = {ei (t )}
d
i=1), which can be computed by

s (t ). Also, letE be an estimated sequence, E = {e (1), · · · ,e (t )}.

Intuitively, E is an estimation of the original sequence X = {x (1),

· · · ,x (t )}.E could be any kind of data sequence, e.g., ad-dimensional

sequence generated by d sensors.

Also, the regime dynamical modelθ can generate a speci�c time-

series data sequence with the initial condition vector vin .

• Sequence generation with the initial condition vector vin :

given a regime dynamical model θ , and an initial condition

vectorvin , the systemθ generates latent/estimated sequences,

i.e., S = {s (1), · · · , s (t )}, E = {e (1), · · · ,e (t )}, where it has

the condition s (1) = vin . Here, vin is a k-dimensional vec-

tor in the latent space.

Consequently, a single regime dynamical model can be described

with the following equations:

Model 1. Let s (t ), e (t ) be the latent/estimated variables at time

point t . Our single regime is governed by the following equations,

ds (t )

dt
= p + Qs (t ) +AS(t ) (1)

e (t ) = u + Vs (t ) (2)

with the initial condition, s (1) = vin .

Note that ds (t )/dt is a derivative with respect to time t , and

S(t ) shows the quadratic form matrix of s (t ), i.e., S(t ) = s (t )T s (t ).

Here, p, Q and A describe the latent variables s (t ), each of which

captures the linear, exponential, and non-linear dynamics, respec-

tively, while, u, V show the observation projection, which gener-

ates the estimated variables e (t ) at each time point t . Also, vin is

a k-dimensional initial condition vector in the latent space. Conse-

quently, we have the following:

Definition 1 (Regime dynamical model: θ ). Let θ be a param-

eter set of a single regime i.e., θ = {p,Q,A,u,V}.
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Figure 2: Illustration of OrbitMap. (a) Given a single regime θ , and an initial condition vectorvin , it generates latent variables

S = {s (t )}t (shown as red arrows), and estimated variables E = {e (t )}t , (here, k = 3,d = 4). (b) Given two regimes θ1, θ2, and a

transition pair {vout
1 ,vin

2 }, it generates two sets of estimated variables, E1 → E2. (c) Given a set of regimes Θ = {θ1, · · · ,θ5}, and

their transition pairsV , it causes multiple space transitions, and generates long-term patterns, i.e., E1 → E2 → E3 → E4.

3.1.2 Dynamic space transitions betweenmultiple regimes (P2). Thus,

we have seen how to generate dynamic time-evolving sequences

S,E, using a single regime θ . Now the question is, how can we

generate dynamic transitions betweenmultiple regimes, such asθ1
jogging→θ2 cooling down→θ3 resting? Unlike the other existing

discrete and stochastic modeling approaches, e.g., Markov chain

models, we want to describe latent relationships between multi-

ple distinct regimes in a stream, using a deterministic, numerical

and continuous time-series modeling approach. We thus introduce

an additional concept, namely, (P2) dynamic space transitions be-

tween regimes. Figure 2 (b) shows how OrbitMap generates two

distinct sets of estimated variables (e.g., E1 → E2). In short, we

add a “transition” between two di�erent regimes and connect two

di�erent dynamic latent spaces. It is analogous to the connection

between a black hole and a white hole, where we can enter a black

hole and emerge from a white hole at a di�erent location.

In our model, each regime θi has its speci�c transition vectors

v
in
i ,vout

i in the latent space, and it is connectedwith other regimes

via the space transition network. To simplify the discussion, let

us assume a single space transition between two regimes, θi and

θ j , and let {vout
i ,vin

j } ∈ V be an out/in-transition vector (or,

black/white hole) pair from θi to θ j . Intuitively, our model has the

following transition rules:

• The regime θi generates its own latent variables si (t ) at

each time point t , according toModel 1. It continues the pro-

cess until the space transition from θi to the other regime

θ j occurs.

• If the trajectory/orbit of the latent variables Si in θi gets

close to the transition vectorvout
i at time point ts , it moves

to θ j , and generates the j-th regime’s latent variables, start-

ing with the initial condition sj (ts ) = v
in
j . We refer to ts as

the transition point.

Here, the space transition from θi to θ j occurs, only if the latent

vector si (ts ) on the trajectory Si is close enough to the vectorv
out
i

(i.e., the distance between si (t ) andv
out
i , D (t ) = | |si (t )−v

out
i | | ≤

ρ). Note that ρ is the transition strength, and we discuss this in the

next section. Consequently, we have:

Model 2. Let s (t ) be the latent vector at time point t . The dy-

namic space transition from regime θi to regime θ j can be described

by the following equations,

s (t ) =





si (t ) (1 ≤ t < ts ) // stayinд in reдime θi
v
in
j (t = ts ) // transition f rom θi to θ j

sj (t ) (ts < t ) // stayinд in reдime θ j ,

(3)

such that ts = arg min
t | D (t )≤ρ

D (t ), where, D (t ) = | |si (t ) −v
out
i | | shows

the distance between two vectors si (t ) and v
out
i . Here, si (t ) is the

latent vector generated by θi at time point t , and {vout
i ,vin

j } is a

transition vector pair from θi to θ j .

Definition 2 (Transition vector set:V). LetV be a param-

eter set of transition vector pairs {vout
i ,vin

j } ∈ V (i, j = 1, · · · , r ).

In practice, there might be multiple out-vectors vout
i on the

same trajectory/orbit, and in this case, we choose the closest out-

vector and move to the other regime. Also note that each regime

pair may have more than one transition vector pair {vout
i ,vin

j } (as

shown in Figure 2 (b), where the regime pair θ1,θ2 has two di�er-

ent (red/black) transition arrows), and thus di�erent trajectories

may cause completely di�erent space transitions.

Figure 2 (c) illustrates howOrbitMap generates long-term,multi-

step space transitions. Given an initial vector vin
1 , it causes space

transitions (i.e., regimes θ1 → θ2 → θ3 → θ4), where each regime

generates a set of latent/estimated sequences (i.e., {S1,E1}, · · · , {S4,E4}),

according to Models 1 and 2.

Definition 3 (Full parameter set of OrbitMap:M). LetM

be a complete set of OrbitMap parameters, namely,M = {Θ,V},

where, Θ consists of r regimes, i.e., Θ = {θ1, · · · ,θr }, and V is a

transition set, i.e., {vout
i ,vin

j } ∈ V .

4 STREAMING ALGORITHM

Thus far, we have shown how our model captures time-evolving

patterns (i.e., regimes) and their latent relationships (i.e., dynamic

space transitions) in a data stream X .



Table 2: Symbols and de�nitions.
Symbol De�nition

X Time-evolving data stream, i.e., X = {x (1), . . . , x (t ) }

x (t ) d-dimensional vector at time point t , i.e., x (t ) = {xi (t ) }
d
i=1

S Latent variables, i.e., S = {s (1), · · · , s (t )) }

E Estimated variables, i.e., E = {e (1), · · · , e (t )) }

Θ Model parameter set of r regimes, i.e., Θ = {θ1, · · · , θr }

V Transition vector set, i.e., {vout
i , v

in
j } ∈ V

M Complete set of OrbitMap, i.e.,M = {Θ, V}

4.1 Overview

Our next tasks are: (a) determining a way to �nd an optimal pa-

rameter setM = {Θ,V} in a real data stream X , and (b) how to

apply our model to real-time forecasting. The formal problem that

we want to solve is as follows:

Problem 1. Given a data stream X = {x (1), . . ., x (tc ) }, where,

x (tc ) is the most recent value at time point tc ,

(a) �nd an optimal OrbitMap parameter set, i.e.,M = {Θ,V},

(b) report an ls -steps-ahead future value, i.e., e (tc + ls ),

incrementally, as quickly as possible.

With respect to the �rst goal (a), wewant to incrementally main-

tain the model parameter set M = {Θ,V} so that it captures

regimes Θ and their transition vector pairs V in a data stream

X . Our �nal goal is (b) to forecast long-term future patterns, i.e.,

simultaneously with a model update, we want to forecast the ls -

steps-ahead future value e (tc + ls ), using our dynamic modeling

framework.

Here, we introduce our streaming algorithm, namely, Orbit-

Map-F, which achieves the above goals. Our algorithm estimates

the model parameters of regimes and extracts information regard-

ing space transitions in X , and forecasts future values, simultane-

ously, in a streaming fashion. Figure 3 shows a snapshot of Orbit-

Map-F at time point tc . Our dynamic modeling framework con-

structs the space transition network between regimes, which en-

ables us to provide long-term forecasts with high accuracy, by fol-

lowing the paths of transitions.

Intuitively, the main idea behind our algorithm is to monitor X

and keep track of two regimes, the previous regime θp and the cur-

rent candidate regime θc . Speci�cally, at every time point tc , given

a data stream X , it monitors the current segment Xc = X [ts : tc ],

(i.e., recent subsequence of X ), which is assigned to regime θc .

While checking the end point ofXc (i.e., whether or not the current

regime θc should be replaced by another regime, e.g., θf ), the algo-

rithm estimates the candidate regime θc and its transition vectors

between θp and θc (i.e., vout
p ,vin

c ,v
out
c ), and keeps them as the

model candidate C = {θc ,v
out
p ,vin

c ,v
out
c } for stream processing.

It also forecast the ls -steps-ahead future value e (tc + ls ) usingM

and C, according to Models 1, 2.

Parameter estimation for a single regime θc . Here, the algo-

rithm estimates optimal parameters so that it minimizes the �tting

error between the original segment Xc = X [ts : tc ] and the esti-

mated variables Ec = E[ts : tc ], generated by {θc ,v
in
c ,v

out
c }, using

Model 1. That is, we have,

{θ∗c ,v
in
c
∗
,vout

c
∗
} = arg min

θc ,v
in
c ,v

out
c

fD (Xc ;θc ,v
in
c ,v

out
c ), (4)

where, fD (·) shows the �tting error between the original and esti-

Ec
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tctp ts
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θc
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C={ θc , vpout, vcin , vcout}

Figure 3: Illustration of OrbitMap-F. Given a data stream

X , model parameter set M = {Θ,V}, and model candidate

C, it updates M and C at every time point tc . The vertical

axes in X show the transition points of each regime. It also

forecasts future values e (tc + ls ) usingM and C.

Algorithm 1 OrbitMap-F (x (tc ),M,C)

1: Input: (a) New value x (tc ) at time point tc
(b) Current OrbitMap parameter setM = {Θ, V}

(c) Model candidate C = {θc , v
out
p , v

in
c , v

out
c }

2: Output: (a) Updated OrbitMap parameter setM′

(b) Updated model candidate C′

(c) ls -steps-ahead future value e (tc + ls )

3: /* (I) OrbitMap estimation and segmentation */

4: {M′, C′ } = O-Estimator(x (tc ),M, C);

5: /* (II) ls -steps-ahead future value forecasting */

6: e (tc + ls ) = O-Generator(M′, C′, ls );

7: /* (III) OrbitMap feedback (if required) */

8: M′ = O-Feedback(M′);

9: return {M′, C′, e (tc + ls ) };

mated variables, i.e., fD (Xc ;θc ,v
in
c ,v

out
c ) =

∑tc
t=ts
| |x (t ) − e (t ) | |.

We use the Levenberg-Marquardt (LM) algorithm and the Runge-

Kutta method [17] to estimate the parameters. Note that, vector

pairvin
c ,v

out
c corresponds to the latent variables at time points ts

and tc , respectively, i.e.,v
in
c = s (ts ),v

out
c = s (tc ).

Next we describe our algorithms in detail.

4.2 OrbitMap-F

We now introduce our streaming algorithm, OrbitMap-F. Brie�y,

it consists of the following sub-algorithms:

(I) O-Estimator: Estimates the OrbitMap parameter set M,

and the model candidate C.

(II) O-Generator: Generates an ls -steps-ahead future value, i.e.,

e (tc + ls ), usingM and C.

(III) O-Feedback: Cleans up useless regimes and transitions stored

inM (if required).

Algorithm 1 provides an overview of OrbitMap-F. At each time

point tc , given a new value x (tc ), it incrementally updates the pa-

rameter setM and themodel candidate C usingO-Estimator, and

then generates an ls -steps-ahead future value e (tc + ls ) with O-

Generator. It also maintains the OrbitMap parameters by using

O-Feedback, which cleans up the useless regimes and transitions

stored inM.



Next, we describe our detailed algorithms in steps.

4.2.1 O-Estimator. Our �rst step is O-Estimator, which incre-

mentally monitors X and identi�es the current regimes in a data

stream. Given themost recent valuex (tc ) at time point tc ,O-Estimator

incrementally updates model parameter setM and the model can-

didate C. Algorithm 2 is the O-Estimator algorithm in detail. To

reduce the computation time in the streaming setting, we adopt an

insertion-based approach for updatingM. In short, O-Estimator

consists of two parts: (I) update the current regime and (II) detect

a space transition, and more speci�cally,

(I) Update the current regime: given the current segment Xc
and model candidate C, the algorithm �rst tries to update

the current regimeθc , i.e., {θc ,v
in
c ,v

out
c } = arg min

θc ,v
in
c ,v

out
c

fD (Xc ;θc ,v
in
c ,v

out
c ), so that it minimizes the errors between

Xc and θc . If the current regime θc does not �t well (i.e.,

fD (Xc ) > ρ), it searches for another (better) regime θ ∈ Θ

stored inM. If it is still not good enough (i.e., there is no

appropriate regime in M), it creates a new regime for Xc
using RegimeCreation, and inserts it intoM.

(II) Detect a space transition (if any): after the algorithm has

estimated the current parameter set {θc ,v
in
c ,v

out
c }, it then

tries to �nd a space transition. If it cannot �nd or create

any well-�tting regime (i.e., fD (Xc ) > ρ), it terminates the

current segment and its regime,Xc , θc , and starts a new seg-

mentXc = x (tc ). It also inserts the transition pair {v
out
p ,vin

c }

intoV . After the insertion, it replaces the previous out-vector

v
out
p = v

out
c , and resets the regime θc = v

in
c = v

out
c = ∅.

RegimeCreation. When the algorithm �nds an unknown pat-

tern in Xc , it needs to create a new regime and estimate its model

parameter set θ using Xc . Here, each regime θ consists of a large

number of parameters (i.e., θ = {p,Q,A,u,V}), and it is extremely

expensive to optimize them all simultaneously. We thus use an

e�cient and e�ective optimization method, namely, RegimeCre-

ation. The idea is that we split a full parameter set θ into two

subsets, i.e., θL = {p,Q,u,V} and θN = {A}, each of which cor-

responds to a linear/non-linear parameter set, and �t the param-

eter sets separately. Here, we use the expectation-maximization

(EM) algorithm to optimize the linear parameters θL . It then esti-

mates non-linear elements in θN and v
in ,vout to minimize the

errors fD (Xc ;θ ,v
in ,vout ), using the Levenberg-Marquardt (LM)

algorithm and the Runge-Kutta method [17]. We vary k and deter-

mine appropriate models so as to minimize the �tting errors.1

4.2.2 O-Generator. The next algorithm is O-Generator, which

incrementally forecasts an ls -steps-ahead future value e (tc +ls ), by

using the parameter setM and the model candidate C, which are

estimated by O-Estimator. The idea is quite simple and e�cient:

given the current regime θc and its estimated in-vector vin
c for

the recent segment Xc , it computes an ls -steps-ahead future value

e (tc + ls ), according to Models 1 and 2. Speci�cally, O-Generator

consists of three steps:

(I) Given the current regime θc and its initial vector vin
c , it

�rst generates ls -steps-ahead future latent variables S =

{sc (tc ), · · · , sc (tc + ls )}, where sc (tc ) = v
in
c .

1 For the non-linear tensor A, we only estimate parameters for the diagonal elements
ai jk ∈ A (i = j = k ) to eliminate complexity.

Algorithm 2 O-Estimator (x (tc ),M,C)

1: Input: (a) New value x (tc ) at time points tc
(b) Current OrbitMap parameter setM = {Θ, V}

(c) model candidate C = {θc , v
out
p , v

in
c , v

out
c }

2: Output: (a) Updated OrbitMap parameter setM′

(b) Updated model candidate C′

3: Xc = X [ts : tc ]; // Update current segment Xc
4: /* (I) Estimate current regime */

5: /* Update current regime for Xc using model candidate C */

6: {θc , v
in
c , v

out
c } = arg min

θc ,v
in
c ,v

out
c

fD (Xc ;θc , v
in
c , v

out
c );

7: if fD (Xc ;θc , v
in
c , v

out
c ) > ρ then

8: /* If the current regime does not �t well, �nd a better regime in Θ */

9: {θc , v
in
c , v

out
c } = arg min

θ ∈Θ,v in
,v

out

fD (Xc ;θ, v
in
, v

out );

10: if fD (Xc ;θc , v
in
c , v

out
c ) > ρ then

11: /* If it is still not good, create new regime and insert it into Θ */

12: {θc , v
in
c , v

out
c } = RegimeCreation(Xc ); Θ = Θ ∪ θc ;

13: end if

14: end if

15: /* (II) Detect space transition */

16: if fD (Xc ;θc , v
in
c , v

out
c ) > ρ then

17: /* If it does not �t well, current segment Xc ends now */

18: V = V ∪ {vout
p , v

in
c }; // Insert new transition pair into V

19: v
out
p = v

out
c ; // Replace previous out-vector

20: Xc = x (tc );θc = v
in
c = v

out
c = ∅; // Initialize segment and regime

21: end if

22: M′ = {Θ, V}; // Update model parameters

23: C′ = {θc , v
out
p , v

in
c , v

out
c }; // Update model candidate

24: return {M′, C′ };

(II) Next, it tries to �nd any transition vector pair {vout
c ,vin

f
} ∈

V that is close to the trajectory of S . If the trajectory is

close enough to the vector vout
c (i.e., | |sc (ts ) − v

out
c | | ≤

ρ, tc ≤ ts ≤ tc + ls ), it moves to another regime θf at

time point ts . Consequently, it updates latent variables S =

{sc (tc ), · · · , sc (ts − 1),v
in
f
, sf (ts + 1), · · · , sf (tc + ls ))}.

(III) Given the latent variables S , generated by (I) and (II), it com-

putes estimated variables E using θc (and θf , if any transi-

tion), according toModel 1. It then returns an ls -steps-ahead

future value e (tc + ls ).

Most importantly, if the same regimes and their transitions appear

more than once in the data stream X , OrbitMap-F can memo-

rize/store them in the transition network in M, and reuse them

e�ciently to predict future dynamics.

4.2.3 O-Feedback. We still have two additional issues to deal with:

that is, (a) how to determine the optimal transition strength ρ, and

(b) how to eliminate noise or meaningless regimes stored in the

model parameter set M. Here, with respect to the �rst issue (a),

the regime creation and segmentation rely on transition strength ρ,

which corresponds to the prediction accuracy between the original

data stream and our estimation. The transition strength also a�ects

the network complexity ofM, where the lower variable ρ creates

a more complex network (i.e., more regimes and transitions). So,

what is the best way to determine the optimal solution? We want

to update ρ and create the optimal transition networkM that can

best describe current activities in the data stream, so that it can

forecast ls -steps-ahead future values. We thus determine the opti-

mal ρ for minimizing the ls -steps-ahead forecasting error between



the original value and our estimation, i.e., arg min ρ
∑tc
t=1 | |x (t +

ls ) − e (t + ls ) | |.

The second issue (b) is cleaning up the model M. In practice,

data streams might contain various types of noise or meaning-

less patterns that should be ignored. Also, if transition strength

ρ is tuned to be a larger variable, we need to shrink the transi-

tion network of M by grouping similar regimes/nodes together.

We thus introduce a self-cleansing function, which incrementally

maintains and updates regimes and their transitions inM. It con-

sists of two sub-functions, that is, (I) regime elimination: it removes

useless regimes fromM, and more speci�cally, it deletes regimes

that have never been used byO-Estimator; (II) transition network

shrinkage: it merges all the closest regime pairs θi and θ j , whose

estimation error between each other is less than ρ.

Theoretical analysis. Let r be the number of regimes inM.

Lemma 1. The computation time of OrbitMap-F is at least O (1)

time per time point, and at most O (r ) time per time point.

Proof. Please see Appendix A. �

5 EXPERIMENTS

Wenowdemonstrate the e�ectiveness of OrbitMapwith real datasets.

The experiments were designed to answer the following questions:

(Q1) E�ectiveness: How successful is our method inmodeling and

forecasting long-term dynamics in given input streams?

(Q2) Accuracy: Howwell does ourmethod forecast future values?

(Q3) Scalability: How does our method scale in terms of compu-

tational time?

Our experimentswere conducted on an Intel Core i7-3770K 3.50GHz

with 32GB of memory, running Linux.

Q1: E�ectiveness.Wedemonstrate themodeling power of Orbit-

Map in terms of capturing important patterns in data streams and

forecasting future values.We performed experiments on eight data

streams in multiple domains, e.g., environmental, machine, human

sensors and online social user activities.2 To ensure the repeata-

bility of our results, we used several publicly available datasets.

We also performed our experiments on real IoT data streams in

smart factories belonging to several companies. Due to space lim-

itations, here we only describe our results for the (#1) Factory-

worker dataset. This dataset consists of d = 4 acceleration sen-

sors (100 Hz), attached to the right/left legs and arms of a worker

in a factory. The OrbitMap output has already been presented

in Figure 1 of section 1. As already seen, our method automati-

cally and incrementally captures (a) typical regimes (e.g., walking

and lifting) in a given stream, and (b) their transition points (see

vertical axis in �gure (b)), as well as (c) dynamic transition net-

work (e.g., lifting→ wiping). Most importantly, the transition net-

work grows over time, as a new regime or transition appears in

the stream. Since OrbitMap can continuously capture dynamic

regimes and their transitions, it also enables us to perform real-

time future value forecasting. Figure 1 (d) shows our real-time fore-

casting results, and speci�cally, OrbitMap forecasts an ls = 200-

steps-ahead future value, for every time point. Our outputs with

the other datasets are shown later in section 6 and Appendix B.

2 (#1) Factory-worker, (#2) Semicon, (#3) Engine, (#4) G-outdoor, (#5) G-sports, (#6) Ex-
ercise, (#7) Cleaning, (#8) Wandering.

Q2. Accuracy.Next, we discuss the quality of OrbitMap in terms

of ls -steps-ahead forecasting accuracy. We compared our method

with the following methods: (a) RegimeCast [22], which is a real-

time forecasting algorithm for data streams, (b) SARIMA, and (c)

TBATS [20], which are linear forecasting methods. We also com-

pared our method with (d) LSTM and (e) GRU [4], which are recur-

rent neural network (RNN) models with long short-term memory

(LSTM) cells and gated recurrent units (GRUs), respectively. For

all methods, we trained the parameters using half of the sequence

and then started the future value prediction. Figure 4 shows the

forecasting error of OrbitMap for (#1) Factory-worker. Speci�cally,

Figure 4 shows the root mean square error (RMSE) between the

original value x (tc + ls ) and the ls -steps-ahead estimated variables

e (tc+ls ) at each time interval. A lower value indicates a better fore-

casting accuracy. Similarly, Figure 5 shows the average forecasting

error of OrbitMap and its competitors for eight datasets (#1-#8).

Our method achieves a high forecasting accuracy for every dataset,

while other methods cannot forecast future evolutions very well,

because they cannot capture multiple distinct regimes and their

space transitions. Please also see Appendix B for more details.

Q3. Scalability. We also evaluate the e�ciency of our algorithm.

Figure 6 comparesOrbitMapwith its competitors in terms of com-

putation time at each time point tc . Note that the �gures are shown

on a linear-log scale. As we discussed in Lemma 1, our algorithm

can monitor a data stream for at least O (1) time and at most O (r )

time per time point. In fact, OrbitMap is signi�cantly (i.e., up

to �ve orders of magnitude) faster than its competitors for large

streams. Figure 7 shows the average computation time at each time

point for eight datasets (#1)-(#8).

Consequently, thanks to our careful design, OrbitMap-F pro-

vides a quick response in streams, and our method achieves a large

reduction in both computation time and forecasting error.

6 ORBITMAP ATWORK

Here, we demonstrate one of our promising applications, namely,

real-time mining in smart factories.

Operation monitoring. Figure 8 (a) shows a four-dimensional

IoT sensor stream in a semiconductor fabrication plant,3 and specif-

ically collected using the chemical mechanical polishing (CMP)

process, each dimension consists of pad temperature, airbag pres-

sure, atomizer �ow and table motor current. Since wafer process-

ing is very sensitive, and the company needs to produce high qual-

ity wafers, it is critical to keep the machines in good condition

by carefully monitoring the current status in the sensor streams.

The use of our modeling approach makes it possible to monitor

the sensor streams in the factory, and to provide a visualization of

the regular CMP processes. Figure 8 (b) and (c) show our regime

identi�cation and transition network at three di�erent time points

(t = 1000, 1400, 1600), where the blue/red nodes and rectangles are

the two most recent regimes. Our approach successfully captures

the sensitive and precise procedures of the CMP machine, such as

the up/down patterns of the airbag pressure andmotor current, the

cooling down process and atomizer �ows. Also, as shown by the

transition network in Figure 8 (c), the graph structure is unique: it

3Provided by Sony Semiconductor Manufacturing Corporation.
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Figure 4: Forecasting error for the motion data stream ((#1)

Factory-worker). RMSE between original and forecast values

of OrbitMap and competitors at each time interval (lower

is better).
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Figure 5: Forecasting error of OrbitMap: It consistently

wins. Average RMSE for each dataset (lower is better).
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Figure 6: Wall clock time vs. data stream length tc for (#1)

Factory-worker. It is up to 580,000x faster than its competitors

(shown in linear-log scale).
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Figure 7: Average wall clock time for each dataset: Orbit-

Map consistently wins. The results are shown in log scale to

accommodate slow competitors.

has a long chain consisting of multiple distinct nodes, which indi-

cates that the data stream consists mainly of regular, repeating pat-

terns, with some extra activities. Consequently, using our Orbit-

Mapmodeling, a factory manager can remotely and automatically

monitor and analyze sensitive machine performance, and can plan

a regular maintenance schedule, predict potential accidents and

more. In addition, our scalable algorithm allows the real-time fore-

casting of future values. Figure 8 (d) shows 10-steps-ahead future

values at three di�erent time points. The red vertical axes (i.e.,

tc , tc + ls ) show the current and ls -steps-ahead time points, and

our method successfully captures future dynamic regime transi-

tions, and forecasts long-term multi-step future patterns.

Machine downtime reduction. Here we introduce another case

of IoT datamonitoring, namely,machine downtime prediction.Man-

ufacturing problems, such as faulty goods and equipment failure,

are caused by various factors. OrbitMap can automatically detect

the causes of problems in real time, and this information could be

used to improve productivity and quality, and optimize the man-

ufacturing process in smart factories. Here, we used the IoT data

stream collected by a computerized numerical control (CNC) ma-

chine in an internal-combustion engine plant.4 Figure 9 (a) shows

4 Provided by Mitsubishi Heavy Industries Engine & Turbocharger, Ltd.
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(b) Snapshots of real-time regime identi�cation and segmentation
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(d) Snapshots of future value forecasting at di�erent time points

Figure 8: OrbitMap for (#2) Semicon.
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(b) Snapshots of real-time regime identi�cation and segmentation
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(d) Snapshots of future value forecasting at di�erent time points

Figure 9: OrbitMapmodeling for (#3) Engine.

the original data stream and our estimation, where we have four

sensors, i.e., operation signal, spindle load, spindle speed and spin-

dle temperature. As shown, the data stream contains several reg-

ularly repeated activities (e.g., up/down patterns of spindle tem-

perature and speed), and it also has some downtime (please see

the red arrows). Figure 9 (b) and (c) show our OrbitMap output

at three di�erent time points. The left �gure shows the normal

operation activities at time point t = 600, which consists of two



types of regimes (#1→ #4→ #1→ #4→ · · · ), while the middle and

right �gures show snapshots at t = 900, 1700, which contain down-

time patterns. Most importantly, we can observe the same transi-

tion for each downtime activity, i.e., #6 → #2 → #5 → #1 → · · · ,

where, each regime corresponds to #6 “shutdown” (slowing down

the spindle speed, and cooling down the machine), #2 “downtime”

(stopping the spindle with a stable temperature), and #5 “restart”

(starting the spindle, and warming up), and then #1 “process-A”

(normal operation). Consequently, using our regime identi�cation

and dynamic transition network, the manager can incrementally

check the machine condition and avoid machine downtime as well

as reduce extra cost or prevent accidents in advance, simply by

monitoring indicators/signs of downtime or trouble. Figure 8 (d)

shows 10-steps-ahead future values at three di�erent time points.

Our method can capture future unknown patterns, and forecast

future values, incrementally and adaptively.

7 CONCLUSIONS

In this paper, we focused on the problem of modeling and forecast-

ing time-evolving data streams, and presented OrbitMap, which

exhibits all the desirable properties that we listed in the introduc-

tion:

(1) It is E�ective: it captures important time-evolving patterns

(i.e., regimes and their dynamic space transitions) in data

streams and provides long-range forecasting at any time;

(2) It is General: it matches diverse real data;

(3) It is Scalable: we proposed an e�cient algorithm that is

constant in terms of input data size.

We also performed our analytics on real industrial IoT data streams,

and demonstrated the practicality and e�ectiveness of our dynamic

modeling and forecasting approach.
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APPENDIX

A STREAMING ALGORITHM

Proof of Lemma 1.

Proof. For each time point tc , O-Estimator updatesM,C. If

it has an appropriate model candidate C, it can quickly update

the parameters, which requires O (1) time. If it cannot �nd a well-

�tting regime, it then tries to �nd the optimal regime inM, which

requires O (r ) time. In addition, RegimeCreation requires O (lc )

time to create new regime parameters for the current segment

Xc , where lc is the length of Xc . Similarly, O-Generator requires

O (ls ) time to generate ls -steps-ahead estimated variables, and O-

Feedback needs O (r ) time to update regimes inM. Note that lc
and ls are small constant values that are negligible. Thus, the com-

plexity is at least O (1) and at most O (r ) time per time point. �

B EXPERIMENTS

Dataset description, settings and additional discoveries.Here,

we report the detailed experimental results that we described in

Figure 5 and Figure 7. We performed experiments on eight data

streams, namely, (#1) Factory-worker, (#2) Semicon, (#3) Engine, (#4)

G-outdoor, (#5) G-sports, (#6) Exercise, (#7) Cleaning, (#8)Wandering.

Here, we describe our experimental results for (#4-#8).

(#4) G-outdoor, (#5) G-sports. Figure 10 shows our output forGoogle-

Trends, which consists of the search volumes for various queries

(i.e., keywords) on Google.5 Each query represents search volumes

related to keywords obtained on a weekly basis from 2007 to 2017.

Since OrbitMap has the ability to detect unknown patterns and

their transition without the user’s prior knowledge, we can apply

it to automatic social activity analysis. Here, we introduce some

of our discoveries as regards GoogleTrends data streams. The left

column in Figure 10 shows our output for three major outdoors-

related keywords (namely, skiing, �shing and cycling), while, the

right column shows sports-related keywords (i.e., tennis, Major

League Baseball (MLB) and American football). We trained our

model using half of the data streams (from 2007 to 2011), and un-

dertook dynamic data monitoring from 2012 to 2017. The top, mid-

dle and bottom rows show our overall �tting, regime identi�ca-

tion and their transition network, respectively. OrbitMap discov-

ers that these keywords have an annual cyclic pattern (e.g., #1→

#2→ #1→ · · · ), which indicates that online users modulate their

activity over time. Each keyword always has a certain volume of

popularity, however, user behavior changes dynamically accord-

ing to the season and various annual events (e.g., summer/winter

vacations, MLB regular season). OrbitMap also �nds some out-

liers (e.g., a sudden spike in 2013 for cycling). Our streaming al-

gorithm also predicts future user activities. Here, it forecasts the

three-month-ahead future value (i.e., ls = 13 weeks), at every time

point. The �gure shows snapshots of OrbitMap-F for each dataset.

Clearly, our algorithm successfully captures multiple regimes and

their transitions, and forecasts multi-steps ahead future activities.

(#6) Exercise, (#7) Cleaning, (#8) Wandering. Figure 11, Figure 12

and Figure 13, showour discoveries formotion capture data streams,6

which consist of four sensors (left/right legs and arms). The �gure

5http://www.google.com/trends/
6http://mocap.cs.cmu.edu/
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Figure 10: OrbitMapmodeling for (#4,#5) GoogleTrends.
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Figure 11: OrbitMapmodeling for (#6) Exercise.
shows our modeling result for “exercise” motion (e.g., stretching,

walking), “house-cleaning” motion (e.g., dragging a mop, wiping

a window) and “wandering” motion (e.g., walking, turning). As

can be seen, our model successfully captures distinct regimes as

well as their dynamic space transitions. Also note that these three

data streams have completely di�erent transition network struc-

tures. The �gures also show our real-time forecasting for the Mo-

cap stream. For each dataset, we set ls = 100. Similar to other

datasets, OrbitMap captures original time-evolving patterns very

well, and successfully captures upcoming future values, e�ectively

and adaptively.
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Figure 12: OrbitMapmodeling for (#7) Cleaning.
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(b) Snapshots of regime identi�cation and segmentation
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Figure 13: OrbitMapmodeling for (#8) Wandering.

Accuracy and scalability. Figure 14 shows the forecasting error

(RMSE) of OrbitMap and its competitors for each dataset. For all

methods, we trained the parameters using half of the original data

streams, and then started the future forecasting. Also, for SARIMA

and TBATS, we set f requency = ls . We used AIC to determine

the optimal number of parameters for SARIMA. For LSTM and

GRU, we trained the models with Adam optimization and early

stopping, and set a dropout of rate 0.5 for the top regressor layer,

according to [4]. We used 2-layer and 100 hidden units in each

layer. For a fair comparison, we used a single CPU core and no

GPUs. Our method achieved a high forecasting accuracy for ev-

ery dataset, whereas other methods cannot forecast future evolu-

tions very well, because they cannot capture the dynamic space
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Figure 14: Forecasting error (RMSE) of OrbitMap for other

datasets (#2-#8), at each time interval (lower is better).
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Figure 15: Wall clock time vs. data stream length tc for other

datasets (#2-#8), shown in linear-log scale.

transitions between multiple distinct regimes in streams. Similarly,

Figure 15 compares OrbitMap with its competitors in terms of

computation time for various sequence lengths tc . Note that the �g-

ures are shown on linear-log scales. Clearly, our method achieves

a large reduction in both computation time and forecasting error

for various types of data streams.


	Abstract
	1 Introduction
	2 Related work
	3 Proposed model
	3.1 Proposed solution: OrbitMap 

	4 Streaming algorithm
	4.1 Overview
	4.2 OrbitMap-F

	5 Experiments
	6 OrbitMap at work
	7 Conclusions
	References
	A Streaming algorithm
	B Experiments

