
Fast Mining and Forecasting of Co-evolving
Epidemiological Data Streams

Tasuku Kimura
SANKEN, Osaka University

Osaka, Japan
tasuku@sanken.osaka-u.ac.jp

Yasuko Matsubara
SANKEN, Osaka University

Osaka, Japan
yasuko@sanken.osaka-u.ac.jp

Koki Kawabata
SANKEN, Osaka University

Osaka, Japan
koki@sanken.osaka-u.ac.jp

Yasushi Sakurai
SANKEN, Osaka University

Osaka, Japan
yasushi@sanken.osaka-u.ac.jp

ABSTRACT

Given a large, semi-infinite collection of co-evolving epidemiolog-

ical data containing the daily counts of cases/deaths/recovered in

multiple locations, how can we incrementally monitor current dy-

namical patterns and forecast future behavior? The world faces the

rapid spread of infectious diseases such as SARS-CoV-2 (COVID-

19), where a crucial goal is to predict potential future outbreaks and

pandemics, as quickly as possible, using available data collected

throughout the world. In this paper, we propose a new stream-

ing algorithm, EpiCast, which is able to model, understand and

forecast dynamical patterns in large co-evolving epidemiological

data streams. Our proposed method is designed as a dynamic and

flexible system, and is based on a unified non-linear differential

equation. Our method has the following properties: (a) Effective: it

operates on large co-evolving epidemiological data streams, and

captures important world-wide trends, as well as location-specific

patterns. It also performs real-time and long-term forecasting; (b)

Adaptive: it incrementally monitors current dynamical patterns,

and also identifies any abrupt changes in streams; (c) Scalable: our

algorithm does not depend on data size, and thus is applicable to

very large data streams. In extensive experiments on real datasets,

we demonstrate that EpiCast outperforms the best existing state-

of-the-art methods as regards accuracy and execution speed.

CCS CONCEPTS

• Information systems → Data stream mining; • Mathemat-

ics of computing→ Nonlinear equations.
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Data streams; Time series; Epidemics; Non-linear dynamical sys-

tems; Tensor Data analysis; Real-time forecasting
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1 INTRODUCTION

A new viral epidemic, COVID-19, has spread across the world [1,

46], and it has strongly affected aspects of human life such as ways

of working and communicating [8, 34]. A significant interest for us

in relation to making better decisions is to obtain more accurate es-

timates regarding potential future outbreaks and pandemics since

if we know the number of people who will be infected in the fu-

ture, we can manage pandemic risks in advance by, for example,

avoiding frequent social activities and controlling hospital occu-

pancy rates [6]. In a specific location, however, the problem is that

we must make estimates to design countermeasures without hav-

ing sufficient data. So, how can we find useful patterns that help

us to forecast future phenomena in co-evolving epidemics? As we

receive new data, how can we efficiently incorporate dynamical

patterns found in different locations/countries into forecasting?

In this paper, we focus on an important problem, namely, the

real-time modeling and forecasting of co-evolving epidemiological

data streams, and specifically, we present EpiCast [4]. Intuitively,

the problem we wish to solve is as follows:

Informal Problem 1. Given an epidemiological data streamX =

{-1, · · · , -C , · · · , -C2 , · · · }, where C2 increases with every new time

point, and each entry -C = {G8 9 (C)}
3,A
8, 9=1 describes 3-dimensional

vectors/observations in A locations at time point C , find global and

local-level representative patterns, and then forecast ;B -steps-ahead

outbreaks, continuously, in a streaming fashion.

Importance of streaming mining of co-evolving epidemics.

Today, our connected and open society allows us to access public

health surveillance reports and statistics, such as the daily number

of cases, deaths and recovered in each location, and they are contin-

uously updated and shared at a national/regional level [2, 3]. Given

such a collection of open epidemic data from multiple locations,

how can we find important patterns and rules, and forecast future

outbreaks and pandemics? If we already have sufficient data, we

https://doi.org/10.1145/3534678.3539078
https://doi.org/10.1145/3534678.3539078
https://doi.org/10.1145/3534678.3539078
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(a) Snapshots of EpiCast for the initial spread of COVID-19 in Asia (Mar 16-31, 2020)
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(b) Snapshots of EpiCast for the spreading process of COVID-19 from Asia to Europe (April 1-15, 2020)

Figure 1: Modeling and forecasting power of EpiCast for real COVID-19 data streams: ourmethod provides real-time forecasts

based on non-linear equations that capture both global and location-specific epidemic patterns, e.g., (a) the initial spread of

COVID-19 in Asia (e.g., China and Taiwan), and (b) the spreading process from Asia to Europe and other areas.

could try using basic time-series analytical tools, e.g., ARIMA, or

some recent deep neural network (DNN) based approaches [14, 21].

However, these existing methods basically cannot handle stream-

ing data collections, and thus cannot incrementally train/update

model parameters. Besides, theDNN-based approaches require large

amounts of input/training data in advance. So, can we do better

than the existing methods?

This is precisely the question behind our work. We want a new,

streaming method that can continuously monitor the changing

situations of epidemics, and estimate/update current dynamical

patterns, efficiently and adaptively. Here, most importantly, we

want to handle non-stationary and spatially co-evolving time-series

data. As we will discuss further in section 2, a new viral epidemic,

COVID-19 is repeatedly mutating and changing its properties over

time, and transforming from one country to another, which makes

the process by which it spreads more complex. Thus, the ideal

method should be able to monitor the current epidemic situation,

and dynamically and adaptively capture the latent relationships

and interactions between multiple locations.

Preview of our results.Here, we briefly show that our method is

capable of modeling and forecasting epidemiological data streams.

Figure 1 shows a running example of EpiCast with real COVID-

19 data streams. The example consists of 3 = 3 dimensional se-

quences, which correspond to the daily number of current infec-

tions (blue line), the total number of confirmed recoveries (green

line), and the total death toll (orange line). Here, the left column

shows EpiCast-Map, which illustrates typical/representative epi-

demic patterns (i.e., )1, )2) in each location/country (hereafter we

refer to such patterns as “regimes”). The right columns show snap-

shots of seven-days-ahead forecasting in four different locations

(i.e., China, Taiwan, Italy and Switzerland), at each time point C2 .

Specifically, the black vertical line shows the current time point C2 ,

and the red rectangle shows the seven-days-ahead forecasted val-

ues, where the solid colored lines show the estimated values, and

the gray lines and red points show the original/actual/observed

values.

As shown in Figure 1, our method successfully captures current

non-linear dynamical patterns of co-evolving epidemics and gen-

erates long-term forecasts. For example, EpiCast captured (a) the

initial spread of COVID-19 in Asia from Mar 16 to 31, 2020 , and

(b) the process by which the infection spread from Asia to Europe

and other areas from April 1 to 15, 2020. In addition, the snap-

shot figures indicate that our method successfully forecast seven-

days-ahead future values in different locations. This is because our

method has certain desirable properties, namely, (P1) non-linear

modeling over complex epidemic streams, and (P2) amodel-sharing

mechanism among multiple locations (both described in section 4).

Contributions. In this paper, we focus on an important problem,

namely, the real-time modeling and forecasting of co-evolving epi-

demiological data streams, and we present EpiCast, which has the

following desirable properties:

(1) Effective: it captures important world-wide dynamical epi-

demic trends, as well as location-specific patterns, in given

data streams, and performs long-range forecasts.

(2) Adaptive: it can continuously and adaptively capture cur-

rent dynamical patterns, and describe how emerging viruses

would spread into neighbouring locations over time.

(3) Scalable: it is designed as a streaming algorithm that allows

us to determine important non-linear epidemic patterns and

generate future predictions, within a constant time.
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We demonstrate the effectiveness and efficiency of our method us-

ing real world datasets and show that it outperforms existingmeth-

ods in terms of both accuracy and scalability (please see section 5).

Outline. The rest of the paper is organized in the conventional

way: next we describe related work, before moving on to our pro-

posed model, algorithms, experiments and conclusions.

2 RELATED WORK

We provide a survey of the related literature, which falls broadly

into two categories: (1) epidemiology and (2) time series analysis

and data stream mining.

Epidemiology. SARS-CoV-2 (COVID-19) is still spreading rapidly.

One of the factors behind this is that COVID-19 has a long incu-

bation period between infection and the onset of the disease and a

short latent period, which is the time from infection to infectious-

ness [15, 20, 22]. If the latent period is shorter than the incubation

period, the infected person can spread the virus without any signs

or symptoms [31]. Research has been conducted into COVID-19

countermeasures. The entire COVID-19 genome was identified in

February 2020 [48, 56]. Although the coronavirus is believed to

be resistant to mutation because of its RNA proofreading function

[29], it has been pointed out that it mutates when the number of

replication attempts increases due to the expansion of the infection

period [16]. COVID-19 repeatedly mutates and changes its prop-

erties, making the spreading process more complex. For example,

D614G [19] , which started to spread in March 2020, is a missense

mutation that affects the spike protein of COVID-19. As of January

2022, COVID-19 variants of concern (VOCs) continue to appear

in the world [47] ; for example, a total of 139 countries have re-

ported B.1.1.7 (first detected in the United Kingdom), 87 countries

B.1.351 (first detected in South Africa), and 54 countries P.1 (first

detected in Brazil and Japan). In addition, because the influence

of a virus [5] and the efficacy of the vaccine [24] vary depending

on the biological characteristics of the individual, such as the ABO

blood group or the biochemistry of population groups resulting

from ethnic or genetic factors, epidemic patterns may differ even

in locations where the same variant of COVID-19 has been con-

firmed. The combination of these factors further complicates the

epidemic patterns of COVID-19. As a consequence, COVID-19 has

the characteristic of mutating over time thus altering the behav-

ior of the epidemic patterns and changing the epidemic patterns

depending on the combination of locations and variants.

Time series analysis and data streammining.Time-series data

analysis and engineering is an important topic that has attracted

huge interest in many fields [13, 25, 33, 38, 45, 53]. Conventional

methods include autoregression (AR) and the Kalman filter (KF)

[12], and they have generated a wide range of extensions [37, 39,

40]. In addition to non-linearmodels [27, 42] formore general prob-

lem settings where we have fewer assumptions for a dataset, we

can apply domain knowledge to a model by choosing an appropri-

ate non-linear differential equation [28, 41], which enables us to

forecast complex dynamics even when it has not been observed in

recent/historical data. Online and streaming algorithms have be-

come more important in terms of processing and analyzing large

amounts of data under time/memory limitations [9, 23, 26, 51, 52,
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Figure 2: Illustration of real-time forecasting over an epi-

demiological data stream: Given an epidemic stream X =

{-1, · · · , -C2 , · · · }, where -C2 ∈ N3×A is the most recent entry

at time point C2 , it incrementally maintains the current win-

dow X� = {-C }
C2
C=C<

, and captures co-evolving epidemic pat-

terns inX� . It then forecasts the ;B -steps-ahead future values,

i.e., +C2+;B ∈ N3×A .

55]. The emergence of novel viruses also requires real-time fore-

casting [43, 44], where the critical goal is to forecast the peaks of

pandemics. But unfortunately, they did not discuss scalability in

relation to learning their proposed models.

The deep neural network (DNN) has become an alternative way

to obtain high dimensional time-domain features and forecast fu-

ture phenomena in various contexts [10, 14, 17, 35, 50, 54]. TCN

[21] is a temporal convolutional network, which can learn multi-

level temporal causality, and train faster than RNNs. EpiDeep [7],

which represents some of the most recent research in this regard,

succeeded in applying DNN to modeling the dynamics of a sea-

sonally occurring infection over the weighted influenza-like ill-

ness (wILI) datasets. However, these DNN-based methods are still

insufficient for modeling atypical spreads of emerging viruses be-

cause they need appropriate data to regularize their large number

of parameters. Please also see Appendix A for further discussion

of COVID-related data analysis and forecasting.

As a consequence, none of them can handle all the requirements,

namely capturing non-linear behavior in epidemic streams,mining

infectious patterns between multiple locations and adaptive real-

time forecasting.

3 PROPOSED MODEL

In this section, we propose our model for co-evolving epidemio-

logical data streams. We begin by introducing our formal problem

definition, and then describe our model in detail.

We assume that we have a semi-infinite collection of epidemi-

ological data, namely an epidemic stream X = {-1, · · · , -C , · · · ,

-C2 , · · · }, where C2 indicates the current time point (i.e., the total

duration of the stream), and C2 increases with every new time point.

We can obtain a new observation -C2+1 at every time point and

thus the total size of X increases. Each entry -C = {G8 9 (C)}
3,A
8, 9=1 de-

scribes 3-dimensional vectors/observations in A locations at time

point C . In this paper, we set 3 = 3, corresponding to the daily num-

ber of current infections, the total number of confirmed recoveries,

and the total death toll. Thus, we can treat this set of 3×A epidemic

sequences as a 3rd-order tensor stream, i.e., X ∈ N3×A×C2 .

To make it possible to forecast future epidemic phenomena in

a streaming fashion, where we are restricted from accessing all

the observations due to time and memory limitations, we define a
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small time window so that we have only recent data in X, as de-

scribed in Figure 2. More specifically, we define X� = {-C }
C2
C=C<

as

the current window that contains the most recent series of an epi-

demic stream, where C< indicates the starting time point of the cur-

rent window. Similarly, +C2+;B ∈ N3×A denotes the ;B -steps-ahead

future values that correspond to the period for which we want to

generate estimates. In this respect, we formally describe our prob-

lem as follows.

Problem 1 (Real-time forecasting). Given an epidemic stream

X ∈ N3×A×C2 , and the current window X� = {-C }
C2
C=C<

, forecast ;B -

steps-ahead future values +C2+;B ∈ N3×A in a streaming fashion.

Here, there are two major questions when it comes to solving

Problem 1: (1) How can we model complex, non-linear dynamics

in epidemic streams? (2) How can we efficiently and effectively

estimate such non-linear models in multiple locations?We provide

the answers below.

3.1 EpiCast-base – with a single epidemic

The first problem is finding a way to model the complex dynam-

ics of epidemic sequences. Here, for simplicity, we first focus on

an epidemic stream in a single location. As shown in the preview

of an epidemic stream in the introduction section, viruses tend to

spread non-linearly. We thus propose using a non-linear dynam-

ical system, and specifically, we introduce an SEIR-based model,

whose mechanism we summarize below.

The model we propose assumes five classes – (1) Susceptible

people, who potentially become infected, change over time while

the number of (2) Exposed people increases with a infection rate

V . Then, the people are (3) Infected with a incidence rate f . After

that, those who are in this class will (4) Recover at a recovery rate

W or (5) Die with a mortality rate X . The time dependency of these

five classes is described by the following differential equations.

3(

3C
= −V( (C)� (C),

3�

3C
= V( (C)� (C) − f� (C),

3�

3C
= f� (C) − W� (C) − X� (C),

3'

3C
= W� (C),

3�

3C
= X� (C) . (1)

Note that themodel also includes the initial populations of exposed

(�0), patients (�0), confirmed recoveries ('0) and death toll (�0)

at starting time point C0, to generate subsequent estimated values.

We can obtain the initial susceptible population (0 by computing

(0 = # − (�0 + �0 + '0 + �0) according to the notion of the total

population.

Consequently, the entire parameter set we want to estimate can

be summarized as follows.

Model 1 (EpiCast-base). Let ) be a set of EpiCast-base param-

eters, i.e., ) = {V, f,W, X, # , �0, �0, '0, �0, C0}, which consists of

• V : Infection rate of the epidemic (0 ≤ V ≤ 1)

• f : Incidence rate of the epidemic (0 ≤ f ≤ 1)

• W : Recovery rate of the epidemic (0 ≤ W ≤ 1)

• X : Mortality rate of the epidemic (0 ≤ X ≤ 1)

• # : Potential population of an epidemic (0 ≤ # )

where, �0, �0, '0, �0 (≥ 0) show the initial populations of those ex-

posed, patients, confirmed recoveries and the death toll at time point

C0.

Weconsistently use the symbolsV ∈ N3×A×C ,+C ∈ N
3×A ,+ (8) ∈

N
3×C and v8 (C) ∈ N3 (8 = 1, · · · , A ) as estimated values for an

original epidemic stream using Model 1. For example, an epidemic

sequence + (8) ⊂ V for the 8-th location is given by the accumu-

lated data starting from the values v8 (C0) = {�0, �0, '0, �0} to the

expected end point v8 (C) using Equation (1).

3.2 EpiCast – with co-evolving epidemics in
multiple locations

Amore important goal is to detect similar epidemic dynamical pat-

terns (namely regimes), between multiple locations. It is a key con-

cept that when we cannot access sufficient observations to esti-

mate a model within a single location, we should share/apply a

model obtained in another location for forecasting. With regard

to the fact that there are differences between the basic features

of locations such as population and culture (as we have seen in

section 2), we propose separating the EpiCast parameters in ) into

two groups, namely, epidemic parameters )K = {V, f,W, X}, and lo-

cation parameters )R = {#, �0, �0, '0, �0, C0}, (that is, ) = )
K ∪

)
R). Here, epidemic parameters )K can be shared with any loca-

tion whereas location parameters )R are locally optimized for each

country/region. For example, there are similar dynamics/regimes

between countries where the same countermeasures are adopted

but the timing can be different. Therefore, maintaining multiple

EpiCast parameter sets allows us to take account of the knowl-

edge obtained in any country/region for real-time forecasting.

We eventually define our full parameter set as follows.

Model 2 (EpiCast-full). Let � = {�� ,�!} be a full parameter

set of EpiCast, where,�� is a set of 6 representative epidemic param-

eters and, �! is a set of local parameters in A locations (here, 6 ≪ A ),

i.e., ��
= {)K1 , · · · , )

K
6 }, �!

= {)R1 , · · · , )
R
A }.

4 STREAMING ALGORITHMS

In this section, we propose a streaming algorithm, namely EpiCast,

that incrementally captures multiple epidemic activities evolving

over time. Our algorithm should have the following properties:

(P1) Non-linear modeling over complex epidemic streams

(P2) Model-sharing mechanism among multiple locations

We need to capture the complicated dynamics of real epidemic data

that involve non-linear phenomena. To handle (P1), we propose a

streaming algorithm that exploits non-linear differential equations

(i.e., Model 1). We also want to detect similar dynamics/regimes in

different locations, i.e., (P2), and thus we employ a model obtained

in another location for forecasting (i.e., Model 2).

Figure 3 shows an overview of EpiCast, which consists of the

following three algorithms.

• EpiEstimator: Given a single epidemic sequence at the 8-

th location, i.e., -
(8)
�

⊂ X� , it estimates a new model ) =

{)K , )R}, from scratch.

• EpiFinder: Given a single epidemic sequence -
(8)
�

⊂ X� ,

and the current parameter set�, it searches for the best epi-

demic parameters )K in�, as well as estimates optimal local

parameters )R , and then generates estimated values +
(8)
�

.
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Figure 3: Overview of the EpiCast algorithm: Given an epi-

demic stream X, it extracts the current window X� , and (a)

finds the optimal patterns in the epidemic model database

�. It then generates the ;B -steps-ahead values +C2+;B . If there

is a new (i.e., unknown) pattern in X� , (b) it also estimates

the new model parameter set ) , and inserts it into �.

• EpiCast: Given an epidemic streamX, it monitors a current

window X� , runs the above two algorithms to obtain the

estimated values V� , and reports the ;B -steps-ahead values

+C2+;B ∈ N3×A , while maintaining the parameter set �.

4.1 Model estimation – EpiEstimator

For simplicity, we first describe how to estimate non-linear mod-

els effectively for a given epidemic stream. We specifically pro-

pose EpiEstimator, which can estimate model parameters ) =

{)K , )R}, for a current windowX� , focusing on a single location in

an epidemic streamX. Consider the epidemic sequence for a single

location (i.e., -
(8)
�

⊂ X� , for the 8-th location, where 8 = 1, . . . , A ).

EpiEstimator finds the optimal ) = {)K , )R}, when given-
(8)
�

so

that the model can minimize the following equation.

{)K , )R} = arg min
)K ′

,)R ′
‖-

(8)
�

−+
(8)
�

‖, +
(8)
�

= 5 ()K
′
, )R

′
), (2)

where ‖ · ‖ shows the mean square errors and +
(8)
�

= 5 ()K
′
, )R

′
)

shows the estimated sequence of -
(8)
�

given by Equation (1). Here,

we use the fourth-order Runge-Kutta method [18] to generate the

reconstructed data points. In the optimization of ) , we apply the

Levenberg-Marquardt (LM) algorithm [30], which can solve the

non-linear least squares minimization problem effectively.

4.2 Model selection – EpiFinder

The significant lack of information about infectious behaviorwithin

a single location makes it necessary to exploit multiple non-linear

models that are obtained from any location for co-evolving epi-

demic streams, in which the dynamics in the current window X�

Algorithm 1 EpiFinder (-
(8)
�

,�)

1: Input: (a) Current epidemic sequence -
(8)
�

in 8-th location

(b) Current parameter set � = {�� ,�!}

2: Output: (a) Estimated values +
(8)
�

in 8-th location

(b) Model parameter set ) = {)K , )R}

3: C = ∅; // Candidate parameter set

4: for 9 = 1 : 6 do

5: /* Model estimation with the 9-th epidemic parameters and

the 8-th location parameters */

6: Set {)K
′
, )R

′
} = {)K 9 , )

R
8 } as initial condition

7: {)K , )R} = arg min
)K ′

,)R ′
‖-

(8)
�

−+
(8)
�

‖; // +
(8)
�

= 5 ()K
′
, )R

′
)

8: C = C ∪ {)K , )R};

9: end for

10: /* Choose the best model in C */

11: {)K , )R} = arg min
{)K ′

,)R ′
}∈C

‖-
(8)
�

−+
(8)
�

‖; // +
(8)
�

= 5 ()K
′
, )R

′
)

12: Compute +
(8)
�

= 5 ()K , )R); ) = {)K , )R};

13: return {+
(8)
�

, ) };

change over time and location. We thus propose the use of Epi-

Finder to determine dynamic patterns ) by considering the adap-

tion of known parameters in a full parameter set �.

Algorithm 1 shows the details of EpiFinder. Here, the current

sequence for the 8-th location will be given (i.e., -
(8)
�

⊂ X� ). Also,

we assume that it already contains several model parameters in

� = {�� ,�!}, which consists of epidemic parameters and location

parameters, i.e., ��
= {)K1 , · · · , )

K
6 }, �!

= {)R1 , · · · , )
R
A }, where 6

shows the number of typical/representative regime groups among

A locations. Given -
(8)
�

and �, the algorithm searches for the best

model ) = {)K , )R} in terms of the reconstruction error between

-
(8)
�

and +
(8)
�

that is generated by Equation (1).

So, how canwe efficiently and effectively estimate the bestmodel

for the given -
(8)
�

? We propose EpiFinder, which shares represen-

tative regimes obtained frommultiple locations. Specifically, the al-

gorithm searches for the best epidemic parameters )K9 stored in �

( 9 = 1, · · · , 6), as well as estimates optimal local parameters for the

8-th location, by using the current location parameters )R8 . Here,

location parameters )R = {#, �0, �0, '0, �0, C0} are fully estimated,

while epidemic parameters )K = {V, f,W, X} are updated within

a limited range of values1. This enables )K to preserve the base

dynamics of epidemics.

4.3 Streaming algorithm – EpiCast

We now incorporate the two algorithms we have proposed into

our streaming method, EpiCast, which realizes the real-time fore-

casting of epidemic streams, while considering time-evolving non-

linear dynamics. Our final goal is to find both global and location-

specific epidemic patterns, i.e.,� = {�� ,�!}, so as to generate the

;B -steps-ahead future values +C2+;B ∈ N3×A for all locations.

1We set the range of each parameter at ±0.1 (i.e., ±10%).
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Algorithm 2 EpiCast (X� ,�)

1: Input: (a) Current window X� = X[C< : C2 ]

(b) Model parameter set � = {�� ,�!}

2: Output: (a) ;B -steps-ahead values +C2+;B = V[C2 + ;B ]

(b) Updated model parameter set �′
= {�� ′,�! ′}

3: /*** (I) Estimate optimal parameters for each 8-th location ***/

4: for 8 = 1 : A do

5: /* (1) Fitting by the previous best model at time C2 − 1 */

6: {)K , )R} = )
(C2−1)
8 ; Compute +

(8)
�

= 5 ()K , )R);

7: if ‖-
(8)
�

−+
(8)
�

‖ > n then

8: /* (2-1) Fitting by local area ( for the 8-th location */

9: �
(() ⊂ �; // Subset models of local area (

10: {+
(8)
�

, ) } =EpiFinder (-
(8)
�

,�(() );

11: +
(8)
�

= +
(8)
�

[C< : C2 ]; // Estimated values from C< to C2
12: end if

13: if ‖-
(8)
�

−+
(8)
�

‖ > n then

14: /* (2-2) Fitting by other local areas */

15: �
(¬() ⊂ �; // Subset models of local area, except (

16: {+
(8)
�

, ) } =EpiFinder (-
(8)
�

,�(¬() );

17: +
(8)
�

= +
(8)
�

[C< : C2 ]; // Estimated values from C< to C2
18: end if

19: /* (3) Estimate new regimes (if required) */

20: if ‖-
(8)
�

−+
(8)
�

‖ > n then

21: {)K , )R} =EpiEstimator (-
(8)
�

);

22: �
�
= �

� ∪ )
K ; 6 = 6 + 1; // Insert new model

23: Compute +
(8)
�

= 5 ()K , )R);

24: end if

25: Update )R8 in �
! ;

26: end for

27: /*** (II) ;B -steps-ahead future value generation ***/

28: +C2+;B = {+
(8)
�

[C2 + ;B ]}
A
8=1;

29: return {+C2+;B ,�
′};

Algorithm 2 summarizes the procedure with EpiCast. For the

current window X� , it determines the best non-linear model for

each location, i.e., -
(8)
�

, through the following three steps:

First, it tries to use the previously estimated model parameters

)
(C2−1)
8 for the 8-th location at time point C2−1. This is based on the

natural assumption that mutation happens occasionally, and thus

the algorithm continues using )
(C2−1)
8 for efficiency.

Second, when the previous regime does not fit well, i.e., the re-

construction error is more than the required accuracy n ,2 the can-

didate regime to represent the current sequence is selected by Epi-

Finder. However, the number of candidates in � can increase as

we find new dynamic patterns. To prevent a search of the full com-

bination of regimes, we propose an efficient way of eliminating

some of the search by building hierarchical groups of regimes in�.

Specifically, we separate regimes in� by using groups of neighbor-

ing locations, namely local areas (e.g., continents), which allows

2In this paper, we set n = 1/2‖-
(8 )
�

‖.

the search to consider the similarity of dynamics between near lo-

cations. The algorithm runs EpiEstimator in its own local area,

i.e., �(() ⊂ �, when the 8-th location belongs to the local area ( .

Unless it finds a regime that appropriately fits -
(8)
�

, it extends the

subset of candidates to the other local area, except for �(() , i.e.,

�
(¬() ⊂ �.

Third, if there is no appropriate model in �, it should estimate

a new model {)K , )R} using EpiEstimator. The new epidemic pa-

rameters )K is then added into �
� , and also location parameters

)
R are replaced into �

! .

Consequently, by iterating this procedure for each location, we

eventually obtain all the estimated values +C2+;B .

Lemma 1. The time complexity of EpiCast is $ (6) at each time

point.

Proof. Please see Appendix C. �

5 EXPERIMENTS

In this section we demonstrate the effectiveness of EpiCast with

the COVID-19 dataset [11], which can be obtained at our website3.

The dataset consists of 3 = 3 dimensional vectors (infected, recov-

ery and death), covering over 600 days on a daily basis. Due to a sig-

nificant amount of missing data, we selected the top 50 countries

in order of their GDP scores4. Our experiments were conducted

on an Intel Core i7 2.8GHz quad core CPU with 16GB of memory.

The experiments were designed to answer the following questions

about EpiCast:

Q1 Effectiveness: Howwell does it capture co-evolving epidemic

patterns?

Q2 Accuracy: How accurately does it forecast future outbreaks?

Q3 Scalability: Howdoes it scale in terms of computational time?

Q1. Effectiveness.We demonstrate the forecasting power of Epi-

Cast in terms of capturing important patterns in epidemic streams

and forecasting future values. We have already provided examples

of EpiCast in Figure 1, which shows that the method effectively

forecasts long-range future values. Here Figure 4 shows the addi-

tional results obtained when EpiCast continued to analyze the epi-

demic stream in Figure 1. For example, at the end of April (the top

of Figure 4), we observe that the infection was under control in

China. The epidemic states of other countries also changed. Tai-

wan’s case was appearing to settle down, which was also observed

for China. Meanwhile, Italy’s case was similar to Taiwan’s at the

beginning of April. A pandemic started in Czechia, for which our

method used the same regime as observed in Italy.

Figure 5 shows the details of the EpiCast outputs, focusing on

a single location, i.e., Czechia. The top left figures are the original

data stream, for which our method forecasted seven-days-ahead

values as shown in the figures bottom left, where the forecasts

are visually well fitted without any divergence through the data.

Here, we plotted the figure in both linear (left column) and log

(right column) scales. The right side of Figure 5 shows the rela-

tive characteristics of regimes: specifically, the figure shows a scat-

ter plot of the model parameter sets of multiple regimes, where

3https://www.worldometers.info/coronavirus/
4https://www.imf.org/external/index.htm

https://www.worldometers.info/coronavirus/
https://www.imf.org/external/index.htm
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Figure 4: EpiCast is effective: Snapshots of our method at different time points (continued from Figure 1). It successfully

captures current dynamical patterns (i.e., regimes) in each location, and forecasts future co-evolving epidemics.
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Figure 5: EpiCast is adaptive: The four figures on the left show the original data (top) and our seven-days-ahead predictions

(bottom) for one location (Czechia), shown in linear (left) and log (right) scales. The figure on the right shows a scatter plot

of the model parameter sets of regimes (here, it shows infection rate V vs. mortality rate W ), where each black dot corresponds

to each regime, stored in �. EpiCast automatically and incrementally identifies the current epidemic patterns by switching

models/regimes (i.e., (A) → (B) → (C)), and forecasts future events, efficiently and effectively.
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Figure 6: RMSE between original and forecast values: Epi-

Cast consistently outperforms its competitors in all three

dimensions and in terms of metrics (lower is better).
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Figure 7: Scalability of EpiCast: (left) Wall clock time vs.

data stream length C2 and (right) average time consumption.

Our method is consistently superior to its competitors even

when it estimates new models including non-linear param-

eters. Here, it is up to 37,500x faster than its competitors.

each black dot corresponds to each regime stored in �, which are

estimated by EpiCast. Here, we observe three kinds of regimes:

(A)→(B)→(C), where regimes (A) and (C) have higher infection

rates V than regime (B). Regime (B) has a higher mortality rate W

than the other two regimes. Indeed, Czechia experienced its first

pandemic during the yellow-shaded period, followed by the blue-

shaded period when the pandemic settled down, and the purple-

shaded period when the viruses spread more rapidly than in the

first pandemic.

As shown in the figures, our proposed method successfully cap-

tures a wide variety of regimes, i.e., non-linear dynamical patterns,

for multiple locations at different time points. The regimes summa-

rize complex, time-evolving dynamical features, and thus allow us

to understand and forecast the diffusion process of epidemics.

Q2. Accuracy. Next, we discuss the quality of EpiCast in terms

of forecasting accuracy. We compared EpiCast with the follow-

ing baselines: SIRD (a non-linear equation formodeling epidemics),

ARIMA (a linear forecastingmethod).We also compared ourmethod

with GRU (a recurrent neural network model with gated recur-

rent units), TCN [21] (a temporal convolutional network, which

can learn multi-level temporal causality, and constitutes another

choice for analyzing sequential patterns), EpiDeep [7] (one of the

most recent neural network models, which successfully applied

DNN to modeling the dynamics of a seasonally occurring infec-

tion). Please also see a description of our experimental settings in

Appendix D.

Figure 6 shows the average forecasting errors (the root mean

square error (RMSE)) between the original values and the seven-

days-ahead forecast values. Here, a lower value indicates a better

forecasting accuracy. Our approach achieved the lowest fitting er-

ror for all three kinds of statistics (i.e., infected, death, recovered),

which means that our method is capable of modeling both the rise

and fall-part patterns at any time in epidemic streams. Please also

see the additional experimental results in Appendix D.

More importantly, regime switching contributes to both accu-

racy and scalability, as described in the next experimental result.

Q3. Scalability. We also evaluate the efficiency of our forecast-

ing algorithm. Figure 7 compares EpiCast with its competitors in

terms of computation time at each time point C2 . Note that the fig-

ures are shown in linear-log scales. On the left in Figure 7, the

upper range of the running time in EpiCast corresponds to the

EpiEstimator process, which creates a new model. Despite the

increasing number of regimes, the computation time remains con-

stant until the end of the data stream. This result suggests that Epi-

Finderworks effectively for the streammining ofmultiple regimes

because it allows the algorithm tomaintain a large number of regimes.

The right side of Figure 7 shows the average computation time for

the entire epidemic stream. As we expected, EpiCast generates

long-range future values significantly faster than its competitors

for large streams (i.e., up to four orders of magnitude).

6 CONCLUSION

In this paper, we proposed EpiCast, which is designed for model-

ing and forecasting co-evolving epidemiological data streams. Our

method has the following desirable properties:

(1) It is Effective: it captures important dynamical epidemic

patterns (i.e., regimes) in data streams and provides long-

range forecasting at any time.

(2) It is Adaptive: it can dynamically and adaptively capture

current regimes, by sharing non-linear models among mul-

tiple locations.

(3) It is Scalable: we proposed an efficient algorithm that is

constant in terms of input data size.

Using a real public COVID-19 dataset, we demonstrated that our

proposed method outperforms existing methods in terms of fore-

casting accuracywith a significant reduction in computational time.
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APPENDIX

A ADDITIONAL RELATED WORK

Very recently, there has been a lot of work on COVID-related data

analysis and forecasting. Here, CALI-NET [36] adjusts the training

of DNN by using the COVID-related exogenous data (hospitaliza-

tion rate, people tested, health related tweets, etc). C-Watcher [49]

learns city-invariant representations from the mobility-related fea-

tures using an adversarial encoder for the detection of high infec-

tion risk neighborhoods.MPNN+TL [32] is a graph neural network,

which can generate representations for the regions based on their

interactions and history from mobility data. However, these meth-

ods that use a wide variety of data about COVID-19 (human mobil-

ity, urban mobility, social media activity, etc) can only work in spe-

cific locations because they require a large number of data about

the target location. Please also see section 2 for further discussion.

B PROPOSED MODEL

Table 1 gives an overview of the symbols used and their definitions.

Table 1: Symbols and definitions.

Symbol Definition

3, A Number of dimensions and locations

C2 Current time point

X Epidemiological data stream, i.e., X ∈ N3×A×C2

X� Current window, i.e., X� = {-C }
C2
C=C<

, -C ∈ N3×A

+C2+;B ;B -steps-ahead future values, i.e.,+C2+;B ∈ N3×A

) Model parameter set, i.e., ) = )
K ∪ )

R

)
K Epidemic parameters, i.e., )K

= {V, f,W, X }

)
R Location parameters, i.e., )R

= {#, �0, �0, '0, �0, C0 }

� Model parameter set, i.e., � = {�� ,�! }

�
� Epidemic parameter set, i.e., ��

= {)K

1 , · · · , )
K
6 }

�
! Location parameter set, i.e., �!

= {)R

1 , · · · , )
R
A }

C STREAMING ALGORITHMS

Proof of Lemma 1. As we mentioned in section 4, EpiCast re-

quires$ (6) time at each time point, where 6 shows the number of

epidemic parameters stored in �
� .

Proof. Let ;2 be the current window length, ;2 = C2−C<+1, and

6 be the number of epidemic parameters in �
� . EpiCast executes

EpiFinder and EpiEstimator, each of which requires$ (6·3 ·A ·;2 )

time for the parameter estimation. Since the sizes of the current

window-� given by3,A,;2 are negligibly small constant values, the

total time complexity of EpiCast is $ (6) time per time point. �

D EXPERIMENTS

Experimental setup. We describe here our experimental setup

and experimental parameters for the competitors. Here, we com-

pare our method with the following methods:

• SIRD: a non-linear equation for modeling epidemics, where

we optimized its parameters with the LM algorithm.

• ARIMA: a linear forecasting method, where we determined

the optimal number of parameters, including autocorrela-

tion coefficients, in the candidates {1, 2, 4, 8, 16}.

• GRU: a recurrent neural network (RNN) model with gated

recurrent units (GRUs), where we stacked two GRU layers

and four fully-connected layers with 30 hidden units.

• TCN [21]: a temporal convolutional network, which can learn

multi-level temporal causality, wherewe built a {1, 2}-stacked

TCN with a dilation set: {1, 2, 4, 8, 16, 32}, and searched for

the best convolutional network structure in {16, 32, 64} fil-

ters with one of the {3, 7}-length kernels.

• EpiDeep [7]: one of the most recent neural network models,

which successfully applied DNN to modeling the dynamics

of a seasonally occurring infection.

These offline baselines learn all historical data until the time when

they perform forecasting. The DNN-based models are optimized

based on Adam with a learning rate 0.01 and run 5000, 2000, 1000

epochs in GRU, TCN, EpiDeep, respectively.

Additional experiments: ;B -days-ahead epidemic prediction.

As we mentioned in the introduction section, one of our motiva-

tions is the long-range forecasting over epidemiological data streams.

So, how long ahead can our method forecast future epidemic pat-

terns? Is there any difference between, say, 7-days-ahead and 28-

steps-ahead forecasting results? We thus examined the forecasting

power of EpiCast in terms of the future sequence length ;B .

Table 2 shows the forecasting errors of EpiCast and its com-

petitors for varying the forecasting steps: ;B = 7, 14, 21, 28. More

specifically, Table 2 shows the average forecasting errors (the root

mean square error (RMSE)) between the original values (i.e., in-

fected/death/recovered cases) and the ;B -days-ahead forecast val-

ues. We also compared multiple current window length ;2 = 14, 21,

28 (i.e., ;2 = C2 −C< +1), where ;2 corresponds to the training length

of each model. Here, a lower value indicates a better forecasting ac-

curacy. In Table 2, the underlines show approaches providing the

best performance. Our approach achieves a high forecasting accu-

racy for every combination of each ;B and each ;2 , which means

that our method is capable of modeling both the rise and fall-part

patterns at any time in epidemic streams.

Similarly, Table 3 shows the individual forecasting errors be-

tween the original values and the ;B -days-ahead forecast values

for infected, death and recovered cases, respectively. Here, we pro-

vide some observations.ARIMAmissed location information since

it only models a univariate sequence individually. Although its

performance as regards the number of deaths and recovered is

relatively better, this is because there are no complex dynamics

in the these sequences, which grow slowly over time. The SIRD

model can capture dynamics regarding these who recovered and

how their medical states will change but cannot handle location

information. The deep neural network models can take all the fea-

tures into account for forecasting. Here, we show the best scores of

the models; however, these models are still poor at capturing epi-

demic dynamics. Specifically, TCN can capture the long-term trend

by convoluting the input sequence in the time direction; EpiDeep

learns seasonality from a large amount of historical data; however,

they are unsuitable for capturing the rapid rise/fall-part patterns.

Furthermore, DNN is difficult to use for decision making because

it is a black box and cannot represent the regime shifting of infec-

tious diseases and similarity among locations.

In summary, EpiCast provides better forecasts than these base-

lines because it explicitly handles multiple regimes, and so the fore-

casts can be interpreted in terms of location and experience to date.
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Table 2: Comparison of marginal/average forecasting error: RMSE between original and ;B -steps-ahead values of EpiCast and

its competitors at each current window length ;2 (lower is better).

;2 ;B EpiCast SIRD ARIMA GRU TCN EpiDeep

14 7 .0330 ± .0327 .1325 ± .1166 .0630 ± .0398 .2498 ± .0925 .0942 ± .0171 .1333 ± .0826

14 .0583 ± .0587 .1977 ± .1716 .0912 ± .0551 .2760 ± .1080 .0856 ± .0442 .1586 ± .1141

21 .0841 ± .0833 .2541 ± .2100 .1172 ± .0682 .2947 ± .1267 .1035 ± .0622 .1845 ± .1827

28 .1082 ± .1040 .2992 ± .2335 .1408 ± .0801 .3123 ± .1542 .1235 ± .0739 .2187 ± .3827

21 7 .0376 ± .0364 .1313 ± .0969 .0761 ± .0463 .2855 ± .1092 .0900 ± .0259 .1332 ± .0827

14 .0632 ± .0642 .1844 ± .1383 .1032 ± .0603 .3093 ± .1292 .0902 ± .0520 .1584 ± .1144

21 .0882 ± .0858 .2323 ± .1685 .1285 ± .0736 .3274 ± .1540 .1102 ± .0668 .1844 ± .1834

28 .1114 ± .1040 .2725 ± .1886 .1517 ± .0893 .3432 ± .1849 .1306 ± .0768 .2187 ± .3846

28 7 .0426 ± .0419 .1288 ± .0922 .0884 ± .0519 .3038 ± .1347 .0927 ± .0312 .1361 ± .0981

14 .0679 ± .0700 .1671 ± .1180 .1149 ± .0660 .3294 ± .1635 .0950 ± .0543 .1634 ± .1579

21 .0926 ± .0927 .2080 ± .1465 .1397 ± .0828 .3480 ± .1963 .1152 ± .0684 .1936 ± .2859

28 .1160 ± .1177 .2462 ± .1716 .1630 ± .1101 .3660 ± .2515 .1352 ± .0781 .2191 ± .3948

Table 3: Comparison of individual forecasting error: RMSE between original and ;B -steps-ahead values of EpiCast and its

competitors at each current window length ;2 (lower is better). Please also see text for more observations.

;2 ;B dimension EpiCast SIRD ARIMA GRU TCN EpiDeep

14 7 Infected .0703 ± .0266 .2695 ± .1038 .1118 ± .0301 .2006 ± .0506 .1032 ± .0220 .2256 ± .0691

Death .0165 ± .0173 .0686 ± .0379 .0398 ± .0130 .2993 ± .1085 .0923 ± .0120 .0885 ± .0340

Recovered .0123 ± .0108 .0593 ± .0188 .0374 ± .0102 .2496 ± .0821 .0869 ± .0110 .0858 ± .0421

14 Infected .1247 ± .0412 .3852 ± .1670 .1576 ± .0421 .2357 ± .0549 .1371 ± .0414 .2639 ± .1311

Death .0305 ± .0418 .1311 ± .0763 .0602 ± .0217 .3271 ± .1382 .0596 ± .0099 .1072 ± .0386

Recovered .0197 ± .0149 .0768 ± .0229 .0557 ± .0157 .2652 ± .0944 .0601 ± .0087 .1046 ± .0628

21 Infected .1790 ± .0569 .4723 ± .2081 .1972 ± .0521 .2685 ± .0655 .1772 ± .0546 .3058 ± .2660

Death .0449 ± .0597 .1974 ± .1076 .0802 ± .0315 .3424 ± .1664 .0658 ± .0164 .1252 ± .0426

Recovered .0283 ± .0192 .0926 ± .0271 .0741 ± .0248 .2732 ± .1157 .0674 ± .0141 .1225 ± .0800

28 Infected .2272 ± .0701 .5315 ± .2306 .2301 ± .0636 .2996 ± .0988 .2109 ± .0640 .3742 ± .6305

Death .0599 ± .0742 .2590 ± .1319 .0993 ± .0392 .3535 ± .1854 .0788 ± .0217 .1424 ± .0462

Recovered .0374 ± .0225 .1072 ± .0311 .0930 ± .0413 .2838 ± .1598 .0807 ± .0184 .1393 ± .0940

21 7 Infected .0801 ± .0247 .2503 ± .0670 .1320 ± .0351 .2305 ± .0627 .1158 ± .0299 .2256 ± .0693

Death .0194 ± .0227 .0769 ± .0449 .0497 ± .0176 .3378 ± .1309 .0783 ± .0081 .0883 ± .0335

Recovered .0133 ± .0112 .0667 ± .0180 .0465 ± .0131 .2882 ± .0966 .0760 ± .0076 .0856 ± .0421

14 Infected .1332 ± .0373 .3436 ± .1143 .1745 ± .0456 .2665 ± .0728 .1510 ± .0472 .2639 ± .1317

Death .0352 ± .0575 .1280 ± .0691 .0701 ± .0273 .3613 ± .1656 .0590 ± .0138 .1070 ± .0381

Recovered .0213 ± .0157 .0816 ± .0209 .0649 ± .0208 .3000 ± .1158 .0607 ± .0116 .1044 ± .0629

21 Infected .1856 ± .0488 .4179 ± .1467 .2122 ± .0570 .3019 ± .1089 .1889 ± .0590 .3059 ± .2675

Death .0490 ± .0704 .1833 ± .0870 .0895 ± .0348 .3727 ± .1867 .0696 ± .0194 .1250 ± .0420

Recovered .0301 ± .0196 .0956 ± .0240 .0840 ± .0363 .3077 ± .1495 .0721 ± .0158 .1223 ± .0801

28 Infected .2312 ± .0643 .4720 ± .1677 .2441 ± .0802 .3329 ± .1634 .2208 ± .0672 .3747 ± .6338

Death .0631 ± .0771 .2361 ± .1006 .1081 ± .0410 .3813 ± .2014 .0840 ± .0242 .1422 ± .0456

Recovered .0398 ± .0229 .1095 ± .0285 .1028 ± .0551 .3154 ± .1854 .0870 ± .0194 .1391 ± .0941

28 7 Infected .0905 ± .0285 .2468 ± .0603 .1500 ± .0390 .2529 ± .0732 .1261 ± .0336 .2332 ± .1078

Death .0220 ± .0291 .0679 ± .0258 .0595 ± .0230 .3640 ± .1746 .0767 ± .0083 .0884 ± .0308

Recovered .0153 ± .0121 .0716 ± .0151 .0558 ± .0181 .2944 ± .1138 .0753 ± .0081 .0868 ± .0478

14 Infected .1425 ± .0429 .3130 ± .0836 .1905 ± .0503 .2931 ± .1078 .1582 ± .0495 .2783 ± .2245

Death .0375 ± .0647 .1030 ± .0475 .0792 ± .0302 .3852 ± .2004 .0625 ± .0152 .1070 ± .0349

Recovered .0237 ± .0165 .0853 ± .0176 .0749 ± .0324 .3100 ± .1569 .0645 ± .0130 .1048 ± .0630

21 Infected .1943 ± .0634 .3815 ± .1163 .2271 ± .0732 .3295 ± .1685 .1953 ± .0606 .3341 ± .4599

Death .0507 ± .0754 .1441 ± .0644 .0982 ± .0363 .3959 ± .2150 .0736 ± .0206 .1249 ± .0386

Recovered .0327 ± .0200 .0983 ± .0203 .0938 ± .0496 .3185 ± .1976 .0766 ± .0169 .1218 ± .0742

28 Infected .2413 ± .1032 .4391 ± .1498 .2600 ± .1248 .3663 ± .2823 .2266 ± .0686 .3776 ± .6538

Death .0642 ± .0817 .1880 ± .0809 .1163 ± .0409 .4039 ± .2225 .0876 ± .0254 .1422 ± .0425

Recovered .0427 ± .0235 .1115 ± .0243 .1129 ± .0722 .3277 ± .2455 .0914 ± .0204 .1374 ± .0801
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