
Dynamic Multi-Network Mining of Tensor Time Series
Kohei Obata

SANKEN, Osaka University, Japan
obata88@sanken.osaka-u.ac.jp

Koki Kawabata
SANKEN, Osaka University, Japan

koki@sanken.osaka-u.ac.jp

Yasuko Matsubara
SANKEN, Osaka University, Japan
yasuko@sanken.osaka-u.ac.jp

Yasushi Sakurai
SANKEN, Osaka University, Japan
yasushi@sanken.osaka-u.ac.jp

ABSTRACT

Subsequence clustering of time series is an essential task in data
mining, and interpreting the resulting clusters is also crucial since
we generally do not have prior knowledge of the data. Thus, given
a large collection of tensor time series consisting of multiple modes,
including timestamps, how can we achieve subsequence clustering
for tensor time series and provide interpretable insights? In this
paper, we propose a new method, Dynamic Multi-network Mining

(DMM), that converts a tensor time series into a set of segment
groups of various lengths (i.e., clusters) characterized by a depen-
dency network constrained with ℓ1-norm. Our method has the
following properties. (a) Interpretable: it characterizes the clus-
ter with multiple networks, each of which is a sparse dependency
network of a corresponding non-temporal mode, and thus pro-
vides visible and interpretable insights into the key relationships.
(b) Accurate: it discovers the clusters with distinct networks from
tensor time series according to the minimum description length
(MDL). (c) Scalable: it scales linearly in terms of the input data
size when solving a non-convex problem to optimize the number of
segments and clusters, and thus it is applicable to long-range and
high-dimensional tensors. Extensive experiments with synthetic
datasets confirm that our method outperforms the state-of-the-art
methods in terms of clustering accuracy. We then use real datasets
to demonstrate that DMM is useful for providing interpretable
insights from tensor time series.

CCS CONCEPTS

• Information systems → Data mining; Clustering.

KEYWORDS

Tensor time series, Clustering, Network inference, Graphical lasso
ACM Reference Format:

Kohei Obata, Koki Kawabata, Yasuko Matsubara, and Yasushi Sakurai. 2024.
Dynamic Multi-Network Mining of Tensor Time Series. In Proceedings of

the ACM Web Conference 2024 (WWW ’24), May 13–17, 2024, Singapore,

Singapore. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3589334.3645461

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’24, May 13–17, 2024, Singapore, Singapore.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0171-9/24/05. . . $15.00
https://doi.org/10.1145/3589334.3645461

1 INTRODUCTION

The development of IoT has facilitated the collection of time series
data, including data related to automobiles [27], medicine [16, 29],
and finance [31, 38], from multiple modes such as sensor type,
locations and users, which we call tensor time series (TTS). An
instance of such data is online activity data, which records search
volumes in three modes {Query, Location, Timestamp}. These TTS
can often be divided and grouped into subsequences that have
similar traits (i.e., clusters). Time series subsequence clustering [1,
51] is a useful unsupervised exploratory approach for recognizing
dynamic changes and uncovering interesting patterns in time series.
As well as clustering data, the interpretability of the results is also
important since we rarely know what each cluster refers to [33, 36].
Modeling a cluster as a dependency network [14, 40, 43], where
nodes are variables and an edge expresses a relationship between
variables, gives a clear explanation of what the cluster refers to.
Considering that a TTS consists of multiple modes [4, 11, 23], a
cluster should be modeled as multiple networks, where each is a
dependency network of a corresponding non-temporal mode, to
provide a good explanation. In the above example, a cluster can
be modeled as query and location networks, where each explains
the relationships among queries/locations. With these networks,
we can understand why a particular cluster distinguishes itself
from another and speculate about what happened during a period
belonging to the cluster. Given such a TTS, how can we find clusters
with interpretability contributing to a better understanding of the
data?

Research on time series subsequence clustering has mainly fo-
cused on univariate or multivariate time series (UTS and MTS).
TTS is a generalization of time series and includes UTS and MTS.
Here, we mainly assume that TTS has three or more modes. Gen-
erally, UTS clustering methods use distance-based metrics such as
dynamic time warping [5]. These methods focus on matching raw
values and do not consider relationships among variables, which is
essential if we are to interpret the MTS and TTS clustering. MTS
clustering methods usually employ model-based clustering, which
assumes, for example, a Gaussian [24] or an ARMA [47] model
and attempts to find clusters that recover the data from the model.
The interpretability of the clustering results depends on the model
they assume. As a technique for interpretable clustering, TICC [14]
models an MTS with a dependency network and discovers inter-
pretable clusters that previously developed methods cannot find.
Nevertheless, TTS clustering is a more challenging problem and
cannot simply employ MTS methods due to the complexity of TTS,
stemming from multiple modes, which introduces intricate depen-
dencies and a massive data size. To employ an MTS clustering

4117

https://doi.org/10.1145/3589334.3645461
https://doi.org/10.1145/3589334.3645461
https://doi.org/10.1145/3589334.3645461
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3589334.3645461&domain=pdf&date_stamp=2024-05-13

WWW ’24, May 13–17, 2024, Singapore, Singapore. Kohei Obata, Koki Kawabata, Yasuko Matsubara, and Yasushi Sakurai

method (e.g., TICC) for TTS, the TTS must be flattened to form a
higher-order MTS. As a result, the method processes the higher-
order MTS and mixes up all the relationships between variables,
which may capture spurious relationships and unnecessarily exacer-
bate the interpretability. Moreover, its computational time increases
greatly as the number of variables in a mode increases.

In this paper, we propose a new method for TTS subsequence
clustering, which we call Dynamic Multi-network Mining (DMM). 1
In our method, we define each cluster as multiple networks, each
of which is a sparse dependency network of a corresponding non-
temporal mode and thus can be seen as visual images that can help
users quickly understand the data structure. Our algorithm scales
linearly with the input data size while employing the divide-and-
conquer method and is thus applicable to long-range and high-
dimensional tensors. Furthermore, the clustering results and every
user-defined parameter of our method can be determined by a
single criterion based on the Minimum Description Length (MDL)
principle [12]. DMM is a useful tool for TTS subsequence clustering
that enables multifaceted analysis and understanding of TTS.

1.1 Preview of our results

Fig. 1 shows the DMM results for clustering over Google Trends
data, which consists of 10 years of daily web search counts for six
queries related to COVID-19 across 10 countries, forming a 3𝑟𝑑 -
order tensor. Fig. 1 (a) shows the cluster assignments of the TTS,
where each color represents a cluster. DMM splits the tensor into
four segments and groups them into four clusters, each of which
can be interpreted as a distinct phase corresponding to the evolving
social response to COVID-19; thus, we name these phases “Before
Covid,” “Outbreak,” “Vaccine,” and “Adaptation.” It is worth noting
that this result is obtained with no prior knowledge.

Fig. 1 (b) presents the networks of each cluster, i.e., a country
network, which has nodes plotted on the world map, reflects depen-
dencies between different countries, and a query network for query
dependencies. These networks, also known as a Markov Random
Field (MRF) [37], illustrate how the node affects the other nodes.
The thickness and color of the edges in the network indicate the
strength of the partial correlation between the nodes, which de-
notes a stronger relationship compared with a simple correlation.
We learn the networks by estimating a Gaussian inverse covariance
matrix. Then, by definition, if there is an edge between two nodes,
the nodes are directly dependent on each other. Otherwise, they are
conditionally independent, given the rest of the nodes. Moreover,
we impose an ℓ1-norm penalty on the networks to promote sparsity,
making it possible to obtain true networks and interpretability, as
well as making the method noise-robust [46, 49]. These networks
provide visible and interpretable insights into the key relationships
that characterize clusters.

We see that each of the four clusters exhibits unique networks
that evolve with the different phases. In the “Before Covid” phase,
the country network displays edges between English-speaking
countries, indicating their interconnectedness. In the query net-
work, the query “vaccine” correlates with “influenza.” However,
during the “Outbreak” starting in 2020, many countries respond to

1Our source code and datasets are publicly available:
https://github.com/KoheiObata/DMM.

(a) Cluster assignments on the original tensor time series

(b) Country and query networks change dynamically

Figure 1: Effectiveness of DMM on Google Trends (#4

Covid) dataset: (a) DMM can split the tensor time series

into meaningful subsequence clusters shown by colors (i.e.,

#green→ “Before Covid”, #pink→ “Outbreak”, #gray→ “Vac-
cine”, #blue→ “Adaptation”), and (b) their important rela-

tionships between variables are summarized with country

and query networks, where the nodes show individual vari-

ables, and the thickness and color of the edges are partial

correlations showing the importance of its interaction.

the COVID-19 pandemic, leading to various edges in the country
network. In the query network of this phase, new edges related
to “coronavirus” appear, and “coronavirus” and “virus” have a
particularly strong connection. In the “Vaccine” phase, as people be-
come more concerned about protection from COVID-19, the query
“vaccine” forms an edge with “covid.” Moreover, since flu infects
fewer people than in the past, “influenza” loses its edges. Lastly,
during the “Adaptation” phase, as the world becomes accustomed
to the situation, the country network reduces the number of edges,
and the edges related to “influenza” reappear, reflecting a return
to the networks observed in the “Before Covid” phase.

1.2 Contributions

In summary, we propose DMM as a subsequence clustering method
for TTS based on the MDL principle that enables each cluster to
be characterized by multiple networks. The contributions of this
paper can be summarized as follows.

• Interpretable: DMM realizes the meaningful subsequence
clustering of TTS, where each cluster is characterized by
sparse dependency networks for each non-temporal mode,
which facilitates the interpretation of the cluster from im-
portant relationships between variables.

• Accurate: We define a criterion based on MDL to discover
clusters with distinct networks. Thanks to the proposed cri-
terion, any user-defined parameters can be determined, and
DMM outperforms its state-of-the-art competitors in terms
of clustering accuracy on synthetic data.

4118

https://github.com/KoheiObata/DMM

Dynamic Multi-Network Mining of Tensor Time Series WWW ’24, May 13–17, 2024, Singapore, Singapore.

• Scalable: The proposed clustering algorithm in DMM scales
linearly as regards the input data size and is thus applicable
to long-range and high-dimensional tensors.

Outline. The rest of the paper is organized as follows. After intro-
ducing related work in Section 2, we present our problem and basic
background in Section 3. We then propose our model and algorithm
in Sections 4 and 5, respectively. We report our experimental results
in Sections 6 and 7.

2 RELATEDWORK

We review previous studies that are closely related to our work.
Time series subsequence clustering. Subsequence clustering is
an important task in time series data mining whose benefits are
the extraction of interesting patterns and the provision of valuable
information, and that can also be used as a subroutine of other tasks
such as forecasting [32, 39]. Time series subsequence clustering
methods can be roughly separated into a distance-based method
and a model-based method. The distance-based method uses met-
rics such as dynamic time warping [2, 5, 19] and longest common
subsequence [44] and finds clusters by focusing on matching raw
values rather than structure in the data. The model-based method
assumes a model for each cluster, and finds the best fit of data to
the model. It covers a wide variety of models such as ARMA [47],
Markov chain [34], and Gaussian [24]. However, most previous
work has focused on MTS and are not suitable for TTS. Few studies
have focused on TTS clustering, for example, CubeScope [30] uses
Dirichlet prior as a model to achieve online TTS clustering, but it
only supports sparse categorical data. In summary, existingmethods
are not particularly well-suited to handling TTS and discovering
interpretable clusters.
Tensor time series. TTS are ubiquitous and appear in a vari-
ety of applications, such as recommendation and demand predic-
tion [3, 25, 45]. To model a tensor, tensor/matrix decomposition,
such as Tucker/CP decomposition [21] and SVD, is a commonly
used technique. Although it obtains a lower-dimensional repre-
sentation that summarizes important patterns from a tensor, it
struggles to capture temporal information [22]. Therefore, it is
often combined with dynamical systems to handle temporal in-
formation [8, 17, 35]. For example, SSMF [18], which is an online
forecasting method that uses clustering as a subroutine, combines
a dynamical system with non-negative matrix factorization (NMF)
to capture seasonal patterns from a TTS. Each cluster in SSMF
is characterized by a lower-dimensional representation of a TTS,
however, understanding the representation is demanding. Thus,
tensor/matrix decomposition is not suitable for an interpretable
model.
Sparse network inference. Inferring a sparse inverse covariance
matrix (i.e., network) from data helps us to understand the depen-
dency of variables in a statistical way. Graphical lasso [10], which
maximizes the Gaussian log-likelihood imposing a ℓ1-norm penalty,
is one of the most commonly used techniques for estimating the
sparse network from static data. However, time series data are nor-
mally non-stationary, and the network varies over time; thus, to
infer time-varying networks, time similarity with the neighbor-
ing network is usually considered [13]. The monitoring of such

time-varying networks has been studied with the aim of analyz-
ing economic data [31] and biological signal data [29] because of
the high interpretability of the network [41]. Although the infer-
ence of time-varying networks is able to find change points by
comparing the networks before and after a change, it cannot find
clusters [15, 42, 48]. TICC [14] and TAGM [43] use graphical lasso
and find clusters from time series based on the network of each
subsequence, providing the clusters with interpretability and allow-
ing us to discover clusters that other traditional clustering methods
cannot find. However, they cannot provide an interpretable insight
when dealing with TTS. Consequently, past studies have yet to find
networks for TTS and a way to cluster TTS based on the networks.
Our method uses a graphical lasso-based model modified to provide
interpretable clustering results from TTS.

3 PROBLEM FORMULATION

In this section, we describe the TTS we want to analyze, introduce
some necessary backgroundmaterial, and define the formal problem
of TTS clustering.

The main symbols employed in this paper are described in Ap-
pendix A. Consider an (N+1)𝑡ℎ-order TTS X ∈ R𝐷1×···×𝐷𝑁 ×𝑇 ,
where the mode-(𝑁 + 1) is the time and its dimension is 𝑇 . We
can also rewrite the TTS as a sequence of 𝑁 𝑡ℎ-order tensors X =

{X1,X2, . . . ,X𝑇 }, where each X𝑡 ∈ R𝐷1×···×𝐷𝑁 (1 ≤ 𝑡 ≤ 𝑇) de-
notes the observed data at the 𝑡𝑡ℎ time step.

3.1 Tensor algebra

We briefly introduce some definitions in tensor algebra from tensor
related literature [8, 21].

Definition 1 (Reorder). Let the ordered sets 𝑃 (1) , . . . , 𝑃 (𝐺)
,

where 𝑃 (𝑔) = {𝑝 (𝑔)1 , . . . , 𝑝
(𝑔)
𝑛𝑔 } ⊂ {1, 2, . . . , 𝑁 }, be a partitioning

of the modes {1, 2, . . . , 𝑁 } s.t.,

∑𝐺
𝑔 𝑛𝑔 = 𝑁 . The reordering of an

𝑁 𝑡ℎ-order tensor X ∈ R𝐷1×···×𝐷𝑁
into ordered sets is defined as

𝑟𝑒 (X) (𝑃 (1) ,...,𝑃 (𝐺)) ∈ R𝐽
(1)×···× 𝐽 (𝐺)

, where 𝐽 (𝑔) =
∏
𝑛∈𝑃 (𝑔) 𝐷𝑛 .

Given a tensor X ∈ R𝐷
(1)
1 ×···×𝐷 (1)

𝑁
×𝐷 (2)

1 ×···×𝐷 (𝐺)
𝑁 , we partition

the modes into 𝐺 , 𝑃 (𝑔) = {𝑔𝑁 + 1, · · · , 𝑔(𝑁 + 1)}. The element is
given by 𝑟𝑒 (X) (𝑃

(1) ,...,𝑃 (𝐺))
𝑖 (1) ,...,𝑖 (𝐺) = X

𝑑
(1)
1 ,...,𝑑

(1)
𝑁
,𝑑

(2)
1 ,...,𝑑

(𝐺)
𝑁

, where 𝑖 (1) =

1 +∑𝑁
𝑔=1 (𝑑

(1)
𝑔 − 1)∏𝑔−1

𝑛=1 𝐷
(1)
𝑛 .

Special cases of reordering are vectorization and matricization.
Vectorization happens when 𝐺 = 1. 𝑣𝑒𝑐 (X) = 𝑟𝑒 (X) ({−1}) ∈ R𝐷 ,
where 𝐷 =

∏𝑁
𝑛=1 𝐷𝑛 and {−1} refers to the remaining unset modes.

Mode-n matricization happens when 𝐺 = 2 and 𝑃 (1) is a single-
ton. 𝑚𝑎𝑡 (X) (𝑛) = 𝑟𝑒 (X) ({𝑛},{−1}) ∈ R𝐷𝑛×𝐷

(\𝑛) , where 𝐷 (\𝑛) =∏𝑁
𝑚=1(𝑚≠𝑛) 𝐷𝑚 .

3.2 Graphical lasso

We use graphical lasso as a part of our model. Given the mode-(N+1)
matricization of the (𝑁 + 1)𝑡ℎ-order TTS,𝑚𝑎𝑡 (X) (𝑁+1) ∈ R𝑇×𝐷 ,
the graphical lasso [10] estimates the sparse Gaussian inverse co-
variance matrix (i.e., network) 𝜃 ∈ R𝐷×𝐷 , also known as the pre-
cision matrix, with which we can interpret pairwise conditional
independencies among 𝐷 variables, e.g., if 𝜃𝑖, 𝑗 = 0 then variables

4119

WWW ’24, May 13–17, 2024, Singapore, Singapore. Kohei Obata, Koki Kawabata, Yasuko Matsubara, and Yasushi Sakurai

𝑖 and 𝑗 are conditionally independent given the values of all the
other variables. The optimization problem is given as follows:

minimize
𝜃 ∈𝑆𝑝++

𝜆 | |𝜃 | |𝑜𝑑,1 −
𝑇∑︁
𝑡=1

𝑙𝑙 (𝑚𝑎𝑡 (X) (𝑁+1)
𝑡, , 𝜃), (1)

𝑙𝑙 (𝑥, 𝜃) = − 1
2 (𝑥 − 𝜇)𝑇 𝜃 (𝑥 − 𝜇)

+ 1
2 log det𝜃 − 𝐷

2 log(2𝜋), (2)

where 𝜃 must be a symmetric positive definite (𝑆𝑝++). 𝑙𝑙 (𝑥, 𝜃) is the
log-likelihood and 𝜇 ∈ R𝐷 is the empirical mean of𝑚𝑎𝑡 (X) (𝑁+1) .
𝜆 ≥ 0 is a hyperparameter for determining the sparsity level of
the network, and ∥ · ∥𝑜𝑑,1 indicates the off-diagonal ℓ1-norm. Since
Eq. (1) is a convex optimization problem, its solution is guaranteed
to converge to the global optimum with the alternating direction
method of multipliers (ADMM) [7] and can speed up the solution
time.

3.3 Network-based tensor time series clustering

A real-world complex X cannot be expressed by a single static
network because it contains multiple sequence patterns, each of
which has a distinct relationship/network. Moreover, we rarely
know the optimal number of clusters and cluster assignments in
advance. To address this issue, we want to provide an appropriate
cost function and achieve subsequence clustering byminimizing the
cost function. We now formulate the network-based TTS clustering
problem. It assumes that 𝑇 time steps of X can be divided into
𝑚 time segments based on𝐾 networks (i.e., clusters). Let 𝑐𝑝 denote a
starting point set of segments, i.e., 𝑐𝑝 = {𝑐𝑝1, 𝑐𝑝2, . . . , 𝑐𝑝𝑚}, the 𝑖-th
segment ofX is denoted asX𝑐𝑝𝑖 :𝑐𝑝𝑖+1 where 𝑐𝑝𝑚+1 = 𝑇+1. We group
each of the 𝑇 points into one of the 𝐾 clusters denoted by a cluster
assignment set F = {𝑓1, 𝑓2, . . . , 𝑓𝐾 }, where 𝑓𝑘 ⊂ {1, 2, . . . ,𝑇 }, and
we refer to all subsequences in the cluster 𝑘 as X[𝑓𝑘] ⊂ X. Then,
letting Θ be a model parameter set, i.e., Θ = {𝜃1, 𝜃2, . . . , 𝜃𝐾 }, each
𝜃𝑘 ∈ R𝐷×𝐷 is a sparse Gaussian inverse covariance matrix that
summarizes the relationships of variables in X[𝑓𝑘]. Therefore, the
entire cluster parameter set is given by M = {M1,M2, . . . ,M𝐾 },
consisting of M𝑘 = {𝜃𝑘 , 𝑓𝑘 }. Overall, the problem that we want to
solve is written as follows.

Problem 1. Given a tensor time series X, estimate:

• a cluster assignment set, F = {𝑓𝑘 }𝐾𝑘=1
• a model parameter set, Θ = {𝜃𝑘 }𝐾𝑘=1
• the number of clusters 𝐾

that minimizes the cost function Eq. (5).

4 PROPOSED DMM

In this section, we propose a new model with which to realize
network-based TTS clustering, namely, DMM. We first describe
our model 𝜃 , and then we define the criterion for determining the
cluster assignments and the number of clusters.

4.1 Multimode graphical lasso

Assume 𝐾, F are given, here, we address how to define and infer
the model 𝜃𝑘 . The original graphical lasso allows 𝜃𝑘 to connect any
pairs of variables in a tensor; however, it is too high-dimensional to

reveal relationships separately in terms of the non-temporal modes.
To avoid the over-representation, we aim to capture the multi-
aspect relationships by separating 𝜃𝑘 into multimode to which we
add a desired constraint for interpretability.

We assume that 𝜃 is derived from 𝑁 networks, {𝐴(1) , . . . , 𝐴(𝑁) },
where𝐴(𝑛) ∈ R𝐷𝑛×𝐷𝑛 is the𝑛-th network. For example, an element
𝑎
(𝑛)
𝑖, 𝑗

∈ 𝐴(𝑛) refers to the relationship between the 𝑖-th and 𝑗-th
variables of mode-n, In each network, the goal is to capture the
dependencies between 𝐷𝑛 variables. We also assume that there are
no relationships except among variables that differ only at mode-n.
Thus, 𝜃 = 𝜃 (𝑁) becomes an 𝑁 𝑡ℎ hierarchical matrix of shape 𝐷 ×𝐷 .
𝜃 (𝑛) can be written as follows:

𝜃 (𝑛) =

©«

𝜃 (𝑛−1) 𝐶
(𝑛)
1,2 · · · · · · 𝐶

(𝑛)
1,𝐷𝑛

𝐶
(𝑛)
2,1 𝜃 (𝑛−1) · · ·

.

.

.

𝐶
(𝑛)
3,1 𝐶

(𝑛)
3,2 · · ·

. . .
.
.
.

.

.

.
. . . · · · 𝐶

(𝑛)
𝐷𝑛−2,𝐷𝑛−1 𝐶

(𝑛)
𝐷𝑛−2,𝐷𝑛

.

.

. · · · 𝜃 (𝑛−1) 𝐶
(𝑛)
𝐷𝑛−1,𝐷𝑛

𝐶
(𝑛)
𝐷𝑛 ,1

. . . · · · 𝐶
(𝑛)
𝐷𝑛 ,𝐷𝑛−1 𝜃 (𝑛−1)

ª®®®®®®®®®®®®®®®®®¬

,

where 𝜃 (1) = 𝐴(1) and 𝐶 (𝑛)
𝑖, 𝑗

∈ R
∏𝑛−1
𝑚=1 𝐷𝑚×∏𝑛−1

𝑚=1 𝐷𝑚 is a diagonal
matrix whose diagonal element is 𝑎 (𝑛)

𝑖, 𝑗
∈ 𝐴(𝑛) , i.e.,𝐶 (𝑛)

𝑖, 𝑗
= 𝑎

(𝑛)
𝑖, 𝑗

·𝛿𝑖 . 𝑗
allows edges that differ only at mode-n, where 𝛿𝑖 . 𝑗 is the Kronecker
delta.

We extend graphical lasso to obtain 𝜃 by inferring a sparse 𝐴(𝑛)

from a TTS. The optimization problem is written as follows:

minimize
𝐴(𝑛) ∈𝑆𝑝++

𝜆 | |𝐴(𝑛) | |𝑜𝑑,1

−
𝑇∑︁
𝑡

𝑙𝑙𝑛 (𝑟𝑒 (X) ({𝑁 +1},{−1},{𝑛})
𝑡,:,: , 𝐴(𝑛)), (3)

𝑙𝑙𝑛 (𝑟𝑒 (X)𝑡,:,:, 𝐴(𝑛)) =
𝐷 (\𝑛)∑︁
𝑑=1

{− 1
2 (𝑟𝑒 (X)𝑡,𝑑,: − 𝜇𝑑)𝑇𝐴(𝑛) (𝑟𝑒 (X)𝑡,𝑑,: − 𝜇𝑑)

+ 1
2 log det𝐴(𝑛) − 𝐷𝑛

2 log(2𝜋) }/𝐷 (\𝑛) , (4)

where 𝜇𝑑 ∈ R𝐷𝑛 is the empirical mean of the variable 𝑟𝑒 (X):,𝑑,: ∈
R𝑇×𝐷𝑛 . Eq. (3) is a convex optimization problem solved by ADMM.
We divide the log-likelihood by 𝐷 (\𝑛) to scale the sample size.

4.2 Data compression

To determine the cluster assignment set F and the number of clus-
ters𝐾 , we use theMDL principle [12], which follows the assumption
that the more we compress the data, the more we generalize its un-
derlying structures. The goodness of the modelM can be described
with the following total description cost:

𝐶𝑜𝑠𝑡𝑇 (X;M) =𝐶𝑜𝑠𝑡𝐴 (F) +𝐶𝑜𝑠𝑡𝑀 (Θ)+
𝐶𝑜𝑠𝑡𝐶 (X|M) +𝐶𝑜𝑠𝑡ℓ1 (Θ) . (5)

We describe the four terms that appear in Eq. (5).
Coding length cost. 𝐶𝑜𝑠𝑡𝐴 (F) is the description complexity of
the cluster assignment set F , which consists of the following ele-
ments: the number of clusters 𝐾 and segments𝑚 require log∗ (𝐾) +

4120

Dynamic Multi-Network Mining of Tensor Time Series WWW ’24, May 13–17, 2024, Singapore, Singapore.

log∗ (𝑚). 2 The assignments of the segments to clusters require
𝑚 × log∗ (𝐾). The number of observations of each cluster requires∑𝐾
𝑘=1 log

∗ (|𝑓𝑘 |).

𝐶𝑜𝑠𝑡𝐴 (F) = log∗ (𝐾) + log∗ (𝑚)+

𝑚 × log∗ (𝐾) +
𝐾∑︁
𝑘=1

log∗ (|𝑓𝑘 |) . (6)

Model coding cost. 𝐶𝑜𝑠𝑡𝑀 (Θ) is the description complexity of
the model parameter set Θ, which consists of the following ele-
ments: the diagonal values of each cluster at each hierarchy, which
has sizes 𝐷𝑛 × 1, require 𝐷𝑛 (log(𝐷𝑛) + 𝑐𝐹), where 𝑐𝐹 is the float-
ing point cost. 3 The positive values of 𝐴(𝑛) ∈ R𝐷𝑛×𝐷𝑛 require
|𝐴(𝑛)
𝑘

|≠0 (log(𝐷𝑛 (𝐷𝑛 − 1)/2) + 𝑐𝐹), where | · |≠0 describes the num-
ber of non-zero elements in a matrix.

𝐶𝑜𝑠𝑡𝑀 (Θ) =
𝐾∑︁
𝑘=1

𝑁∑︁
𝑛=1

{𝐷𝑛 (log(𝐷𝑛) + 𝑐𝐹) + log∗ (|𝐴(𝑛)
𝑘

|≠0)+

|𝐴(𝑛)
𝑘

|≠0 (log(𝐷𝑛 (𝐷𝑛 − 1)/2) + 𝑐𝐹)}/(𝐷2
𝑛𝑁). (7)

We divide by 𝐷2
𝑛𝑁 to deal with the change of data scale.

Data coding cost. 𝐶𝑜𝑠𝑡𝐶 (X|M) is the data encoding cost of X
given the cluster parameter setM. Huffman coding [6] uses the log-
arithm of the inverse of probability (i.e., the negative log-likelihood)
of the values.

𝐶𝑜𝑠𝑡𝐶 (X|M) =
𝐾∑︁
𝑘=1

𝑁∑︁
𝑛=1

∑︁
𝑡 ∈ 𝑓𝑘

𝑙𝑙𝑛 (𝑟𝑒 (X) ({𝑁+1},{−1},{𝑛})
𝑡,:,: , 𝐴

(𝑛)
𝑘

).

(8)

ℓ1-norm cost. 𝐶𝑜𝑠𝑡ℓ1 (Θ) is the ℓ1-norm cost given a model Θ.

𝐶𝑜𝑠𝑡ℓ1 (Θ) =
𝐾∑︁
𝑘=1

𝑁∑︁
𝑛=1

𝜆 | |𝐴(𝑛)
𝑘

| |𝑜𝑑,1 . (9)

Discovering an optimal sparse parameter 𝜆 capable of modeling
data is a challenge as it affects clustering results. However, the
parameter value can be determined by using MDL to choose the
minimum total cost [26].

Our next goal is to find the best cluster parameter set M that
minimizes the total description cost Eq. (5).

5 OPTIMIZATION ALGORITHMS

Thus far, we have described our model based on graphical lasso
and a criterion based on MDL. The most important question is how
to discover good segmentation and clustering. Here, we propose
an effective and scalable algorithm, which finds the local optimal
of Eq. (5). The overall procedure is summarized in Alg. 1. Given an
(𝑁+1)𝑡ℎ-order TTSX, the total description cost Eq. (5) is minimized
using the following two sub-algorithms.

(1) CutPointDetector: finds the number of segments𝑚 and their
cut points, i.e., the best cut point set 𝑐𝑝 of X.

(2) ClusterDetector: finds the number of clusters 𝐾 and the
cluster parameter set M.

2Here, log∗ is the universal code length for integers.
3We used 4 × 8 bits in our setting.

Algorithm 1 DMM(X,w)
1: Input: (𝑁 + 1)𝑡ℎ-order TTS X and initial segment sizes set w
2: Output: Cluster parameters Θ and cluster assignments F
3: Initialize 𝑐𝑝 with w;
4: 𝑐𝑝 = CutPointDetector(X, 𝑐𝑝) ; /* Finds the best cut point set */
5: /* ClusterDetector */
6: 𝐾 = 1; Initialize Θ = {𝜃1}; F = {{1, . . . ,𝑇 }};
7: Compute𝐶𝑜𝑠𝑡𝑇 (X; {Θ, F}) ;
8: repeat
9: 𝐾 = 𝐾 + 1; Initialize Θ for 𝐾 clusters;
10: repeat

11: F = SegmentAssignment(X,Θ, 𝑐𝑝) ; /* E-step */
12: Θ = NetworkInference(X, F) ; /* M-step */
13: until F is stable;
14: Compute𝐶𝑜𝑠𝑡𝑇 (X; {Θ, F}) ;
15: until𝐶𝑜𝑠𝑡𝑇 (X; {Θ, F}) converges;
16: return M = {Θ, F};

(a) Original cp (b) Left merge (c) Right merge

Figure 2: Illustration of the three candidates. We compare

the total description cost of each of these candidates.

5.1 CutPointDetector

The first goal is to divide a given X into𝑚 segments (i.e., patterns),
but we assume that no information is known about them in advance.
Therefore, to prevent a pattern explosion when searching for their
optimal cut points, we introduce CutPointDetector based on the
divide-and-conquer method [20].

Specifically, it recursively merges a small segment set of X
while reducing its total description cost, because neighboring sub-
sequences typically exhibit the same pattern. We define w as a set
of user-defined initial segment sizes, i.e., w = {𝑤𝑖 }𝑚𝑖=1, such as the
number of days in each month or any small constant. An example
illustration is shown in Fig. 2. Let 𝜃𝑖:𝑖+1 be a model ofX{𝑐𝑝𝑖 : 𝑐𝑝𝑖+1}
at the 𝑖𝑡ℎ segment. Given the three subsequent segments illustrated
in Fig. 2 (a), we evaluate whether to merge the middle segment with
either of the side segments (Fig. 2 (b)(c)). The total description cost
for Fig. 2 (a) is given by 𝐶𝑜𝑠𝑡𝑇 (X; {𝜃𝑖:𝑖+1, 𝜃𝑖+1:𝑖+2, 𝜃𝑖+2:𝑖+3}), where
we omit the cluster assignment (e.g., { 𝑗}𝑐𝑝𝑖+1−1

𝑗=𝑐𝑝𝑖
}) from the cost for

clarity. If the cost for the original three segments is reduced by
merging, it eliminates the unnecessary cut point and employs a
new model 𝜃 for the merged segment. By repeating this procedure
for each segment,𝑚 decreases monotonically until convergence.
See Appendix B.1 for the detailed procedure.

5.2 ClusterDetector

DMM searches for the best number of clusters by increasing 𝐾 =

1, 2, . . . ,𝑚, while the total description cost𝐶𝑜𝑠𝑡𝑇 (X;M) is decreas-
ing. To compute the cost, however, we must solve two problems,
namely obtain the cluster assignment set F and the model param-
eter set Θ, either of which affects the optimization of the other.
Therefore, we design ClusterDetector with the expectation and
maximization (EM) algorithm. In the E-step, it determines F to

4121

WWW ’24, May 13–17, 2024, Singapore, Singapore. Kohei Obata, Koki Kawabata, Yasuko Matsubara, and Yasushi Sakurai

minimize the data coding cost, 𝐶𝑜𝑠𝑡𝐶 (X|M), which is achieved by
solving:

arg min
𝑘∈{1,...,𝐾 }

𝐶𝑜𝑠𝑡𝐶 (X|{𝜃𝑘 , { 𝑗}
𝑐𝑝𝑖+1−1
𝑗=𝑐𝑝𝑖

}), (10)

for the 𝑖-th segment, and then inserts time points from 𝑐𝑝𝑖 to 𝑐𝑝𝑖+1
(i.e., { 𝑗}𝑐𝑝𝑖+1−1

𝑗=𝑐𝑝𝑖
) to the best 𝑘-th cluster 𝑓𝑘 ∈ F . In the M-step, for

1 ≤ 𝑘 ≤ 𝐾 the algorithm infers 𝐴(𝑛)
𝑘

(1 ≤ 𝑛 ≤ 𝑁) according to
Eq. (3) to obtain 𝜃𝑘 ∈ Θ for a givenX[𝑓𝑘]. Note that ClusterDetector
starts by randomly initializing Θ.

Theoretical analysis.

Lemma 1. The time complexity of DMM is𝑂 (𝑇 ∏𝑁
𝑚=1 𝐷𝑚), where

𝑇 is the data length, and 𝐷𝑚 is the number of variables at mode-m

in (N+1)𝑡ℎ-order TTS X ∈ R𝐷1×···×𝐷𝑁 ×𝑇
.

Proof. Please see Appendix B.2. □

6 EXPERIMENTS

In this section, we demonstrate the effectiveness of DMM on syn-
thetic data. We use synthetic data because there are clear ground
truth networks with which to test the clustering accuracy.

6.1 Experimental setting

6.1.1 Synthetic datasets. We randomly generate synthetic (N+1)𝑡ℎ-
order TTS, X ∈ R𝐷1×···×𝐷𝑁 ×𝑇 , which follows a multivariate nor-
mal distribution 𝑣𝑒𝑐 (X𝑡) ∼ N (0, 𝜃−1). Each of the 𝐾 clusters has
a mean of ®0, so that the clustering results are based entirely on
the structure of the data. For each cluster, we generate a random
ground truth inverse covariance matrix 𝜃 as follows [14, 28]:

(1) For 𝑛 = 1, . . . 𝑁 , set 𝐴(𝑛) ∈ R𝐷𝑛×𝐷𝑛 equal to the adjacency
matrix of an Erdős-Rényi directed random graph, where
every edge has a 20% chance of being selected.

(2) For every selected edge in𝐴(𝑛) , set𝑎 (𝑛)
𝑖, 𝑗

∼Uniform([−0.6,−0.3]∪
[0.3, 0.6]). We enforce a symmetry constraint whereby every
𝑎
(𝑛)
𝑖, 𝑗

= 𝑎
(𝑛)
𝑗,𝑖

.
(3) Construct a hierarchicalmatrix𝜃𝑡𝑒𝑚 ∈ R𝐷×𝐷 using {𝐴(𝑛) }𝑁

𝑛=1.
(4) Let 𝑐 be the smallest eigenvalue of 𝜃𝑡𝑒𝑚 , and set 𝜃 = 𝜃𝑡𝑒𝑚 +

(0.1 + |𝑐 |)𝐼 , where 𝐼 is an identity matrix. This ensures that
𝜃 is invertible.

6.1.2 Evaluation metrics. We run our experiments on four different
temporal sequences: A: “1,2,1”, B: “1,2,3,2,1”, C: “1,2,3,4,1,2,3,4”,
D: “1,2,2,1,3,3,3,1”, (for example, A consists of three segments and
two clusters 𝜃1 and 𝜃2.) We set each cluster in each example to
have 100𝐺 observations, where 𝐺 is the number of segments in
each cluster (e.g., A has 𝑇 = 300), and cut points are set randomly.
We generate each dataset ten times and report the mean of the
macro-F1 score.

6.1.3 Baselines. We compare our method with the following two
state-of-the-art methods for time series clustering using the graph-
ical lasso as their model.

• TAGM [43]: combines HMM with a graphical lasso by mod-
eling each cluster as a graphical lasso and assuming clusters
as hidden states of HMM.

Table 1: Macro-F1 score of clustering accuracy for eight dif-

ferent temporal sequences, comparing DMM with state-of-

the-art methods (higher score is better). Best results are in

bold, and second best results are underlined.
†
indicates a

method where the number of clusters is set by BIC. (i): 2𝑛𝑑 -
order TTS 𝐷1 = 10, (ii): 3𝑟𝑑 -order TTS 𝐷1 = 𝐷2 = 10, A: “1,2,1”,
B: “1,2,3,2,1”, C: “1,2,3,4,1,2,3,4”, D: “1,2,2,1,3,3,3,1.”

Data DMM TAGM TAGM † TICC TICC †

(i)
A 0.955 0.915 0.915 0.997 0.997
B 0.926 0.897 0.756 0.884 0.825
C 0.956 0.770 0.811 0.725 0.756
D 0.960 0.907 0.912 0.857 0.952

(ii)
A 0.961 0.514 0.514 0.932 0.923
B 0.962 0.462 0.431 0.844 0.770
C 0.941 0.359 0.396 0.704 0.594
D 0.980 0.438 0.432 0.838 0.741

• TICC [14]: uses the Toeplitz matrix to capture lag correla-
tions and inter-variable correlations and penalizes changing
clusters to assign the neighboring segments to the same
cluster.

We do not compare with other clustering methods that ignore the
network, such as K-means and DTW, because they do not show
good results [14].

6.1.4 Parameter tuning. DMM and the baselines require a sparsity
parameter for ℓ1-norm. We varied 𝜆 = {0.5, 1, 2, 4} and set 𝜆 = 4
for DMM and 𝜆 = 0.5 for the baselines, which produces the best
results. A matricization of tensor𝑚𝑎𝑡 (X) (𝑁+1) ∈ R𝑇×𝐷 and the
true number of clusters are given to the baselines since the number
of clusters need to be set. To tune TICC, we varied the regularization
parameter 𝛽 = {4, 16, 64, 256} and set 𝛽 = 16, and set the window
size 𝑤 = 1, which is the correct assumption considering the data
generation process.DMM requires us to specifyw. We use the same
𝑤𝑖 (s.t., 𝑖 = 1, . . . ,𝑚) for all initial segments, and we set𝑤𝑖 = 4.

6.2 Results

6.2.1 Clustering accuracy. We take four different temporal sequences
A ∼ D, and two different data sizes (i) and (ii) to observe the ability
of DMM as regards clustering TTS. Table 1 shows the clustering
accuracy for the macro-F1 scores for each dataset. † shows TAGM
and TICC set the number of clusters 𝐾 = {2, 3, 4, 5} by Bayesian
information criterion (BIC). As shown, DMM outperforms the base-
lines in most of the datasets, even for the (i) 2𝑛𝑑 -order TTS datasets.
In particular, the difference in (ii) is even more noteworthy. Because
TAGM and TICC cannot handle 3𝑟𝑑 -order TTS due to the limitation
imposed by the matricization of the tensor.

6.2.2 Effect of total number of variables. We next examine how the
number of variables 𝐷1 affects each method as regards accurately
finding clusters. We take the C example and vary 𝐷1 = 5 ∼ 50 for
(a) 2𝑛𝑑 -order TTS and (b) 3𝑟𝑑 -order TTS. As shown in Fig. 3, our
method outperforms the baselines for all 𝐷1 in both tensors. The
performance of TAGM and TICC worsens as 𝐷1 increases, while
DMM maintains its performance even though 𝐷1 increases due to
our well-defined total description cost that can handle the change
in data scale. TAGM and TICC are less accurate in Fig. 3 (b) than
Fig. 3 (a) since they cannot deal with 3𝑟𝑑 -order TTS.

4122

Dynamic Multi-Network Mining of Tensor Time Series WWW ’24, May 13–17, 2024, Singapore, Singapore.

(a) vs. 2𝑛𝑑 -order TTS (b) vs. 3𝑟𝑑 -order TTS
Figure 3: DMM outperforms the state-of-the-art methods:

Clustering accuracy for synthetic data, macro-F1 score vs.

data size, i.e., (a) 2𝑛𝑑 -order TTS (𝐷1,𝑇) = (5 ∼ 50, 800), (b) 3𝑟𝑑 -
order TTS (𝐷1, 𝐷2,𝑇) = (5 ∼ 50, 5, 800).

(a) vs. 𝐷1 = 5 ∼ 50 (b) vs. 𝑇 = 800 ∼ 80000
Figure 4: DMM scales linearly: Computation time vs. data

size, i.e., we vary (a) 𝐷1 (𝐷1 = 5 ∼ 50, 𝐷2 = 5,𝑇 = 800) and (b) 𝑇

(𝐷1 = 5, 𝐷2 = 5,𝑇 = 800 ∼ 80000).

6.2.3 Scalability. We perform experiments to verify the time com-
plexity of DMM. As described in Lemma 1, the time complexity
of DMM scales linearly in terms of the data size. Fig. 4 shows the
computation time of DMM when we vary 𝐷1 (Fig. 4 (a)) and 𝑇
(Fig. 4 (b)). Thanks to our proposed optimization algorithm, the
time complexity of DMM scales linearly with 𝐷𝑛 and 𝑇 .

7 CASE STUDY

We perform experiments on real data to show the applicability of
DMM and demonstrate howDMM can be used to obtain meaningful
insights from TTS.

7.1 Experimental setting

7.1.1 Datasets. We describe our datasets in detail.

Table 2: The data size and attributes for each dataset.

ID Dataset Size Description

#1 E-commerce (11, 10, 1796)
(query, state, day)#2 VoD (8, 10, 1796)

#3 Sweets (9, 10, 1796)

#4 Covid (6, 10, 3652) (query, country, day)#5 GAFAM (5, 10, 1796)

#6 Air (6, 12, 1461) (pollutant, site, day)

#7 Car-A (6, 10, 4, 3241) (sensor, lap, driver, meter)#8 Car-H (6, 10, 4, 4000)

Google Trends (#1 ∼ #5). We use the data from Google Trends.
Each tensor contains daily web-search counts. #4 Covid was col-
lected over 10 years from Jan. 1st 2013 to Dec. 31st 2022 to include
the effect of COVID-19. Other datasets are from Jan. 1st 2015 to

Table 3: The number of clusters (# Cl.) and segments (# Seg.),

and log-likelihood (LL) of eight real-world datasets, compar-

ing DMM with state-of-the-art methods. The bold font and

underlines showmethods providing the best and second best

LL, respectively (higher is better).

DMM TAGM TICC
Data # Cl. # Seg. LL # Seg. LL # Seg. LL

#1 2 10 −1.89e5 485 −1.92e5 3 −1.97e5
#2 2 2 −1.68e5 527 −1.65e5 2 −1.68e5
#3 2 7 −1.90e5 502 −1.90e5 17 −1.90e5
#4 4 4 −2.85e5 1778 −2.73e5 5 −2.88e5
#5 2 2 −9.28e4 519 −9.10e4 3 −9.48e4
#6 6 13 −5.19e4 929 −4.82e4 10 −6.34e4
#7 11 11 −5.89e5 1300 −6.33e5 12 −9.36e5
#8 5 12 −1.06e6 974 −1.02e6 6 −1.16e6

Dec. 31st 2019 to avoid the effect of COVID-19. The datasets in-
clude five query sets (Appendix C.1). We collect the data from two
target areas: three datasets from the top 10 populated US states and
two from the top 10 countries ranked by GDP score. We normalize
the data every month to achieve clustering that only considers the
network.
Air (#6). We use Air data that collected daily concentrations of six
pollutants at 12 nationally-controlled monitoring sites in Beijing,
China from Mar. 1st 2013 to Feb. 29th 2016 [50]. We fill the missing
values by linear interpolation and normalize the data every month.
Automobile (#7, #8). We use two automobile datasets with dif-
ferent driving courses. #7 Car-A is a city course and #8 Car-H is a
highway course. We observe six sensors every meter: Brake, Speed,
GX (X Accel), GY (Y Accel), Steering angle, Fuel Economy. Four
drivers drive 10 laps of the same course, hence each dataset forms
a 4𝑡ℎ-order tensor. We normalize the data every 10 meters.

The size and attributes of the datasets are given in Table 2.

7.1.2 Hyperparameter. To tune DMM, we vary the sparsity param-
eter 𝜆 = {0.5, 1, 2, 4} and set the value that produces the minimum
total description cost Eq. (5). We fix the initial window size𝑤 de-
pending on the dataset, equal to the normalization period. For a fair
comparison, for TAGM and TICC, we set the sparse parameter equal
to DMM, and the number of clusters equal to that found by DMM.
For TICC, we vary the regularization parameter 𝛽 = {4, 16, 64, 256}
and set the parameter with BIC.

7.2 Results

7.2.1 Applicability. We show the usefulness of DMM for analyzing
real-world TTS.
Modeling accuracy. Since there are no labels for TTS, we review
the modeling accuracy of DMM by comparing the number of seg-
ments and the log-likelihood, which explains the goodness of clus-
tering according to our objective function based on MDL. We use
cluster assignments to calculate the log-likelihood (Eq. (2)). Table 3
shows the results. DMM finds a reasonable number of segments
and a higher log-likelihood than TICC. TAGM switches clusters
with the transition matrix of HMM. This works well on synthetic
datasets when there are clear transitions. However, it is not suitable
for real-world datasets, which contain noises and whose network

4123

WWW ’24, May 13–17, 2024, Singapore, Singapore. Kohei Obata, Koki Kawabata, Yasuko Matsubara, and Yasushi Sakurai

Figure 5: Computation time of DMM: our method surpasses

its baselines. It is up to 300× faster than TICC.

(a) Original sensor data at a site (Aoti Zhongxin)

(b) DMM assigns every Apr. ∼ Oct. to cluster #2

(c) TAGM causes frequent switching

(d) TICC assigns most periods to cluster #4
Figure 6: DMM demonstrates effective cluster assignments

on the #6 Air dataset. (a) Original tensor time series data.

Cluster assignments of (b) DMM, (c) TAGM, and (d) TICC.

changes gradually. As a result, TAGM finds the cluster assignments
that maximize the log-likelihood regardless of the number of seg-
ments. TICC assigns neighboring time steps to the same cluster
using a penalty 𝛽 . Thus, its number of segments is close to DMM.
However, TICC is not suitable for tensors, and the log-likelihood is
worse than DMM for most datasets.
Computation time. We compare the computation time needed for
processing real data in Fig. 5. DMM is the fastest for most datasets
since it infers the network for each mode. In contrast, TAGM and
TICC compute the entire network at once. Therefore, they are
more affected by the number of variables at each mode than DMM,
resulting in a longer computation time. Note that the computation
time of TAGM and TICC at 2𝑛𝑑 -order TTS is comparable to DMM.

7.2.2 Interpretability. We show how the clustering results pre-
sented by DMM make sense. We have already shown the results of
DMM for clustering over #4 Covid in Section 1 (see Fig. 1). Please
also see the results in #1 E-commerce in Appendix C.2.
Air. We compare the clustering results of DMM, TAGM and, TICC
over #6 Air regarding cluster assignments (Fig. 6) and obtained
networks (Fig. 7). Fig. 6 (a) shows the original sensor data at Aoti

(a) DMM networks of cluster #2

(b) TAGM

(c) TICC
Figure 7: Networks obtained for each method for the #6 Air

dataset: (a) DMM detects a pollutant network and a location

network, where it is easy to understand the key relationships

within the cluster. (b) TAGM (cluster #6) and (c) TICC (cluster

#4) find a complex network, which is difficult to interpret.

Zhongxin. Fig. 6 (b) shows that DMM assigns Apr. through Oct.
of each year to cluster #2, capturing the yearly seasonality [50].
The cluster assignments of TAGM (see Fig. 6 (c)) switch frequently,
and TICC (see Fig. 6 (d)) assigns most of the period to cluster #4.
Both cluster assignments are far from interpretable. Fig. 7 shows
the networks obtained with each method. The cluster of DMM
(see Fig. 7 (a)) includes the pollutant network and the location
network. The pollutant network has a strong edge between PM2.5
and PM10, and the location network, whose nodes are plotted on
the map, has edges only between closely located nodes, both of
which match our expectation and accordingly indicate that DMM
discovers interpretable networks. TAGM and TICC (see Fig. 7 (b)(c))
find a network for all variables. Although the networks are sparse,
the large number of nodes and edges hampers our understanding
of the networks. Due to the simplicity of networks generated by
DMM, their interpretability surpasses those of other methods [9].
Consequently, DMM provides interpretable clustering results that
can reveal underlying relationships among variables of each mode
and is suitable for modeling and clustering TTS.

8 CONCLUSION

In this paper, we proposed an efficient tensor time series subse-
quence clustering method, namelyDMM. Our method characterizes
each cluster by multiple networks, each of which is the dependency
network of a corresponding non-temporal mode. These networks
make our results visible and interpretable, enabling the multifac-
eted analysis and understanding of tensor time series. We defined
a criterion based on MDL that allows us to find clusters of data
and determine all user-defined parameters. Our algorithm scales
linearly with the input size and thus can apply to the massive data
size of a tensor. We showed the effectiveness of DMM via extensive
experiments using synthetic and real datasets.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees for their
valuable comments and helpful suggestions. This work was sup-
ported by JSPS KAKENHI Grant-in-Aid for Scientific Research Num-
ber JP21H03446, JP22K17896, NICT JPJ012368C03501, JST CREST
JPMJCR23M3, JST-AIP JPMJCR21U4.

4124

Dynamic Multi-Network Mining of Tensor Time Series WWW ’24, May 13–17, 2024, Singapore, Singapore.

REFERENCES

[1] Saeed Aghabozorgi, Ali Seyed Shirkhorshidi, and Teh Ying Wah. 2015. Time-
series clustering–a decade review. Information systems 53 (2015), 16–38.

[2] Sara Alaee, Ryan Mercer, Kaveh Kamgar, and Eamonn Keogh. 2021. Time series
motifs discovery under DTWallowsmore robust discovery of conserved structure.
Data Mining and Knowledge Discovery 35 (2021), 863–910.

[3] Lei Bai, Lina Yao, Salil S. Kanhere, Xianzhi Wang, and Quan Z. Sheng. 2019.
STG2Seq: Spatial-Temporal Graph to Sequence Model for Multi-step Passenger
Demand Forecasting. In IJCAI. 1981–1987.

[4] Bojan Batalo, Lincon S Souza, Bernardo B Gatto, Naoya Sogi, and Kazuhiro Fukui.
2022. Analysis of Temporal Tensor Datasets on Product Grassmann Manifold. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
4869–4877.

[5] Donald J. Berndt and James Clifford. 1994. Using Dynamic Time Warping to
Find Patterns in Time Series. In Knowledge Discovery in Databases: Papers from

the 1994 AAAI Workshop, Seattle, Washington, USA, July 1994. Technical Report

WS-94-03. 359–370.
[6] Christian Böhm, Christos Faloutsos, Jia-Yu Pan, and Claudia Plant. 2007. Ric:

Parameter-free noise-robust clustering. TKDD 1, 3 (2007), 10–es.
[7] Stephen P. Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein.

2011. Distributed Optimization and Statistical Learning via the Alternating
Direction Method of Multipliers. Found. Trends Mach. Learn. 3, 1 (2011), 1–122.

[8] Yongjie Cai, Hanghang Tong, Wei Fan, Ping Ji, and Qing He. 2015. Facets: Fast
Comprehensive Mining of Coevolving High-order Time Series. In KDD. 79–88.

[9] Mengnan Du, Ninghao Liu, and Xia Hu. 2019. Techniques for interpretable
machine learning. Commun. ACM 63, 1 (2019), 68–77.

[10] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. 2008. Sparse inverse
covariance estimation with the graphical lasso. Biostatistics 9, 3 (2008), 432–441.

[11] Bernardo B Gatto, Eulanda M dos Santos, Alessandro L Koerich, Kazuhiro Fukui,
and Waldir SS Junior. 2021. Tensor analysis with n-mode generalized difference
subspace. Expert Systems with Applications 171 (2021), 114559.

[12] Peter D Grünwald. 2007. The minimum description length principle. MIT press.
[13] David Hallac, Youngsuk Park, Stephen P. Boyd, and Jure Leskovec. 2017. Network

Inference via the Time-Varying Graphical Lasso. In KDD. 205–213.
[14] David Hallac, Sagar Vare, Stephen P. Boyd, and Jure Leskovec. 2017. Toeplitz

Inverse Covariance-Based Clustering of Multivariate Time Series Data. In KDD.
215–223.

[15] Hrayr Harutyunyan, Daniel Moyer, Hrant Khachatrian, Greg Ver Steeg, and
Aram Galstyan. 2019. Efficient Covariance Estimation from Temporal Data.
arXiv preprint arXiv:1905.13276 (2019).

[16] Shoji Hirano and Shusaku Tsumoto. 2006. Cluster analysis of time-series medical
data based on the trajectory representation andmultiscale comparison techniques.
In ICDM. IEEE, 896–901.

[17] Baoyu Jing, Hanghang Tong, and Yada Zhu. 2021. Network of Tensor Time Series.
In WWW, Jure Leskovec, Marko Grobelnik, Marc Najork, Jie Tang, and Leila Zia
(Eds.). 2425–2437.

[18] Koki Kawabata, Siddharth Bhatia, Rui Liu, Mohit Wadhwa, and Bryan Hooi. 2021.
Ssmf: Shifting seasonal matrix factorization. Advances in Neural Information

Processing Systems 34 (2021), 3863–3873.
[19] Eamonn Keogh. 2002. Exact Indexing of Dynamic Time Warping. In VLDB (Hong

Kong, China). 406–417.
[20] Eamonn J. Keogh, Selina Chu, David M. Hart, and Michael J. Pazzani. 2001. An

Online Algorithm for Segmenting Time Series. In Proceedings of the 2001 IEEE

International Conference on Data Mining, 29 November - 2 December 2001, San

Jose, California, USA. IEEE Computer Society, 289–296.
[21] Tamara GKolda and BrettWBader. 2009. Tensor decompositions and applications.

SIAM review 51, 3 (2009), 455–500.
[22] Yu Liu, Quanming Yao, and Yong Li. 2020. Generalizing tensor decomposition

for n-ary relational knowledge bases. InWWW. 1104–1114.
[23] Anant Madabhushi and George Lee. 2016. Image analysis and machine learning

in digital pathology: Challenges and opportunities. Medical image analysis 33
(2016), 170–175.

[24] Yasuko Matsubara, Yasushi Sakurai, and Christos Faloutsos. 2014. AutoPlait:
Automatic Mining of Co-Evolving Time Sequences. In SIGMOD. 193–204.

[25] Yasuko Matsubara, Yasushi Sakurai, and Christos Faloutsos. 2016. Non-Linear
Mining of Competing Local Activities. InWWW.

[26] Kohei Miyaguchi, Shin Matsushima, and Kenji Yamanishi. 2017. Sparse graphical
modeling via stochastic complexity. In Proceedings of the 2017 SIAM International

Conference on Data Mining. SIAM, 723–731.
[27] Chiyomi Miyajima, Yoshihiro Nishiwaki, Koji Ozawa, Toshihiro Wakita, Kat-

sunobu Itou, Kazuya Takeda, and Fumitada Itakura. 2007. Driver modeling based

on driving behavior and its evaluation in driver identification. IEEE 95, 2 (2007),
427–437.

[28] Karthik Mohan, Palma London, Maryam Fazel, Daniela Witten, and Su-In Lee.
2014. Node-Based Learning of Multiple Gaussian Graphical Models. J. Mach.

Learn. Res. 15, 1 (jan 2014), 445–488.
[29] Ricardo Pio Monti, Peter Hellyer, David Sharp, Robert Leech, Christoforos Anag-

nostopoulos, and Giovanni Montana. 2014. Estimating time-varying brain con-
nectivity networks from functional MRI time series. NeuroImage 103 (2014),
427–443.

[30] Kota Nakamura, Yasuko Matsubara, Koki Kawabata, Yuhei Umeda, Yuichiro
Wada, and Yasushi Sakurai. 2023. Fast and Multi-aspect Mining of Complex
Time-stamped Event Streams. InWWW. 1638–1649.

[31] A. Namaki, A.H. Shirazi, R. Raei, and G.R. Jafari. 2011. Network analysis of a
financial market based on genuine correlation and threshold method. Physica A:
Statistical Mechanics and its Applications 390, 21 (2011), 3835–3841.

[32] Spiros Papadimitriou, Jimeng Sun, and Christos Faloutsos. 2005. Streaming
pattern discovery in multiple time-series. (2005).

[33] Claudia Plant and Christian Böhm. 2011. Inconco: interpretable clustering of
numerical and categorical objects. In KDD. 1127–1135.

[34] Marco Ramoni, Paola Sebastiani, and Paul R. Cohen. 2000. Multivariate Clustering
by Dynamics. In Proceedings of the Seventeenth National Conference on Artifi-

cial Intelligence and Twelfth Conference on Innovative Applications of Artificial

Intelligence. AAAI Press, 633–638.
[35] Mark Rogers, Lei Li, and Stuart J Russell. 2013. Multilinear Dynamical Systems

for Tensor Time Series. In NIPS. 2634–2642.
[36] Cynthia Rudin. 2019. Stop explaining black box machine learning models for

high stakes decisions and use interpretable models instead. Nature machine

intelligence 1, 5 (2019), 206–215.
[37] Havard Rue and Leonhard Held. 2005. Gaussian Markov random fields: theory

and applications. CRC press.
[38] Eduardo J. Ruiz, Vagelis Hristidis, Carlos Castillo, Aristides Gionis, and Alejandro

Jaimes. 2012. Correlating Financial Time Series with Micro-Blogging Activity. In
WSDM (Seattle, Washington, USA). Association for Computing Machinery, New
York, NY, USA, 513–522.

[39] Tsubasa Takahashi, Bryan Hooi, and Christos Faloutsos. 2017. AutoCyclone:
Automatic Mining of Cyclic Online Activities with Robust Tensor Factorization.
In WWW (Perth, Australia). 213–221.

[40] Kean Ming Tan, Daniela Witten, and Ali Shojaie. 2015. The cluster graphical lasso
for improved estimation of Gaussian graphical models. Computational statistics

& data analysis 85 (2015), 23–36.
[41] Federico Tomasi, Veronica Tozzo, and Annalisa Barla. 2021. Temporal Pattern

Detection in Time-Varying Graphical Models. In ICPR. 4481–4488.
[42] Federico Tomasi, Veronica Tozzo, Saverio Salzo, and Alessandro Verri. 2018.

Latent Variable Time-varying Network Inference. In KDD. 2338–2346.
[43] Veronica Tozzo, Federico Ciech, Davide Garbarino, and Alessandro Verri. 2021.

Statistical Models Coupling Allows for Complex Local Multivariate Time Series
Analysis. In KDD. 1593–1603.

[44] Michail Vlachos, George Kollios, and Dimitrios Gunopulos. 2002. Discovering
similar multidimensional trajectories. In Proceedings 18th international conference

on data engineering. IEEE, 673–684.
[45] Xunxian Wu, Tong Xu, Hengshu Zhu, Le Zhang, Enhong Chen, and Hui Xiong.

2019. Trend-Aware Tensor Factorization for Job Skill Demand Analysis.. In IJCAI.
3891–3897.

[46] Matt Wytock and Zico Kolter. 2013. Sparse Gaussian conditional random fields:
Algorithms, theory, and application to energy forecasting. In International con-

ference on machine learning. PMLR, 1265–1273.
[47] Yimin Xiong and Dit-Yan Yeung. 2004. Time series clustering with ARMA mix-

tures. Pattern Recognition 37, 8 (2004), 1675–1689.
[48] Xiang Xuan and Kevin Murphy. 2007. Modeling Changing Dependency Structure

in Multivariate Time Series. In ICML (Corvalis, Oregon, USA). Association for
Computing Machinery, New York, NY, USA, 1055–1062.

[49] Ming Yuan and Yi Lin. 2006. Model selection and estimation in regression with
grouped variables. Journal of the Royal Statistical Society Series B: Statistical

Methodology 68, 1 (2006), 49–67.
[50] Shuyi Zhang, Bin Guo, Anlan Dong, Jing He, Ziping Xu, and Song Xi Chen.

2017. Cautionary tales on air-quality improvement in Beijing. Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences 473, 2205 (2017),
20170457.

[51] Seyedjamal Zolhavarieh, Saeed Aghabozorgi, Ying Wah Teh, et al. 2014. A review
of subsequence time series clustering. The Scientific World Journal 2014 (2014).

4125

WWW ’24, May 13–17, 2024, Singapore, Singapore. Kohei Obata, Koki Kawabata, Yasuko Matsubara, and Yasushi Sakurai

Table 4: Symbols and definitions.

Symbol Definition

𝐷𝑛 Number of variables at mode-n
𝑁 Number of modes excluding temporal mode
𝑇 Number of timestamp
X (N+1)𝑡ℎ-order TTS, i.e., X = {X1, X2, . . . , X𝑇 } ∈

R𝐷1×···×𝐷𝑁 ×𝑇

X𝑡 𝑁 𝑡ℎ-order tensor at 𝑡𝑡ℎ time step, i.e., X𝑡 ∈
R𝐷1×···×𝐷𝑁

𝐷 Total product of variables excluding 𝑇 , i.e., 𝐷 =∏𝑁
𝑛=1 𝐷𝑛

𝐷 (\𝑛) Total product of variables excluding 𝐷𝑛 and 𝑇 , i.e.,
𝐷 (\𝑛) =

∏𝑁
𝑚=1(𝑚≠𝑛) 𝐷𝑚

𝐾 Number of clusters
𝑚 Number of segments
𝑐𝑝 Cut points, i.e., 𝑐𝑝 = {𝑐𝑝1, 𝑐𝑝2, . . . , 𝑐𝑝𝑚 }
𝑐𝑝𝑖 Starting point of segment 𝑖 , i.e., 𝑐𝑝1 = 1, 𝑐𝑝𝑚+1 = 𝑇 +1
Θ Model parameter set, i.e., Θ = {𝜃1, 𝜃2, . . . , 𝜃𝐾 }
𝜃 Hierarchical Teoplitz matrix of shape 𝜃 ∈ R𝐷×𝐷 con-

sists of {𝐴(1) , · · · , 𝐴(𝑁) }
𝐴(𝑛) Precision matrix of mode-n, i.e., 𝐴(𝑛) ∈ R𝐷𝑛×𝐷𝑛
F Cluster assignment set, i.e., F = { 𝑓1, 𝑓2, . . . , 𝑓𝐾 }
M Cluster parameter set, i.e., M = {F,Θ}

𝐶𝑜𝑠𝑡𝐴 (F) Coding length cost: description complexity of F
𝐶𝑜𝑠𝑡𝑀 (Θ) Model coding cost: description complexity of Θ
𝐶𝑜𝑠𝑡𝐶 (X |M) Data coding cost: negative log-likelihood of X given

M
𝐶𝑜𝑠𝑡ℓ1 (Θ) ℓ1-norm cost: penalty for Θ
𝐶𝑜𝑠𝑡𝑇 (X;M) Total description cost: total cost of X given M

Algorithm 2 CutPointDetector(X, 𝑐𝑝)
1: Input: (𝑁 + 1)𝑡ℎ-order TTS X and initial cut points set 𝑐𝑝
2: Output: The best cut point set 𝑐𝑝
3: repeat
4: 𝑖𝑑 = 0, 𝑐𝑝𝑛𝑒𝑤 = 𝜙 ;
5: Θ𝑆 = {𝜃𝑐𝑝0 :𝑐𝑝1 , 𝜃𝑐𝑝1 :𝑐𝑝2 , . . . , 𝜃𝑐𝑝𝑚 :𝑐𝑝𝑚+1 }
6: Θ𝐸 = {𝜃𝑐𝑝0 :𝑐𝑝2 , 𝜃𝑐𝑝2 :𝑐𝑝4 , . . . }
7: Θ𝑂 = {𝜃𝑐𝑝1 :𝑐𝑝3 , 𝜃𝑐𝑝3 :𝑐𝑝5 , . . . }
8: while 𝑖𝑑 < 𝑙𝑒𝑛𝑔𝑡ℎ (X) do
9: if 𝑖𝑑 is even then

10: Θ𝐿𝑒𝑓 𝑡 = Θ𝑂 ; Θ𝑅𝑖𝑔ℎ𝑡 = Θ𝐸 ;
11: 𝑖𝑑𝐿𝑒𝑓 𝑡 = ⌊𝑖𝑑/2⌋; 𝑖𝑑𝑅𝑖𝑔ℎ𝑡 = ⌊𝑖𝑑/2⌋ + 1;
12: else if 𝑖𝑑 is odd then

13: Θ𝐿𝑒𝑓 𝑡 = Θ𝐸 ; Θ𝑅𝑖𝑔ℎ𝑡 = Θ𝑂 ;
14: 𝑖𝑑𝐿𝑒𝑓 𝑡 = ⌊𝑖𝑑/2⌋ + 1; 𝑖𝑑𝑅𝑖𝑔ℎ𝑡 = ⌊𝑖𝑑/2⌋ + 1;
15: end if

16: 𝐶𝑠𝑜𝑙𝑜 = 𝐶𝑜𝑠𝑡𝑇 (X; {Θ𝑆 [𝑖𝑑],Θ𝑆 [𝑖𝑑 + 1],Θ𝑆 [𝑖𝑑 + 2] }) ;
17: 𝐶𝑙𝑒 𝑓 𝑡 = 𝐶𝑜𝑠𝑡𝑇 (X; {Θ𝐿𝑒𝑓 𝑡 [𝑖𝑑𝐿𝑒𝑓 𝑡],Θ𝑆 [𝑖𝑑 + 2] }) ;
18: 𝐶𝑟𝑖𝑔ℎ𝑡 = 𝐶𝑜𝑠𝑡𝑇 (X; {Θ𝑆 [𝑖𝑑],Θ𝑅𝑖𝑔ℎ𝑡 [𝑖𝑑𝑅𝑖𝑔ℎ𝑡] }) ;
19: if𝑚𝑖𝑛 (𝐶𝑠𝑜𝑙𝑜 ,𝐶𝑙𝑒 𝑓 𝑡 ,𝐶𝑟𝑖𝑔ℎ𝑡) = 𝐶𝑠𝑜𝑙𝑜 then

20: 𝑐𝑝𝑛𝑒𝑤 = 𝑐𝑝𝑛𝑒𝑤 ∪ 𝑐𝑝 [𝑖𝑑]; 𝑖𝑑+ = 1;
21: else if𝑚𝑖𝑛 (𝐶𝑠𝑜𝑙𝑜 ,𝐶𝑙𝑒 𝑓 𝑡 ,𝐶𝑟𝑖𝑔ℎ𝑡) = 𝐶𝑙𝑒 𝑓 𝑡 then
22: 𝑐𝑝𝑛𝑒𝑤 = 𝑐𝑝𝑛𝑒𝑤 ∪ 𝑐𝑝 [𝑖𝑑 + 1]; 𝑖𝑑+ = 2;
23: else if𝑚𝑖𝑛 (𝐶𝑠𝑜𝑙𝑜 ,𝐶𝑙𝑒 𝑓 𝑡 ,𝐶𝑟𝑖𝑔ℎ𝑡) = 𝐶𝑟𝑖𝑔ℎ𝑡 then
24: 𝑐𝑝𝑛𝑒𝑤 = 𝑐𝑝𝑛𝑒𝑤 ∪ 𝑐𝑝 [𝑖𝑑], 𝑐𝑝 [𝑖𝑑 + 2]; 𝑖𝑑+ = 3;
25: end if

26: end while

27: 𝑐𝑝 = 𝑐𝑝𝑛𝑒𝑤 ;
28: until 𝑐𝑝 is stable;
29: return 𝑐𝑝 ;

Table 5: Google Trends query set.

Name Query

#1 E-commerce
Amazon/Apple/BestBuy/Costco/Craigslist/Ebay/
Homedepot/Kohls/Macys/Target/Walmart

#2 VoD
AppleTV/ESPN/HBO/Hulu/Netflix/Sling/
Vudu/YouTube

#3 Sweets
Cake/Candy/Chocolate/Cookie/Cupcake/
Gum/Icecream/Pie/Pudding

#4 Covid Covid/Corona/Flu/Influenza/Vaccine/Virus
#5 GAFAM Amazon/Apple/Facebook/Google/Microsoft

Figure 8: Total description cost of DMM: our method consis-

tently outperforms its baselines (lower is better).

A PROPOSED MODEL

Table 4 lists the main symbols we use throughout this paper.

B ALGORITHMS

B.1 CutPointDetector

Alg. 2 shows the overall procedure for CutPointDetector, which is a
subalgorithm of Alg. 1. For clarity, we describe the total description
cost as 𝐶𝑜𝑠𝑡𝑇 (X; {Θ}). The cluster assignment set for Θ[𝑖𝑑] is a
corresponding segment.

B.2 Proof of Lemma 1

Proof. The computational cost of the DMM depends largely on
the number of CutPointDetector iterations and the cost of infer-
ring Θ at each iteration. Consider that all segments are eventually
merged. Since the total computational time needed to infer Θ is the
sum of {𝐴(1) , · · · , 𝐴(𝑁) } inferences, we discuss the case of 𝐴(𝑛) .
When 𝑇

∏𝑁
𝑚=1(𝑚≠𝑛) 𝐷𝑚 ≫ 𝐷𝑛 , at each iteration, inferring 𝐴(𝑛)

for all segments takes 𝑂 (𝐷𝑛𝑇
∏𝑁
𝑚=1(𝑚≠𝑛) 𝐷𝑚) thanks to ADMM.

If the number of segments is halved at each iteration, the number of
iterations is log2 |w|. If the number of segments decreases by one at
each iteration, the number of iterations is |w|, but this is unlikely to
happen. 𝑇 ≫ log2 |w|, and so the computation cost related to 𝐴(𝑛)

is𝑂 (𝑇 ∏𝑁
𝑚=1 𝐷𝑚). Since𝑇, 𝐷𝑛 ≫ 𝑁 , the repetition of inference for

4126

Dynamic Multi-Network Mining of Tensor Time Series WWW ’24, May 13–17, 2024, Singapore, Singapore.

(a) Clustering results on the original tensor time series

(b) State and query networks

Figure 9: Effectiveness of DMM on #1 E-commerce dataset:

(a) it splits the tensor into two clusters shown by colors (i.e.,

#blue→ “Dairy products” and #pink→ “Online sales”). (b)
each cluster has distinct state and query networks.

each mode is negligible. Therefore, the time complexity of DMM is
𝑂 (𝑇 ∏𝑁

𝑚=1 𝐷𝑚). □

C CASE STUDY

C.1 Datasets

We describe the query set we used for Google Trends in Table 5.

C.2 Results

Total description cost.We compare the total description cost of
DMM with TAGM and TICC on real-world datasets in Fig. 8. As
shown, DMM achieves the lowest total description cost of all the
datasets. TAGM has many segments, which results in the large
coding length cost. TICC is not capable of handling tensor, which
results in higher data coding cost compared with DMM.
E-commerce. We demonstrate how effectively DMM works on
the #1 E-commerce dataset. Fig. 9 shows the result of DMM for
clustering over #1 E-commerce. Fig. 9 (a) shows the clustering re-
sults of the original TTS, where each color represents a cluster.
DMM finds 10 segments and two clusters. We name the blue clus-
ter “Dairy products” and the pink cluster “Online sales.” DMM
assigns every Nov. to “Online sales”, the period of Black Friday
and Cyber Monday. Fig. 9 (b) shows the query and state networks
for each cluster. The query network of “Daily products” shows
that there are edges between the local daily products companies
(“costco”, “walmart”, and “target”). On the other hand, with the
query network of “Online sales”, there are many edges, especially
related to large e-commerce companies (“amazon” and “ebay”),
and the state network shows that the top four populated states (
“CA”, “TX”, “FL”, and “NY”) form edges, indicating the similarity
of online shopping among the big states.

4127

	Abstract
	1 Introduction
	1.1 Preview of our results
	1.2 Contributions

	2 Related work
	3 Problem formulation
	3.1 Tensor algebra
	3.2 Graphical lasso
	3.3 Network-based tensor time series clustering

	4 Proposed DMM
	4.1 Multimode graphical lasso
	4.2 Data compression

	5 Optimization algorithms
	5.1 CutPointDetector
	5.2 ClusterDetector

	6 Experiments
	6.1 Experimental setting
	6.2 Results

	7 Case study
	7.1 Experimental setting
	7.2 Results

	8 Conclusion
	Acknowledgments
	References
	A Proposed Model
	B Algorithms
	B.1 CutPointDetector
	B.2 Proof of Lemma 1

	C Case Study
	C.1 Datasets
	C.2 Results

