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Ubiquity of Tensor Time Series (TTS)
• IoT has facilitated the collection of TTS.
• TTS consists of multiple modes including Time.

- e.g., Online activity data {Query, Country, Timestamp},
   Air pollutant data {Pollutant, Site, Timestamp},
   Automobile data {Sensor, Lap, Driver, Meter}. 
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Subsequence Clustering
• Important task for data mining.

- uncover interesting patterns, useful for downstream tasks

• Interpretability of resulting clusters is also essencial.
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The search amount of 6 Queries related to Covid19 for 10 years (2013 ~ 2023).  
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Subsequence Clustering
• Important task for data mining.

- uncover interesting patterns, useful for downstream tasks

• Interpretability of resulting clusters is also essencial.
• Dependency network gives a clear explanation.

- why a particular cluster distinguishes itself from another?
- what happened during a period belonging to the cluster?
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Existing Works of Subsequence Clustering

• Univariate time series clustering (e.g., K-means, DTW ).
- Focus on matching raw values.
- Do not consider relationship between variables.

• Multivariate time series clustering (e.g., TICC[1], TAGM[2]).
- Characterize cluster with network based on graphical lasso.
- Discover clusters that other traditional methods cannot find.

• TTS clustering is more challenging.
- It has an intricate dependency and huge data size due to the modes.
- Applying MTS methods to TTS hinders interpretability and requires time.
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Network & Graphical Lasso
• Inverse covariance matrix (i.e. network) of Gaussian 

distribution encodes dependency between features.
- If there is an edge, then they are dependent given the rest of the variables.

• Graphical lasso infers a sparse network, which helps 
us understand the important relationship.
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Problem Formulation
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Given: (𝑁 + 1)th-order TTS 
 Find:      that minimize the cost function 

Cluster assignment set
e.g., 𝑓! = {𝑐𝑝", … , 𝑐𝑝! − 1, 𝑐𝑝#, … , 𝑐𝑝$ − 1}

Segment: TTS is separated into 𝑚 segments

Cluster: set of segment having the same model 

Model parameter set

# of clusters

Cut-Point: starting point of a segment

Cluster parameter
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DMM: Dynamic Multi-Network Mining

(1) Characterize a cluster with multiple networks.
- Extend graphical lasso to TTS.
- Each mode has a dependency network.

(2) Define the cost function (goodness of clustering).
- Based on the Minimum Description Length (MDL).
- Can determine any hyperparameters (e.g., 𝜆, 𝐾).

(3) Propose the algorithm that minimize the cost.
- Based on the bottom-up algorithm.
- Scales linearly w.r.t. data size.
- It can be applied to long-range,
 high-dimensional TTS.
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DMM achieves interpretable TTS clustering.
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(1) Multimode Graphical Lasso
• We model TTS with N networks.
• The model is interpretable as each mode has a sparse 

network.
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(2) Model Description Cost
• We define the criterion for the goodness of clustering 

based on Minimum Description Length (MDL).
• It can determine any hyperparameters (e.g., 𝜆, 𝐾) by 

minimizing                                .
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DMM Input:     and initial segment size 
  Output:    that minimizes 

(3) Scalable Algorithm
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iteration: 6, # of segments: 3

CutPointDetector: Detect optimal cut points via Bottom-up algorithm

iteration: 1, # of segments: 36

# of segments: 3, # of clusters: 2

…

Vary the number of cluster from 
1 to 𝑚 until the cost converges.

# of segments: 3

Optimal cut points

iteration: 0, # of segments: 60

Compare neighboring segments 
and merge if cost improves.

ClusterDetector: Detect # of clusters and cluster assignment

Initial cut points Optimal cut points
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DMM discovers 4 
clusters and 

captures the effect 
against Covid19.

Each cluster is 
characterized with 
Country and Query 

Networks.

Edges between English-
speaking countries.

The search amount of 6 Queries related to Covid19 taken from 10 Countries for 10 years (2013 ~ 2023).

DMM is Interpretable (Covid data)
• DMM helps us understand the real-world data.

“vaccine” is connected 
with “influenza”.

Many countries simultaneously 
react to Covid19.

People started to care 
about prevention from 

Covid19, and “vaccine” 
strongly connects to 

“covid”.
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Existing methods fail to 
finds reasonable clusters.
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DMM finds seasonality.

DMM provides two simple networks.

Concentration of 6 Pollutants taken from 10 Locations in China for 4 years (2013 ~ 2017).

DMM is Interpretable (Air data)
• DMM is more interpretable than existing MTS methods 

(TAGM and TICC).

Networks of existing methods 
have large # of nodes and edges.
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2nd-order TTS
(MTS)

Table 1. Macro-F1 score of Synthetic data.

3rd-order TTS

All the hyperparameters, including # of clusters, are determined by the cost function.

DMM is Accurate (Synthetic data)
• DMM accurately 

discovers cluster with 
different networks 
even at MTS.

• DMM is not affected 
by the number of 
variables.
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DMM is Scalable

DMM: 3min 50sec
TAGM: 3hour 50min
TICC: 19hour 10min

• DMM scales linearly w.r.t. the input data size.

• DMM is up to x300 faster than the existing methods.

3rd-order TTS

4th-order TTS

4th-order TTS

Linear to Time
Linear to Variable
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Conclusion
• DMM is Interpretable, Accurate, and Scalable.
• DMM is a useful tool for TTS subsequence 

clustering that enables multifaceted analysis and 
understanding of TTS.

• Possible applications could be
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Traffic Congestion Factory Healthcare
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Thank you for listening!

Code & Data are available [1].

[1] https://github.com/KoheiObata/DMM
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