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ABSTRACT 
Many web applications, such as search engines and social network 
services, are continuously producing a huge number of events with 
a multi-order tensor form, {����� ; �����, ��������, . . . , ���������}, 
and so how can we discover important trends to enables us to fore-
cast long-term future events? Can we interpret any relationships 
between events that determine the trends from multi-aspect per-
spectives? Real-world online activities can be composed of (1) many 
time-changing interactions that control trends, for example, com-
petition/cooperation to gain user attention, as well as (2) seasonal 
patterns that covers trends. To model the shifting trends via inter-
actions, namely dynamic interactions over tensor streams, in this 
paper, we propose a streaming algorithm, DISMO, that we designed 
to discover Dynamic Interactions and Seasonality in a Multi-Order 
tensor. Our approach has the following properties. (a) Interpretable: 
it incorporates interpretable non-linear diferential equations in 
tensor factorization so that it can reveal latent interactive relation-
ships and thus generate future events efectively; (b) Dynamic: it 
can be aware of shifting trends by switching multi-aspect factors 
while summarizing their characteristics incrementally; and (c) Au-
tomatic: it fnds every factor automatically without losing forecast-
ing accuracy. Extensive experiments on real datasets demonstrate 
that our algorithm extracts interpretable interactions between data 
attributes, while simultaneously providing improved forecasting 
accuracy and a great reduction in computational time. 
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1 INTRODUCTION 
Time series forecasting is a powerful tool with a wide range of appli-
cations, including user activity modeling [30, 33], recommendation 
[46, 49], and demand prediction [27, 34]. With the rapid growth of 
the web-online platforms, it is required for long-term (i.e., multiple 
steps ahead) forecasting to capture complicated user activities by 
utilizing rich (i.e., multi-attributed/tensor) data. Online activities 
are usually non-stationary. Various trends shift streamingly and 
interactively, but none of their true systems are observable. Fur-
thermore, time-evolving seasonal patterns cover such trends and 
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lead misforecasting. In web-search volume prediction, for example, 
we want to detect latent user groups interacting with each other, 
based on query categories, locations, or both. Some of the groups 
produce growth trends as winners similar to a natural ecosystem. 
Such relationships change dynamically depending on contextual 
events (e.g., new product launches) and seasonality (e.g., yearly 
discount sales). Therefore, we refer to shifting trends with inter-
actions as “dynamic interactions” and aim to discover them as a 
key factor summarizing user preferences and determining trends 
in streaming data. So, what relationship should we consider for 
modeling dynamic interactions? How efciently can we identify 
dynamic interactions and seasonal patterns simultaneously? 

In short, the problem we address is as follows. 
Given: a large multi-order tensor stream X, which consists of 
tuples: {����� ; �����, ��������, . . . , ���������}, 
(P1) Find latent interactions producing trends in X, 
(P2) Factorize X into latent multi-aspect groups, and then 
(P3) Identify dynamic interactions and seasonal patterns 

in a streaming fashion to continue to forecast long-term future 
trends accurately. In this paper, we propose a novel tensor factoriza-
tion technique, namely DISMO1, that enables the decomposition of 
Dynamic Interactions and Seasonality in a Multi-Order tensor, as 
well as a streaming algorithm that updates the model incrementally. 

1.1 Preview of the results 
Figure 1 shows an example of streaming DISMO factorization over 
an E-commerce-related tensor stream, which consists of weekly 
web-search counts for 12 keywords in 50 states in the US. Our 
method can automatically discover (a) the latent interaction system, 
with which it factorizes the tensor into three-aspect factors, i.e., 
(b) time, (c) query, and (d) location factors. 

Concerning (P1), we design the latent interaction system to cap-
ture trends underlying tensor streams, as shown in Figure 1 (a), 
which assumes four important types of interactions. Now it has 
six latent groups and their relationships are visualized as a graph, 
where arrow widths indicate the connection intensity. Competition 
(red arrows) and cooperation (blue arrows) are bidirectional nega-
tive/positive interactions, respectively. Commensals (green arrows) 
and parasites (purple arrows) are one-directional relationships, 
where the source group benefts from the growth of the destination 
group. The destination group exhibits no damage to commensals 
but there are negative efects to parasites. The latent interaction 
systems are designed with non-linear diferential equations, and 
thus can generate co-evolving trends as shown in Figure 1 (b). For 
example, the rapid growth of Group #1 can be interpreted as a result 
of cooperation with Groups #3 and #4; namely it benefts from the 
growth of the two groups. 

1Our source code and datasets are publicly available at [2]. 
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(a) Latent interaction system (b) Time factors (c) Query factors (d) Location factors 
Figure 1: Modeling power of the DISMO factorization over an Ecommerce-related tensor stream. Two sets of snapshots taken in 
February 2011 (top) and May 2018 (bottom) show: (a) latent interactions consisting of four types of interaction relationships; (b) 
Time components (i.e., latent trends); (c) query components and (d) location components where the top shows component 
strength and the bottom shows the relative strength variation during the period. DISMO can automatically discover all these 
factors and thus allow us to interpret the time-varying relationships (i.e., dynamic interaction) from multi-aspect perspectives. 

To overcome (P2), our model factorizes the original tensor into 
multi-aspect groups/factors based on the latent interaction system. 
The top of Figure 1 (c) shows query-related factors, where 12 queries 
are represented as six latent groups; the larger values show that 
the queries are more strongly related to corresponding groups. 
Moreover, location factors can visualize strongly related areas to 
each latent group as shown in Figure 1 (d). 

From the connection between the latent interaction system and 
multi-aspect factors, we can interpret circumstances on web ac-
tivities. For example, Craigslist is strongly assigned to Group #1, 
which has a rapid growth trend. Based on the latent interaction, 
the growth can be interpreted as a result of cooperation between 
Groups #3 and #4; namely it benefts from the growth of the two 
latent groups. On the other hand, Walmart and Costco relate to 
Groups #4 and #6, which are in a competing relationship as regards 
their search counts and Group #6 has a more rapid growth trend 
than Group #4. Similarly, the colored areas in location group #4 
show the states where “Walmart” was particularly searched. 

Most importantly, our model can realize dynamic interactions 
for (P3) by changing its factors. The bottom of Figure 1 is another 
set of multi-aspect factors in a diferent period from the top, where 
query/location factors show the relative variation of values in 2011 
and 2018 for a comparison of their group allocations. In query fac-
tors, Macys moved from Group #3 → #5, which has a rapid growth 
trend in terms of cooperation. In location factors, our method in-
creases the element of Group #4 for Arkansas due to the growth of 
their counts. 

Consequently, our model satisfes all the requirements for cap-
turing dynamic interactions, i.e., non-linearity for complex trend 
curves, multi-aspect factors for rich data, and adaptivity for shifting 
trends, while preserving their interpretability. Also note that all 
such dynamic interactions are efectively captured by fltering out 
seasonal patterns. This approach is accurate and scalable to forecast 
tensor streams as we will describe in Section 6. 

1.2 Contributions 
In summary, we propose DISMO as an all-in-one algorithm that 
enables the automatic stream mining of dynamic interactions. Our 
contributions are summarized as follows. 

• Interpretable: We formulate a joint model for the non-linear 
diferential equations of interactions and multi-order tensor 
factorization, which allows us to interpret latent groups in 
tensors and the relationships behind trends simultaneously. 

• Dynamic: Our model is designed to extend its factors to adapt 
to arriving tensor streams incrementally. We show that the 
mechanism supports not only the understanding of shifting 
trends with seasonality but also forecasting accuracy. 

• Automatic: Our algorithm determines the best number of 
factors to extend based on a lossless data encoding scheme 
without the need for any user interventions, which makes it 
easy to analyze large tensor streams. 

Outline. The rest of this paper is organized in a conventional 
way. After introducing related studies in Section 2, we present our 
proposed model in Section 3 and a route to model optimization in 
Section 4. Then, we propose both static and streaming optimization 
algorithms in Section 5. We provide our experimental results in 
Section 6, followed by a conclusion in Section 7. 

2 RELATED WORK 
In this section, we briefy describe investigations related to this re-
search. Table 1 summarizes the relative advantages of DISMO with 
regard to fve aspects, where none of the existing methods satisfes 
the requirements for the efcient mining of dynamic interactions 
over tensor streams. We separate the details of previous studies 
into three categories, time series modeling, tensor factorization, 
and data summarization. 
Time series modeling. The state space model (SSM) is a gen-
eral framework for fnding latent dynamics in time series [9, 23]. 
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Table 1: Capabilities of approaches. 
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Temporal regularized matrix factorization (TRMF [48]) learns the 
dimension reduction of matrices with autoregressive regulariza-
tion for the time dimension but can capture only linear dynamics. 
Ordinary diferential equations (ODE) allow us to obtain determin-
istic generative models, and thus attract huge interest in the data 
mining area [10, 28]. In biology, it is well known that the Lotka-
Volterra competition (LVC) model [21, 43, 45] efectively captures 
interactions to produce growing/decaying population dynamics of 
species, and thus the LVC model has been applied to data mining 
tasks beyond biological data analysis [24, 42], in which time series 
data to be forecast are considered as “populations” competing for 
some common resources. The studies [25, 38] combined non-linear 
dynamical systems and matrix/tensor factorization to fnd impor-
tant relationships between locations. As a more general framework, 
neural ODEs [6, 8] have also been attracting the attention of many 
researchers. However, none of these non-linear models still focus 
on the scalable and stable stream mining. Deep neural network 
(DNN) models [19, 34, 44, 47] provided alternative solutions that 
can learn high-dimensional dependencies in time series although 
the models still sufer in terms of their interpretability. 
Data stream mining. Stream/online algorithms provide machine 
learning solutions in an efcient manner [22]. They are based on 
one-path data processing and a model update [31, 40], which are 
applicable to high volume data, and therefore they have proved 
more signifcant to the data mining and database community in 
the last few decades [3–5]. As rich contextual data have become 
available, multi-aspect mining has posed a more challenging prob-
lem [50]. [39] is the frst contribution aimed at tensor completion 
that considers the multi-way evolution of tensors but it cannot 
handle dynamics that can produce future trends. Matrix/tensor 
factorization approaches provide component-baseed forecasting, 
for example, SMF [14], which is online update schemes in real-time 
forecasting of time series while detecting time-varying season-
alities. However, the component-based forecasting sufers from 
complex trends that evolves non-linearly. Although CubeCast [15] 
is a real-time forecasting method for tensor streams, it has no in-
terpretability of dynamic interactions and cannot be appplied to 
higher-order tensors. 
Summarization and clustering. Many data summarization tech-
niques has been applied to obtain meaningful patterns/rules by 
converting large data to succinct representations [7, 20, 41]. The 
minimum description length (MDL) principle helps us to obtain 
concise patterns from data automatically [18, 32, 35, 37]. A recent 
study formulated MoSSo [16], a streaming lossless data compression 
technique, although it is designed for dynamic graphs. In previous 
studies [12, 13], time series are divided into segments with multiple 

distinct patterns, and the number of patterns is determined based 
on the MDL, but there has been no focus on stream mining. 

Consequently, none of these studies has tried to capture dynamic 
interactions in tensor streams based on an interpretable, automatic, 
and scalable approach that we focus on. 

3 PROPOSED MODEL 
In this section, we describe the tensor streams that we want to 
analyze and defne the formal problem of stream forecasting, and 
then present our model. 

3.1 Problem formulation 
We consider a data stream to be a series of non-negative �-order 

· · ·×�� tensors, i.e., X(1), . . . , X(�), . . . , X(� ), where X(�) ∈ N�1× 

shows that a tensor has arrived at a time step � , and � increases for 
each time step. �� denotes the number of attributes in the �-th 
mode of X(�), i.e., � ∈ {1, . . . , �}. Since an unlimited number of 
tensors arrive, we must consider retaining a part of streams that 
is much smaller than all the streams for continuous analysis and 
forecasts. Therefore, letting X be a set of the most recent ℓ tensors, 

·i.e., X ∈ N�1 ×· ·×�� ×ℓ where ℓ ≪ � , the goal we wish to realize is 
defned as follows. 

Problem 1 (Stream forecasting). Given the most recent ℓ-long 
tensor X = {X(� − ℓ + 1), . . . , X(� )}, Forecast ℓ� -steps ahead tensor 
X(� + ℓ� ) continuously. 

Note that we consistently let the last, i.e., the (� + 1)-th mode of 
X, correspond to a time/temporal mode, whereas the other modes 
are non-temporal modes. In a 3-order tensor X ∈ N�1×�2 ×ℓ of web-
search counts, for example, an element �� �� is specifed by a query 
index � ∈ {1, . . . , �1}, a location index � ∈ {1, . . . , �2}, and a time 
point � ∈ {1, . . . , ℓ}. Ideal models should reduce more forecasting 
errors by not only capturing robust long-term trends but also by 
adapting themselves to new data as quickly as possible if important 
trends shift. As discussed in the introduction, we focus on modeling 
long-term trends based on dynamic interactions in an interpretable 
and scalable manner. 

3.2 Proposed solution: DISMO 
Here, we present our model, namely DISMO, for the composition 
of Dynamic Interactions and Seasonality in Multi-Order tensor 
streams. The model is designed to satisfy the following three re-
quirements for stream forecasting, i.e., Problem 1. 
(P1) interpretable non-linear modeling of interactions, 
(P2) interaction-aware multi-aspect mining, and 
(P3) stream mining of dynamic interactions. 

Figure 2 shows an overview of our DISMO model for a tensor X. 
The remaining subsections provide the building blocks needed to 
complete the full parameter set for DISMO in detail. 

3.2.1 Non-linear modeling of interactions (P1). We frst introduce 
the main concept behind our model to capture dynamic interactions. 
In theoretical biology, it is well known that interactions between 
species can be modeled as non-linear behavior, especially if we 
use the Lotka-Volterra competition model [11, 28]. Assuming here 
�� ≥ 0 denotes the population of the �-th species at a specifc time 
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Figure 2: An overview of the DISMO model: an ℓ-long ten-
sor X is approximated with two parts, dynamic interaction X̂� 
and seasonality X̂� . Both tensors are factorized into multi-
aspect factors D and S. The temporal factor W(3) is further 
compressed into a latent interaction system � , that allows 
us to interpret relationships between latent groups as well 
as generate future trends. More importantly, we consider 
dynamic interactions as time-evolving X̂� , and thus allow D 
to be replaced in an appropriate manner. 

step, it describes population dynamics interacting with � species 
as: 

��� ⎛ 
Í�

� =1 �� � � � ⎞ 
= �� �� ⎜1 − ⎟ , (1 ≤ � ≤ �) . (1)

�� �� ⎝ ⎠ 

The entire non-linear system thus consists of � non-linear diferen-
tial equations, parameterized by two vectors � ∈ R� and b ∈ R� 

+,+ 
and a matrix C ∈ R�×� . These parameters are interpreted as: 

• �� : intrinsic growth rate of species �; 
• �� : carrying capacity of species �; 
• �� � : intra/inter-species interaction strength from the �-th 

species to the �-th species. 
We propose employing these mechanisms to model user behavior 
on the web. Intuitively, we consider the population dynamics of 
species as trends in user attention. A larger � indicates that more 
users are active on a service, suggesting a growing trend. A larger 
carrying capacity � indicates stronger growth regulation, which 
allows the number of active users to increase. Most importantly, 
it is suggested that such trends are infuenced by interactions. We 
can interpret the relationships from the signs of a pair of elements 
in C as follows2. 

• �� � > 0 and � �� > 0: a competing relationship; 
• �� � < 0 and � �� < 0: a cooperating relationship; 
• �� � < 0 and � �� > 0: a parasitic relationship; 
• �� � < 0 and � �� = 0: a commensal relationship, 

where � ≠ � and �, � ∈ {1, . . . , �}. As shown in Figure 2, these 
relationships can be visualized using a directed graph; nodes and 
edges are latent species/users and their relationships, respectively. 

2Note that we fx all the diagonal elements of the interaction coefcient matrix at 1.0, 
i.e., ��� = 1.0 for � = 1, . . . , � , which simplifes the intra-interaction terms. 

Unlike identifying real physical systems in species, large ten-
sors contain noise and redundant information when all their at-
tributes are used individually. It is also difcult to identify non-
linear dynamical systems, especially as regards high-dimensional 
and multi-aspect sequences; there are (�1�2 · · · �� )2-pair species 
interactions to estimate. To discover robust trends for long-term 
forecasting, we assume tensors can be concisely represented by 
a smaller number of non-linear equations than the number of all 
attributes when latent user groups are considered as species. 

Definition 1 (Latent interaction system: LIS). Let � be a 
parameter set of non-linear equations for modeling a latent inter-
action system, i.e., � = {�, b, C} for � species/dimensions. Also, let 
�� (�, �0, ℓ) denote the generation of an ℓ-long time series, W ∈ Rℓ×� 

, 
based on Equation 1 from the initial state �0 ∈ R� 

with a given � . 

3.2.2 Multi-aspect mining for latent interactions (P2). The next 
question is how to factorize a given tensor based on the latent in-
teraction system � . To obtain well-summarized and interpretable 
representations of tensors, we want to assign attributes (e.g., loca-
tions and keywords) to latent � groups from each perspective. The 
assignment should also be independent of seasonality because it 
typically misleads longer-term ahead forecasting. Motivated by 
these observations, we consider approximating the original tensor 
X with the sum of the two tensors: the dynamic interaction: X̂� 
and the seasonality: X̂� , and applying multi-linear representations 
to the tensors individually as shown in Figure 2. 

Suppose X̂� ∈ R�1×···×�� ×ℓ is an interaction tensor in X. We 
assume that it has �� latent factors for each mode, and factorize 
it using � + 1 matrices, W(�) ∈ R�� ×�� for � = 1, . . . , � and 
W(�+1) ∈ Rℓ×�� , so that X̂� is computed by: 

�� 
(1) (� ) (�+1)X̂� = 

∑ 
w ◦ · · · ◦ w ◦ w , (2)
� � � 

�=1 

(�)where ◦ is the outer product. w is the �-th column vector in 
� 

the matrix W(�) for each � = 1, . . . , � , but we assume that vec-
(�+1)tors w ∈ W(�+1) are sequentially generated by � based on 
�

Equation 1. We keep all the elements in W nonnegative to preserve 
the interpretability of the latent interactions. The temporal matrix 
shows latent �� dynamic interactions, and non-temporal matrices 
show the relation strengths to the dynamics for attributes in each 
mode. This �-way representation forces similar sequences to be 
summarized into a single latent space. The parameter set for the 
trend tensor is defned as follows. 

Definition 2 (Interaction factor set: D). Let D be a set of 
� nonnegative matrices and an LIS � , i.e, D = {W(1) , . . . , W(� ) , � }, 
which represents a dynamic interaction in an ℓ-long tensor X, and we 
refer to Equation 2 as � ˆ (D,�0, ℓ) to compute an ℓ-long X̂� , with X� 
an interaction factor set D through Equation 1. 

· ·Suppose X̂� ∈ R�1× ·×�� ×ℓ is the seasonality tensor for X. We 
next factorize the tensor into (� + 1) matrices to obtain a compact 
representation of seasonality. Since the last mode of a tensor corre-
sponds to the temporal mode, we let S ∈ R�� ×�� denote a latent sea-
sonality matrix, where �� is the number of latent seasonalities, and 
�� is its periodicity term. Likewise, the matrices for non-temporal 
modes are given by S(�) ∈ R�� ×�� for � ∈ {1, . . . , �}. To obtain 
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an ℓ-long X̂� , we compute: 
��∑ (1) (� ) (�+1)X̂� = s ◦ · · · ◦ s ◦ s , (3)

� � � 
�=1 

where S(�+1) is obtained by tiling the (� mod �� )-th row vectors 
of S for � ∈ {1, . . . , ℓ}. Note that �� is independent of �� , and we 
allow the seasonal factors to be negative to make it possible to 
compress both positive and negative efects simultaneously in a 
single latent seasonal activity. 

Definition 3 (Seasonal factor set: S). Let S be a set of 
� + 1 matrices for seasonal dynamics in a tensor X, namely, S = 
{S(1) , . . . , S(�) , S}, and we refer to Equation 3 as � ˆ (S, ℓ), comput-X� 

ing an ℓ-long X̂� . 
3.2.3 Stream mining dynamic interactions (P3). Thus far, we have 
discussed the two factor sets, D and S, that can summarize a given 
X. However, the model represents only a temporal tensor, and is 
still insufcient to capture dynamic interactions. The fnal challenge 
is to propose how to extend the compatibility of D for all the tensor 
streams. 

In real-world online activities, the relationship between at-
tributes can shift temporarily or permanently as a result of atypical 
events, such as a new product being released and discount sales. 
Therefore, we allow D to extend as regards any of the aspects to 
make it aware of trend shifts. Modeling new interaction relation-
ships requires another � . The rearrangement of latent user groups 
requires W to be replaced in a corresponding aspect (e.g., locations 
and keywords). By this independent tracking of (� + 1)-aspect 
pattern shifts, all the model parameters can be summarized more 
concisely. So, we defne (� + 1)-aspect sets of interaction factors 
as follows. 

Definition 4 (Multi-aspect factor set: W(�) ). Let W(�) 

be a nonnegative matrix set of the �-th mode, i.e., we have � sets 
W(1) , . . . , W(�) 

in total. Each set W(�) 
maintains multiple ma-

= {W(�)
, W(�)

trices, i.e., W(�) , . . . , }.1 2 

Definition 5 (Latent interaction system set: Θ). Let Θ be a 
set of latent interaction systems, i.e., Θ = {�1, �2, . . . , }, where each 
element is �� = {�� , b� , C� }. 

On the other hand, we assume that seasonalities are long-term 
patterns, i.e., the patterns vary smoothly but not signifcantly; there-
fore, we can maintain them by keeping and updating a single sea-
sonal factor set S. Our fnal goal is to estimate all these time-varying 
parameters in a streaming setting. The full parameter set that we 
want to estimate is eventually defned as follows. 

Definition 6 (Full parameter set: F ). Let F be a full parame-

ter set of DISMO, i.e., F = {W (1) , . . . , W(�) , Θ, S}, which describes 
all important dynamics (i.e., dynamic interactions and seasonality) 
in a tensor stream. 

4 AUTOMATIC TENSOR COMPRESSION 
In this section, we propose a criterion for choosing the best model 
structure of DISMO, F , for a given tensor stream X. 

Deciding on an appropriate model structure presents users with 
highly time-consuming and difcult analytics, and pre-defned mod-
els become outdated as we observe new tensors. Therefore, we 

provide a way of obtaining a concise yet reasonable number of 
factors without any user intervention. We realize automatic mining 
with the minimum description length (MDL) principle, because it 
allows us to measure the model complexity of DISMO. Specifcally, 
the total MDL cost of F for X is given as the following equation. 

< X; F > = < F > + < X |F > , (4) 

where the right term consists of the model description cost of F 
and data encoding cost of X when given F . 

The model description cost < F > is defned as the num-
ber of bits, i.e., the size of the memory needed to store the model 
parameters. 

< W(1) < W(� )< F > = < Θ > + > + · · · + > + < S > . 

The cost of the LIS set is further decomposed as follows.∑ 
< Θ > = < � > , < � > = < � > + < b > + < C > . 

� ∈Θ 

< � > = |� | · (log(�� ) + �� ) + log∗ ( |� |), 
< b > = |b | · (log(�� ) + �� ) + log∗ ( |b |), 
< C > = |C | · (2 · log(�� ) + �� ) + log∗ ( |b |), 

where | · | shows the number of nonzero elements for a given 
vector/matrix, log∗ is the universal code length for integers, and 
�� is the foat point cost3. < Θ > is a function of the numbers 
of latent factors �� , and thus minimizing the cost encourages its 
parameter space to be small and sparse. Likewise, the model costs 
of our multi-aspect factor sets are defned as follows.∑ ∑ 
< W(�) < W(�) < S(�)> = > , < S > = > , 

W(�) ∈W (�) S(�) ∈S 

< W(�) > = |W(�) | (�� /�� ) (log(�� ) +log(�� ) +�� ) +log∗ ( |W(�) |), 

< S(�) > = |S(�) | (�� /�� ) (log(�� +log(�� ) +�� ) +log∗ ( |S(�) |) . 

To compare the costs of multi-linear factors fairly, we rescale the 
costs by multiplying (�/� ), which allows the model costs to be 
evaluated per (� × �) space, and enables us to choose the most 
contributed factor even when the tensor sizes are skewed. 

Next, the data encoding cost measures how well the given model 
compresses the original data. The Hufman coding scheme [32] 
enables us to encode X using our model F . It assigns a number 
of bits to each element in X, which is the negative log-likelihood 
under a Gaussian distribution with mean � and variance �2, i.e., ∑ 

< X |F > = − log2 ��,� (� − �̂� − �̂� ) . 
� ∈X 

Now, we have completed the total MDL cost of F for a tensor X, 
which makes it possible to decide the numbers of latent states �� 
and �� automatically. In the next section, we discuss how to fnd 
the best F that minimizes Equation 4 efciently. 

5 OPTIMIZATION ALGORITHMS 
The previous section described our mathematical concepts that 
enable us to measure a reasonable representation of the dynamic 
interaction in tensor streams. In this section, we present efective 
algorithms with which to estimate the full parameter set F of 
the DISMO factorization. We frst present a static algorithm for 
the simplest case where F has a single dynamics, i.e., D and S, 
and then, a streaming algorithm to maintain F incrementally for 
pattern shifts. 
3We used �� = 32 bits. 
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5.1 Solving static DISMO factorization 
Here, we propose an optimization algorithm for estimating both 
sets, i.e., D and S. Given a tensor X, the goal is to minimize all the 
reconstruction errors: 

min ∥X − X̂� − X̂� ∥. (5)
D,S 

Recall that X̂� and X̂� show estimated tensors by using an inter-
action factor set D and a seasonal factor set S, respectively. Since 
there are no exact solutions of the two factor sets, our algorithm 
adopts an alternating update4. 

Specifcally, each aspect of the factors is updated to minimize 
the objective by fltering out the efect from either X̂� or X̂� . The 
frst step aims to fnd the best local � that minimizes residual errors 
between X−X̂� and X̂� . To estimate � efciently, we project a resid-
ual tensor X − X̂� into the �� -dimensional sequence W(� +1) with 
the non-temporal factors so that it can reduce their reconstruction 
errors. Based on [36], the �-th mode non-negative matrix can be 
updated by fxing the other matrices as: 

P(�) = max(0, (X(�) − X̂ (�) ) (⊙�� 
≠� 
+1W(� ) )),� 

Q(�) = max(0, W(�) ( ⊗�� 
≠� 
+1W(� )TW(� ) )),

��� 

W(�) 
= W(�) ⊗ P(�) ⊘ Q(�) , (6)��� ��� 

where, ⊗, ⊘, and, ⊙ are the Hadamard product, element-wise di-
vision, and the Khatri-Rao product, respectively. The notations 
⊙�+1 and ⊗�+1 indicate the iteration of the operations for each 
�≠� �≠� 

� = 1, . . . , � + 1 except for the �-th mode. The element-wise max 

operation ensures a non-negative constraint on the updated W(�)
��� . 

An LIS � and its initial state for the expected W(� +1) are then 
estimated so that it can minimize the following equation5: 

∥W(� +1){�, �0 } ← arg min − �� (� ′ , �0 
′ , ℓ) ∥. (7)��� 

� ′ ,� ′ 0 

The second step estimates � non-temporal factors by solving 
Equation 6 for each non-temporal aspect to propagate the feature 
of smooth latent dynamics W(� +1) . 

The third step updates S, given a residual tensor X − X̂� . Since 
we assume no non-negativity on S, we can directly solve Equa-
tion 5. The objective function can be rewritten in a matrix form as: 

X(�) − X̂ (�) X(�) S(�) (⊙�+1S(�) )⊤minS ∥X(�) − ˆ ∥, where, ˆ = .
� � � �≠� 

The solution thus becomes: 
S(�) = (X(�) − X̂ (�) ) (⊙�+1S(� ) )† 

� �≠� 

= (X(�) − X̂ (�) ) (⊙�� 
≠� 
+1S(� ) ) (⊗�� 

≠� 
+1S(� )TS(� ) )† , (8)

� 

where † indicates the Moore–Penrose pseudoinverse. The latter 
expression is obtained with the properties of the Khatri-Rao product 
and used for computational efciency [17]. The new latent seasonal 
dynamics S is then obtained by taking the average of updated 
S(�+1) for the same seasons. 

Overall, the static optimization of DISMO iterates the updating 
of an LIS � , non-temporal factors W(�) , and seasonal factors S(�)
until convergence. The time complexity of the static DISMO factor-
ization is given as follows. 
4The entire algorithm is shown in Appendix A 
5We employ the Levenberg-Marquardt algorithm [26] to reduce the squared errors 
between the projected latent dynamics and dynamics generated by solving LSODA 
[29] for a given regime and its initial state. The initial state is fne-tuned whenever the 
algorithm needs to update any part of the interaction factor set and forecast. 

Koki Kawabata, Yasuko Matsubara, and Yasushi Sakurai 

Lemma 5.1. Assume that � = max(�� , �� ), �∗ = �� 
Î 

� �� andÍ 
�+ = �� + � �� . The time complexity of the DISMO factorization 
is � (�2�∗ℓ + �2 (�+ + ℓ)). See Appendix A for details. 

This lemma shows that our algorithm greatly reduces the esti-
mation in terms of C because it is defned as C ∈ R�� ×�� in the 
latent space, not C ∈ R�

∗×�∗ . The next problem is how to detect 
dynamic interactions by extending D incrementally. 

5.2 Streaming DISMO factorization 
We now address the most important problem: the stream mining of 
dynamic interactions, by proposing a streaming method, DISMO-
STREAM. We derive an automated decision process when the al-
gorithm obtains the best set D for trend shifts in a current X, and 
incremental update rules for S. 

5.2.1 Identifying dynamic interactions. Here, we introduce how to 
identify dynamic interactions, i.e., (� + 1)-way trend shifts, when 
the characteristics of a tensor stream have evolved. 

Algorithm 1 shows the procedure for determining the best in-
teraction factor set D���� while observing the most recent tensor 
X. Letting D���� be the interaction factor set used in the previous 
moment, it considers whether or not one of the factors in the set, 
i.e., Φ ∈ D���� , changes. If so, an arriving trend can be modeled 
with a new factor estimated with X or one of the known factors 
in F . Thus, we employ two sub-algorithms as follows: 

(1) FactorCreation: compose a candidate interaction factor 
′set D by replacing an element Φ ∈ D���� with the new factor 

Φ ′ estimated from scratch with X. A new factor can be estimated 
using static DISMO factorization by skipping the parts for the 
fxed parameters. When it estimates a new � , for example, it only 
performs step 1. 

′(2) FactorSearch: compose a candidate interaction factor set D 
by retrieving the best factor Φ ′ from the known factors F to re-
place an element Φ ∈ D���� . For example, it computes: Φ ′ = 
arg min ∥X − X̂� − X̂� ∥ with the other fxed parameters, i.e., non-
� ∈Θ 

temporal factors and seasonal factors. 
The algorithm performs the above two procedure for each aspect 

to obtain a set of candidate interaction factor sets, D���� . When we 
consider 3-order tensor analysis, the size of D���� becomes seven 
(one previous set, 3-way generated sets, and 3-way retrieved candi-
dates). Finally, it fnds the best shift D���� so that it can minimize 
the total diferential cost, given by: 

Δ < X; D, S > = Δ < D > + < X|D, S > , (9) 

where Δ < · > gives the model description cost for a newly added 
factor, i.e., W or � , otherwise, the cost is zero. If a new factor is 
contained in D���� , then the algorithm inserts it into F . This al-
gorithm can keep F concise yet efective to represent a streaming 
tensor automatically. 

5.2.2 Incremental update of seasonal factors. In addition to captur-
ing dynamic interactions, it is efective to update seasonal factors 
incrementally. Here, suppose X is a new observation tensor and X̂� 
is the current dynamic interaction in X. We maintain S to minimize 
Equation 5. This online optimization problem is identical to that 
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Algorithm 1 Streaming DISMO factorization(X, F ) 
Input: Current tensor X ∈ N�1×···×�� ×ℓ 

Output: Updated full parameter set F′ 
1: D���� = {W(1 ,). . . , W(� ) , � }; // D���� ∈ F: D���� for the previous window 
2: D���� = {D���� }; // A set of candidate interaction factor sets for X 
3: /* Consider shifting one of the factors in � aspects */ 
4: for Φ ∈ D���� do 
5: Φ ′ ←FactorCreation (X, D���� , S) ; 
6: Replace Φ ∈ D���� with Φ ′ to obtain D′ ; D���� ← D���� ∪ D ′ ; 
7: Φ ′ ←FactorSearch (X, F) ; 
8: Replace Φ ∈ D���� with Φ ′ to obtain D′ ; D���� ← D���� ∪ D ′ ; 
9: end for 

10: /* Insert a generated factor or a non-linear model (optional) */ 
11: D���� ← arg min Δ < X; D, S > ; F′ ← F ∪ D���� ; 

D∈D���� 
12: /* Incremental update of seasonal factors based on Equation 10 */ 

ˆ ˆ13: X� ← � ˆ (D���� , �0, ℓ) ; S′ ← arg min ∥X − X� − � ˆ (S, ℓ) ∥;X� S
X� 

14: return F′ = {W (1) ′ , . . . , W(� ) ′ , Θ ′ , S′ }; 

described in [50] and obtains the following update rules. 

P(�) + (X(�) − X̂ (�) ) (⊙�� 
≠� 
+1S(� ) ),��� ← P(�) 

� 

Q(�)
��� ← Q(�) + (⊗�� 

≠� 
+1S(� ) TS(� ) ), 

S(�)
��� ← P(�) (Q(�) )† . (10) 

Consequently, streaming DISMO factorization retains only � + 1 
pairs of P(�) and Q(�) , and solves Equation 10 to obtain S at any 
time. 

Lemma 5.2. We assume � = max( |W (1) |, . . . , |W (�) |, |Θ|) to 
be the maximum number of factors in F . Based on Lemma 5.1, the 
time complexity of streaming DISMO factorization is � (�� (�2�∗ℓ + 
�2 (�+ + ℓ))) per time point. See Appendix A for details. 

This theoretical analysis indicates that our proposed algorithm 
greatly reduces the computational time needed to fnd dynamic 
interactions from � (�� ) when we adopt a naive search, i.e., the 
combination of all (� + 1)-aspect factors, which can become sig-
nifcantly large if the number of factors in each mode increases. 
Therefore, our algorithm has the properties we desire for modeling 
dynamic interactions in tensor streams, which include interpretable 
non-linear modeling in dynamic multi-aspect tensor factorization. 

6 EXPERIMENTAL EVALUATION 
In this section, we describe the performance of DISMO using real 
datasets. The experiments were designed to answer the following 
questions about DISMO (-STREAM): 
Q1. Accuracy: How accurately does it predict future events? 
Q2. Scalability: How does it scale in terms of computational time? 
Q3. Efectiveness: How well does it extract latent dynamic patterns? 

The datasets were obtained from GoogleTrends [1]. Each tensor 
contains weekly web-search counts collected over 13 years from 
2008 to 2020 and related to 4 kinds of query sets. We collected the 
data for all 50 states of the US, and normalized their counts in the 
range 0 to 1. We compare our algorithm with the following state-
of-the-art models for time series forecasting, including TRMF [48], 
SMF [14], CubeCast [15], and DeepAR [34]. The details regarding 
the use of these algorithms are provided in Appendix B. 
Q1. Accuracy. Here, we validated the performance of DISMO by 
comparing its forecasting accuracy. The performance measure is 
root mean square error (RMSE), which provides good results when 

the measures are close to zero. Table 2 shows the overall results, 
where the bold font and underlines show methods providing the 
best and second best levels of performance, respectively. We com-
pared the RMSE when we varied the forecasting step ℓ� in 1–3 
quarters of a year (i.e., 13–39 steps) while ℓ was 2 years (i.e., 104 
steps). Our method greatly improved the RMSE by employing a 
non-linear dynamical system and its dynamic shifting mechanism. 
The auto-regression used in TRMF is insufcient for multi-step 
forecasting. While DeepAR has an excellent generality when mod-
eling time series, it cannot adjust model parameters incrementally, 
resulting in accuracy comparable to that of SMF, which suggests the 
importance of online approaches for time-evolving tensor streams. 
In particular, the performance of our method is comparable to that 
of SMF in Sweets dataset. This is because it contains relatively 
constant seasonal patterns among the four data streams. CubeCast 
uses a more general non-linear model but our model outperforms it 
by using a concise yet reasonable non-linear equation for dynamic 
interaction. For a more detailed evaluation of the efectiveness, we 
prepared a limited version of the proposed method, namely DISMO– 
naive by disallowing the use of multiple LISs. DISMO signifcantly 
reduces the RMSE compared with DISMO–naive, suggesting that 
dynamic interaction is efective for time-evolving tensors. Over-
all, our method achieved the adaptive stream forecasting of tensor 
streams based on a non-linear dynamical system. 
Q2. Scalability. We next evaluated the performance of DISMO 
in terms of computational time. Figure 3 compares the efciencies 
of the non-linear approaches for the results we reported in the 
previous subsection. Our method consistently outperformed its 
competitors thanks to our incremental update. Although we omitted 
the linear methods, which are particularly fast at processing data 
streams (namely, they are quicker than 1.0 ms at any time point), 
our algorithm is able to capture dynamic interaction, which makes 
it possible to understand latent non-linear dynamics and forecast 
future values with higher accuracy. 
Q3. Efectiveness. Finally, we describe how efectively our stream-
ing DISMO factorization captures dynamic interactions and fore-
casts future trends using dynamic interactions over E-commerce 
tensor streams. Further results are summarized in Appendix B. 

Recall that Figure 1 showed dynamic interactions obtained with 
DISMO. Figure 1 (a) shows graphical representations of the latent 
interaction matrix C in the two LISs � in 2011 and 2018, which 
allows us to interpret the latent relationships generating the six 
trends. Figure 1 (b) corresponds to the W(3) generated by the two 
LISs. The six latent sequences summarize important trends in X as 
its temporal factor. Figure 1 (c) and (d) correspond to non-temporal 
components W(1) and W(2) for queries and locations. By imposing 
non-negativity on them, we can still interpret the relation strength 
between latent trends and multiple attributes. 

Our model can efectively represent the original tensor by shift-
ing either W(1) , W(2) or � , while preserving its interpretability 
for interactions. Specifcally, Figure 4 shows snapshots correspond-
ing to the two periods, where our method learned the original 
tensor (gray points), which consists of a total of 600-dimensional 
sequences, estimated their latent interactions/seasonalities simulta-
neously (blue lines), and then generated 13-steps (i.e., a quarter of 
a year) ahead values (red lines). For example, the trend of Craigslist 
in 2018 is diferent from that in 2011 although Craigslist continued 
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Table 2: Forecasting performance comparison. DISMO outperformed its competitors in terms of RMSE. 

data ℓ� DISMO DISMO-naive CubeCast DeepAR SMF TRMF 

Ecommerce 13 0.0316 ± 0.0081 0.0881 ± 0.1239 0.0492 ± 0.0339 0.0638 ± 0.0149 0.0591 ± 0.0163 0.1755 ± 0.0207 
26 0.0368 ± 0.0103 0.1122 ± 0.1230 0.0455 ± 0.0269 0.0721 ± 0.0159 0.0604 ± 0.0164 0.1758 ± 0.0198 
39 0.0425 ± 0.0147 0.1613 ± 0.1420 0.0431 ± 0.0219 0.0776 ± 0.0167 0.0615 ± 0.0166 0.1781 ± 0.0203 

Facilities 13 0.0356 ± 0.0062 0.0445 ± 0.0076 0.0890 ± 0.0089 0.0593 ± 0.0146 0.0472 ± 0.0115 0.1390 ± 0.0183 
26 0.0383 ± 0.0108 0.0458 ± 0.0093 0.0883 ± 0.0119 0.0666 ± 0.0156 0.0471 ± 0.0125 0.1388 ± 0.0161 
39 0.0406 ± 0.0131 0.0466 ± 0.0105 0.0865 ± 0.0137 0.0704 ± 0.0155 0.0482 ± 0.0130 0.1381 ± 0.0152 

Sweets 13 0.0276 ± 0.0146 0.0297 ± 0.0144 0.0422 ± 0.0209 0.0340 ± 0.0167 0.0280 ± 0.0148 0.0823 ± 0.0124 
26 0.0279 ± 0.0150 0.0298 ± 0.0146 0.0405 ± 0.0183 0.0357 ± 0.0167 0.0286 ± 0.0151 0.0826 ± 0.0127 
39 0.0283 ± 0.0149 0.0299 ± 0.0146 0.0393 ± 0.0172 0.0371 ± 0.0166 0.0275 ± 0.0153 0.0830 ± 0.0128 

VoD 13 0.0293 ± 0.0121 0.0558 ± 0.0136 0.0479 ± 0.0294 0.1233 ± 0.0438 0.0447 ± 0.0161 0.2297 ± 0.0489 
26 0.0336 ± 0.0155 0.0578 ± 0.0145 0.0423 ± 0.0248 0.1433 ± 0.0435 0.0452 ± 0.0158 0.2280 ± 0.0511 
39 0.0384 ± 0.0194 0.0592 ± 0.0150 0.0380 ± 0.0203 0.1505 ± 0.0419 0.0450 ± 0.0160 0.2275 ± 0.0604 
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Figure 3: Efciency of streaming DISMO factorization: the proposed method is always faster than its competitors at any time 
for summarizing non-linear dynamics and their multi-aspect factors in complex tensor streams. 
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Figure 4: Modeling and forecasting power of DISMO: Our non-linear equations can produce complex curves that can hit 
multi-steps ahead future events, as well as multiple latent seasonal patterns to uncover the latent interaction more efectively. 
Detecting dynamic interactions helps to improve forecasting accuracy at any time. 

to belong to Component #1. Our method captured this shift by 
switching to another LIS as shown in Figure 1 (a), resulting in the 
accurate forecasting of the rapidly decaying count. 

Consequently, our non-linear model provides the ability to de-
scribe complex curves that can reveal underlying relationships 
among attributes as LISs, and is suitable for modeling and fore-
casting tensor streams. By shifting either aspect incrementally, our 
method keeps its entire model compact, which can allow us to un-
derstand the diference between the factors of two periods and also 
improve forecasting accuracy. 

7 CONCLUSION 
In this paper, we proposed an efcient and automated streaming 
method, namely DISMO, for multi-order tensor streams. Our model 

assumes that tensor streams of web-online activities are composed 
of two important factors: dynamic interactions and seasonality, and 
can factorize them into concise representations from multi-aspect 
perspectives. Our approach has the following properties. (a) In-
terpretable: We employed a non-linear dynamical system for the 
temporal factor of the dynamic interactions, which allowed us to 
interpret the relationships between latent groups of attributes and 
forecast future trends efectively. (b) Dynamic: Our proposed algo-
rithm enabled the detection of shifting trends in real time by main-
taining multiple multi-aspect factors incrementally. (c) Automatic: 
The numbers of any factors composed by our method are automati-
cally determined based on our lossless data encoding scheme. An 
experimental evaluation using real tensor streams showed that our 
proposed method provides superior forecasting accuracy to its com-
petitors, and is more efcient than the state-of-the-art non-linear 
models. 
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APPENDIX 

A ALGORITHM 
In this section, we provide the details of the DISMO optimization 
algorithm proposed in Subsection 5.1, including its efective initial-
ization algorithm, and then discuss its scalability theoretically. 

A.1 Details of static DISMO factorization 
Algorithm 2 shows the static optimization process of DISMO. Given 
a tensor X, and the numbers of latent states �� and �� , it reduces the 
errors between X and predicted tensors X̂� and X̂� in an alternative 
update fashion. After the initialization, it can compute the two 
reconstruction tensors X̂� and X̂� , each of which is used to reduce 
the objective squared errors by fltering out the other tensor. Note 
that the simplest approach to setting �� , �� is to search for the best 
pair of numbers so that it minimizes the total cost, for example, by 
varying �� = 2, 3, . . . , and �� = 2, 3, . . . , simultaneously. 

For a stable initialization (in line 2), we frst estimate the initial 
S by using Equation 8 with X̂� = 0 set. Then, we compute the 
residual tensor X − X̂� and only iterate Equation 6 to obtain the 

, . . . , W(�+1)initial W(1) . Finally, we estimate the initial � over 
W(�+1) . This initialization efectively avoids divergence due to the 
initial LIS estimation over a noisy sequence randomly projected by 
the initial non-temporal factors. 

Algorithm 2 Static DISMO factorization(X, �� , �� ) 
Input: Tensor X ∈ N�1×···×�� ×ℓ and the numbers of factors �� , �� . 
Output: (a) Interaction factor set D = {W(1) , . . . , W(� ) , � }

(b) Seasonal factor set S = {S(1) , . . . , S(� ) , S}
1: /* Initialization step */ 
2: {W(1) , . . . , W(� ) , �, S(1) , . . . , S(�+1) } ← Initialize(X, �� , �� ) ; 
3: repeat 

ˆ4: X� = � ˆ (D, �0, ℓ) ; // Equation 2 X� 
ˆ5: X� = � ˆ (S, ℓ) ; // Equation 3 X� 

6: /* Step 1. Estimate the latent interaction system */ 
7: {�, �0 } = arg min ∥X − X̂� − � ˆ ( D′ , �0 

′ , ℓ) ∥; //Equation 7 X� 
�0 
′ ,� ′∈D ′ 

8: /* Step 2. Estimate multi-aspect factors */ 
9: for � = 1 : � do 

10: W(�) ← arg min ∥X − X̂� − � ˆ (D′ , �0, ℓ) ∥; //Equation 6 
W ′ (�) ∈D ′ 

X� 

11: end for 
12: /* Step 3. Estimate seasonal factors */ 
13: for � = 1 : � do 

ˆ14: S(�) ← arg min ∥X − X� − � ˆ (S′ , ℓ) ∥; //Equation 8 X� 
S ′ (�) ∈S ′ 

15: end for 
16: S ←Mean(S(� +1) , �� ) ; 
17: until convergence; 
18: return {D, S}; 

A.2 Theoretical analysis 
We provide the proofs of Lemma 5.1 and Lemma 5.2. Note that 
� = max(�� , �� ), �∗ = �� 

Î 
� �� , �+ = �� + 

Í 
� �� , and ℓ is the 

length of X. Lemma 5.1 is given as follows. 

Proof. Static DISMO factorization repeatedly computes the dot 
product with the �-th mode unfolding of X, i.e., X(�) and the 

Table 3: GoogleTrends query sets. 

Name Query 
Ecommerce Amazon/Apple/BestBuy/Costco/Craigslist/Ebay/ 

Etsy/HomeDepot/Kohls/Macys/Target/Walmart 
VoD AppleTV/Disney/ESPN/HBO/Hulu/Netfix/Sling/ 

YouTube 
Facilities Aquarium/Bookstore/Gym/Library/Museum/ 

Theater/Zoo 
Sweets Cake/Candy/Chocolate/Cookie/Cupcake/Gum/ 

Icecream/Pie/Pudding 

results of the Khatori-Rao product of the matrices W(�) or S(�) , 
which requires � (��∗ℓ), with the max operation, requiring � (��+). 
The estimation of an LIS � iterates the LM algorithm over ℓ-long 
�� -dimensional sequences, requiring � (#���� · (�� ℓ +�2 +2�� )), but 

� 
the number of iterations, #���� , is negligible. Thus, the total time 
complexity of static DISMO factorization is � (�2�∗ℓ+�2 (�++ℓ)). □ 

Here, we also assume � = max( |W (1) |, . . . , |W (�) |, |Θ|). Based 
on the above proof, we obtain Lemma 5.2 as follows. 

Proof. Streaming DISMO factorization estimates the two can-
didate factors for � + 1 ways. One is to generate a new factor, 
which takes � (�2�∗ℓ + �2 (�+ + ℓ)) at most by running Algorithm 
2. Another candidate is found by searching for � known factors, 
and thus the searches need � (� (�2� ∗ ℓ + �2 (�+ + ℓ))). Therefore, 
the total time complexity of streaming DISMO factorization is 
� (�� (�2�∗ℓ + �2 (�+ + ℓ))). □ 

B EXPERIMENTS 
In this section, we describe the experimental setting in detail and 
provide additional results on real tensor streams with DISMO. 

B.1 Experimental setting 
We conducted all our experiments on an Intel Xeon W-2123 3.6GHz 
quad core CPU with 128GB of memory and running Linux. The 
details of the baselines we used are summarized as follows. 

• TRMF [48]: temporal regularized matrix factorization, which 
estimates an auto-regression model in its low-rank repre-
sentation. We searched for the best rank � ∈ {5, 10, 15} and 
regularization penalties (�� , ���, ����) ∈ {0.01, 0.1, 1, 10}. 

• SMF [14]: an online matrix factorization approach that takes 
seasonal patterns into account. We searched for the best 
results in its rank � ∈ {5, 10, 15} and learning rate � ∈ 
{0.1, . . . , 0.5}. 

• CubeCast [15]: a stream algorithm that decomposes a tensor 
into latent non-linear trends and seasonality, and also auto-
matically decomposes their groups of locations based on the 
two latent dynamics. 

• DeepAR [34]: a state-of-the-art neural network for time se-
ries forecasting. We built the model with 2-layer 64-unit 
RNNs, and let it learn for 20 epochs with a learning rate of 
0.01. We then chose the best model that produced the lowest 
validation loss in 10% of training subsequences. The features 
include the locations, queries, months, and the search counts. 

For all the algorithms, including ours, we used the frst 3-year 
tensor to initialize/tune their hyper-parameters. For DISMO, we 
searched for the best numbers of latent factors by employing a grid 
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Figure 5: DISMO factorization on VoD-related tensor streams: our method automatically found three latent trends refecting a 
rapid growth in intererst in VoD in 2012, from which it grouped eight services into: (#1) a representative online video sharing 
service, (#2) online subscription services, and (#3) television-based on-demand services. The relationship refects a real-world 
circumstance where (#2) started attracting users in (#3) without conficting with (#1). The location factor (#1) also revealed 
there was a unique behavior on YouTube in the state, Virginia. 
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Figure 6: Dynamic interaction transition from 2012 to 2013. (a) The query factors suggest there was a slight movement (#3→#2), 
representing the fact that television-based services were adapting to an environment where subscription services were favored. 
(b) Location factors show that the search count volume in Oregon had grown signifcantly whereas that for Nevada remained 
constant. (c) The time factors show that, after the search counts peaked, the three trends became a stable phase and two decay 
phases, in which (d) the two major VoD groups: (#1) and (#2) competed for users while benefting from users in (#3). 

search in (�� , �� ) ∈ [2, 8], so that it minimized Equation 4. For the 
other models, we performed a leave-one-out cross validation over a 
set consisting of a two-year tensor for training and a one-year tensor 
for testing so that they chose their own best hyper-parameters. Note 
that CubeCast has no parameters to set. 

B.2 Efectiveness 
Here, we show another result of DISMO. Note that the full sets of 
queries obtained from GoogleTrends are summarized in Table 3. 
For each query set, we constructed weekly-basis search counts over 
the 50 states in the US, and obtained 3-order tensor streams. 

Figure 5 shows the results for keywords related to Video-on-
Demand services (VoD). From the factor strength in Figure 5 (a), we 
can interpret the three latent groups as: (#1) YouTube, a represen-
tative video sharing service, (#2) online subscription services, and 
(#3) television-based on-demand services. The three groups refect 
the diferences in their service types although our method used no 
prior knowledge. Furthermore, Figure 5 (c) shows three latent dy-
namics under a rapidly growing phase, and their latent interaction 
shown in Figure 5 (d) suggests that, although (#1) and (#3) were 
cooperating to attract more users, some of the users interested in 
(#3) were moving into (#2) gradually to use fully online services; in 
the network graph, the source group benefts from the end group. 
This transition makes sense because (#2) became more favored after 
approximately one year. In terms of location, Figure 5 (b) shows 

Virginia paid particular attention to YouTube. This is because the 
movie, entitled “Virginia”, was released in 2012, suggesting that it 
attracted more users there. According to these observations, our 
method provides an efective multi-aspect analysis based on latent 
interactions between users. 

It is more interesting to compare dynamic interactions in two 
distinct periods. Figure 6 summarizes the factors obtained in 2013. 
Figure 6 (a) and (b) show the relative strength compared from that 
in Figure 5. While (#3) was in decay, in Figure 6 (a), the strength 
of (#3) was changing slightly compared with that of (#2), trying 
to recover their user-friendliness by releasing subscriptions like 
the original members in (#2), including Netfix and Hulu, which 
had a better decay trend than (#3). In Figure 6 (c), the three latent 
trends changed to a stable phase for (#1) and a decaying phase for 
(#2) and (#3). According to Figure 6 (d), the latent groups (#1) and 
(#2) were competing for users and benefting from (#3). That is, 
YouTube succeeded in continuing to attract users on the search 
engine as opposed to the subscription services because there were 
no requirements for users to search for their name on the web after 
becoming well-known; they have their own applications in several 
platforms. Regardless of fully-automated mining for dynamic inter-
actions, our method can reveal meaningful pattern shifts in tensor 
streams. 

Consequently, our method can summarize a real-world circum-
stance as a set of latent interaction-based factors from large tensor 
streams, which makes it efective for interpreting latent relation-
ships between users as well as forecasting future trends adaptively. 
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