

Modeling Dynamic Interactions over Tensor Streams

K. Kawabata Y. Matsubara Y. Sakurai SANKEN Osaka University Japan

Motivation

Google Trends \leqslant <u>!</u> \equiv Trending Now Sign in Home Explore YouTube Netflix Add comparison +Search term Search term United States 💌 2004 - present 💌 All categories 🔻 Web Search 💌 ¥ <> ≪ Interest over time ⑦ 100 75 50 25 Jan 1, 2004 Sep 1, 2012 May 1, 2021 Average

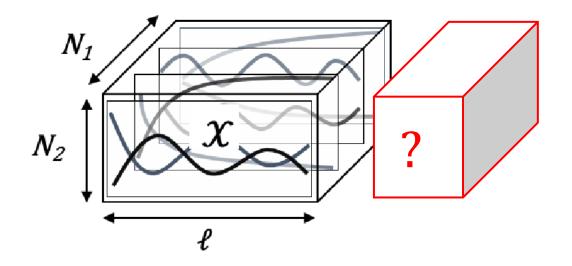
Motivation

: Google Trends \ll \equiv Home **Trending Now** Sign in Explore **Q.** Any other aspects Netflix YouTube Search term Search term to analyze? United States 🔻 2004 - present 💌 All categorie Q. Any shifting Q. Which keywords patterns? are co-evolved? Mm. Sep 1, 2012 Jan 1, 2004 May 1, 2021 Average

©2023 Kawabata et al.

Problem definition

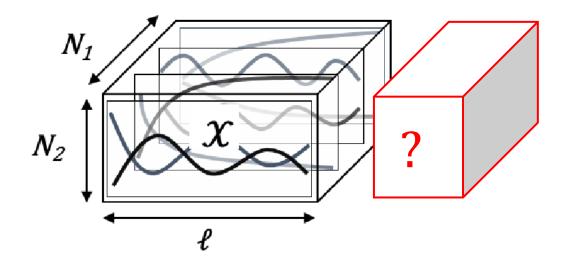
Original Tensor



Given: the most recent *l*-long tensor
 Forecast: *l_s*-steps ahead tensor <u>continuously</u>

Problem definition

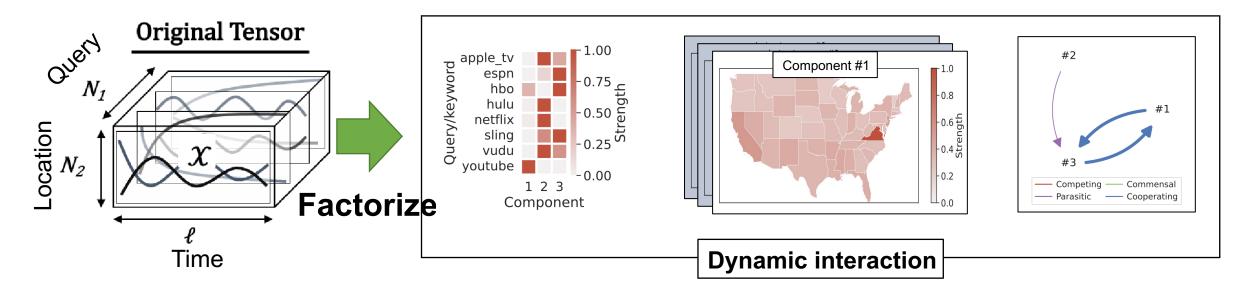
Original Tensor



• Given: the most recent ℓ -long tensor

• Forecast: ℓ_s -steps ahead tensor <u>continuously</u>

DISMO: a new streaming tensor factorization method

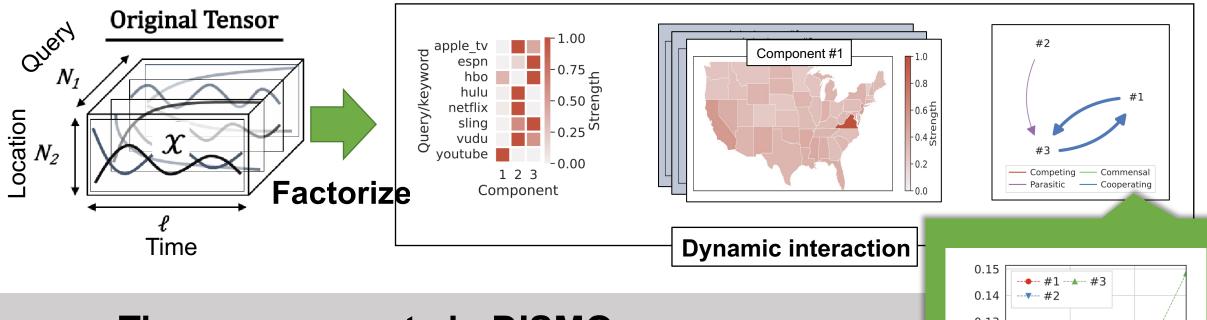


• Trend analysis on Video-on-demand services

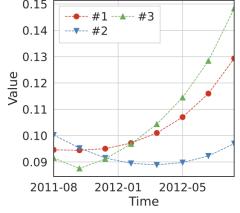


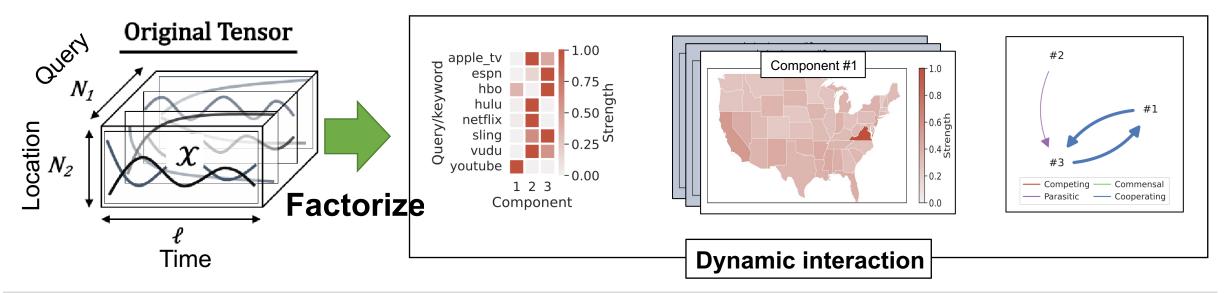
Dynamic interaction:

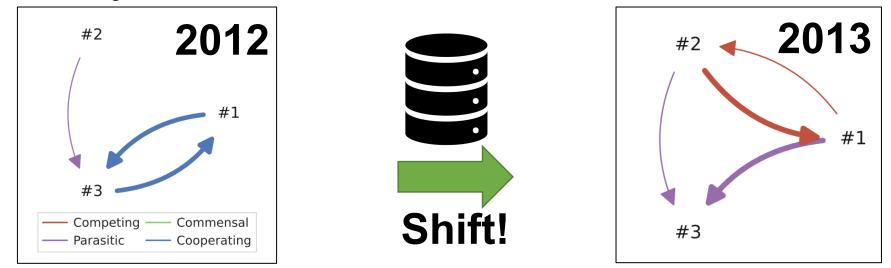
- Multi-aspect factors that represents latent groups of attributes
- Interaction relationships (network) between latent groups
- All-aspect factors can evolve for recent data



- Interpret 4 types of relationships
- Generate latent dynamics effectively



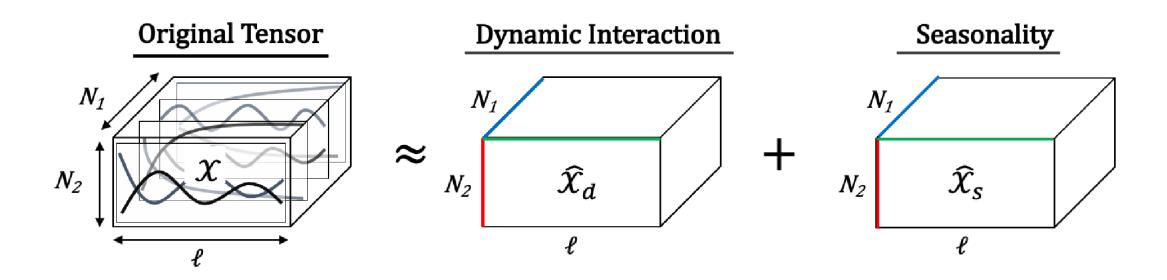




Outline

- Motivation
- Problem definition
- Proposed model
- Proposed algorithms
- Experiments
- Conclusion

Proposed model: overview



Key idea: dynamic interaction and seasonality

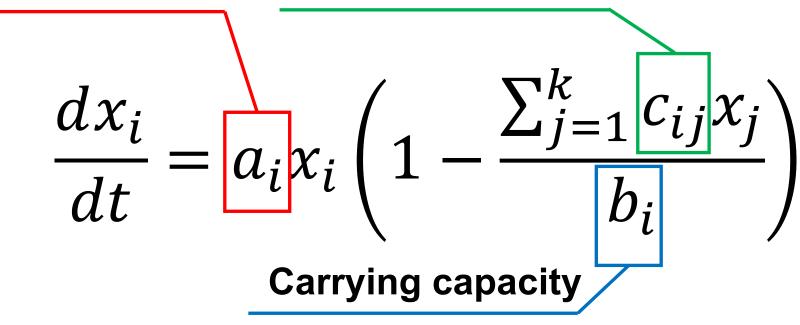
- Step 1. Non-linear dynamical system for interactions
- Step 2. Interaction-based tensor factorization
- Step 3. Multi-aspect factor set for shifting trends

1. Non-linear dynamical system

Background: Interactions between species determine population dynamics

• modeled by a non-linear dynamical system:

Intrinsic growth rate Interaction strength



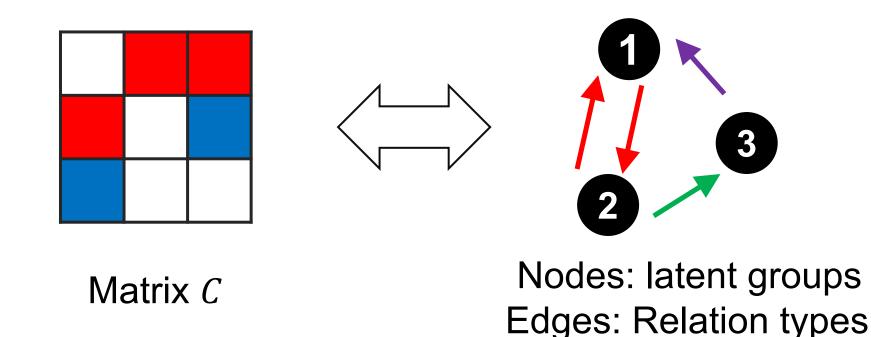
1. Non-linear dynamical system

- Q. How to model interactions?
- Idea: Latent Interaction system (LIS): $\theta = \{a, b, C\}$
 - Species = Users
 - Population dynamics = Trends (e.g., user attention)

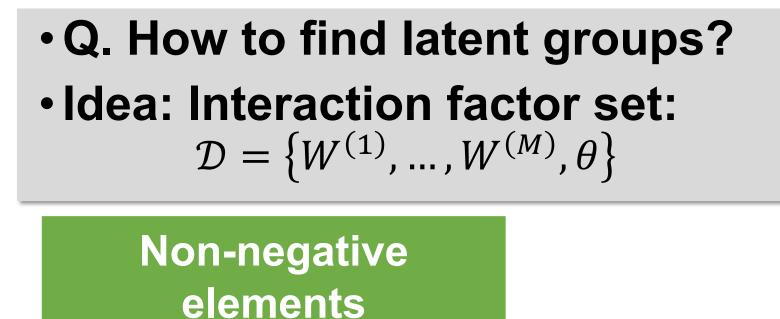
C _{ij}	C _{ji}	Relationship
+	+	Competing
		Cooperating
	+	Parasitic
	0	Commensal

1. Non-linear dynamical system

- Q. How to model interactions?
- Idea: Latent Interaction system (LIS): $\theta = \{a, b, C\}$
 - Example: interaction coefficients as a graph



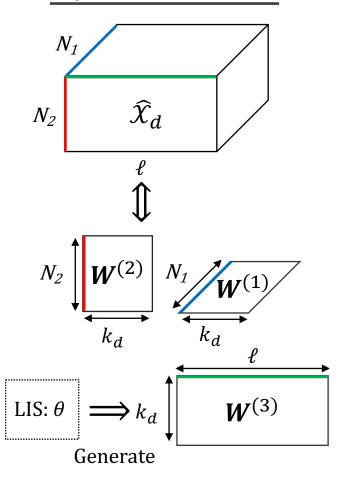
2. Multi-aspect mining for latent interactions



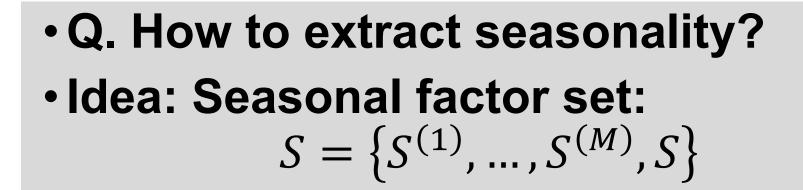
$$\widehat{\mathcal{X}}_{d} = \sum_{i=1}^{k_{d}} w_{i}^{(1)} \circ \cdots \circ w_{i}^{(M)} \circ w_{i}^{(M+1)}$$
Time components are

generated by
$$\theta$$

Dynamic Interaction



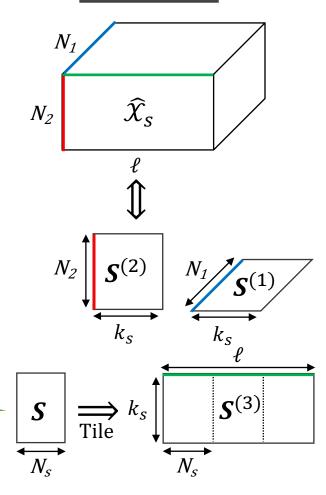
2. Multi-aspect mining for latent interactions



 k_s is independent of k_d

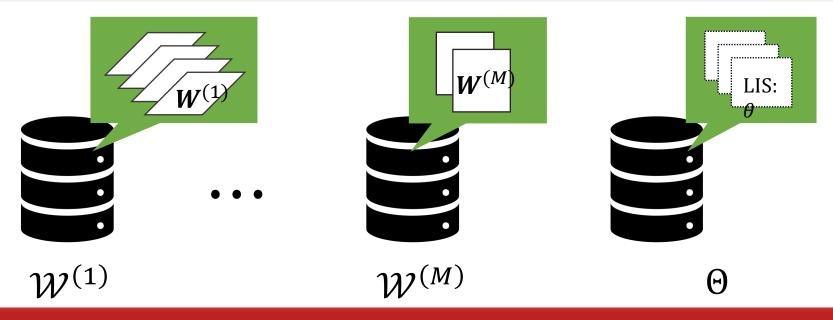
$$\widehat{\mathcal{X}}_{s} = \sum_{i=1}^{k_{s}} \mathbf{s}_{i}^{(1)} \circ \cdots \circ \mathbf{s}_{i}^{(M)} \circ \mathbf{s}_{i}^{(M+1)}$$

S represents cyclic patterns in *N_s* periods



3. Dynamic interactions

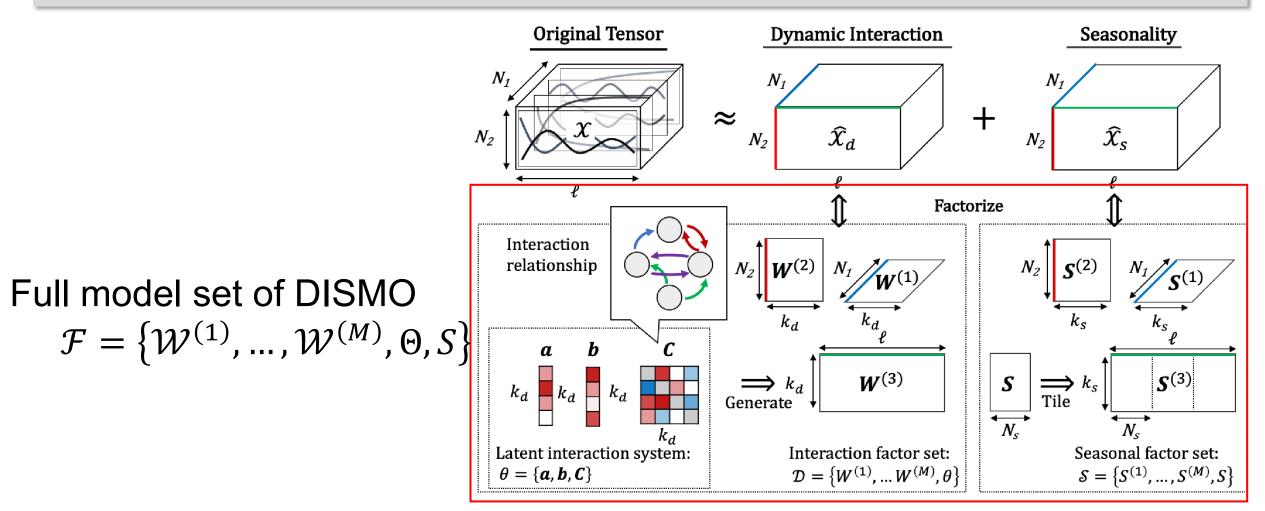
Q. How to detect shifting trends? Idea: Sets of multi-aspect components: W⁽¹⁾,...,W^(M), Θ



DISMO employs new factors for each aspect if required

Proposed model

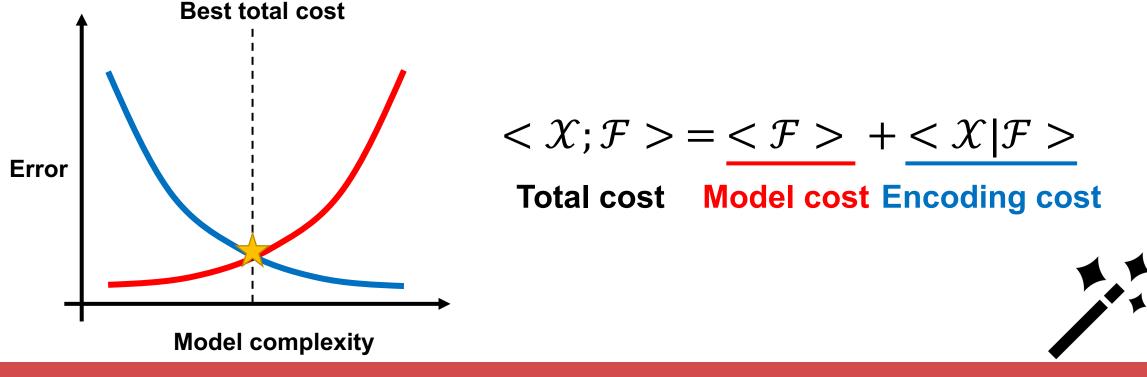
• Goal: Estimate and update a full parameter set \mathcal{F} for \mathcal{X}



©2023 Kawabata et al.

Automatic tensor compression

- Q. How to estimate \mathcal{F} automatically?
- Idea: Minimum description length (MDL) principle



DISMO determines # of components automatically

Automatic tensor compression

• Model cost: $\langle \mathcal{F} \rangle = \langle \Theta \rangle + \langle \mathcal{W}^{(1)} \rangle + \cdots + \langle \mathcal{W}^{(M)} \rangle + \langle \mathcal{S} \rangle$

$$\begin{aligned} <\Theta> &= \sum_{\theta\in\Theta} <\theta>, <\theta> = + + . \\ = |a| \cdot \\(\log\\(k_d\\) + c_F\\) + \log^*\\(|a|\\), \\ = |b| \cdot \\(\log\\(k_d\\) + c_F\\) + \log^*\\(|b|\\), \\ = |C| \cdot \\(2 \cdot \log\\(k_d\\) + c_F\\) + \log^*\\(|b|\\), \end{aligned} \\ < \\ = \sum_{W^{\\(m\\)} \in \mathcal{W}^{\\(m\\)}} , ~~= \sum_{S^{\\(m\\)} \in S} , \\ = |W^{\\(m\\)}|\\(k_d/N_m\\)\\(\log\\(N_m\\) + \log\\(k_d\\) + c_F\\) + \log^*\\(|W^{\\(m\\)}|\\), \\ = |S^{\\(m\\)}|\\(k_s/N_m\\)\\(\log\\(N_m + \log\\(k_s\\) + c_F\\) + \log^*\\(|S^{\\(m\\)}|\\). \end{aligned}~~$$

Normalized for skewed # of dimensions of each aspect

Data encoding cost: Negative log-likelihood

$$\langle \mathcal{X} | \mathcal{F} \rangle = \sum_{x \in \mathcal{X}} -\log_2 p_{\mu,\sigma}(x - \hat{x}_d - \hat{x}_s).$$

©2023 Kawabata et al.

Outline

- Motivation
- Problem definition
- Proposed model
- Proposed algorithms
- Experiments
- Conclusion

DISMO factorization

• Given: a multi-order tensor $\mathcal{X} \in \mathbb{N}^{N_1 \times \cdots \times N_M \times \ell}$, k_d , k_s • Object: $\min_{\mathcal{D}, \mathcal{S}} \| \mathcal{X} - \hat{\mathcal{X}}_d - \hat{\mathcal{X}}_s \|$

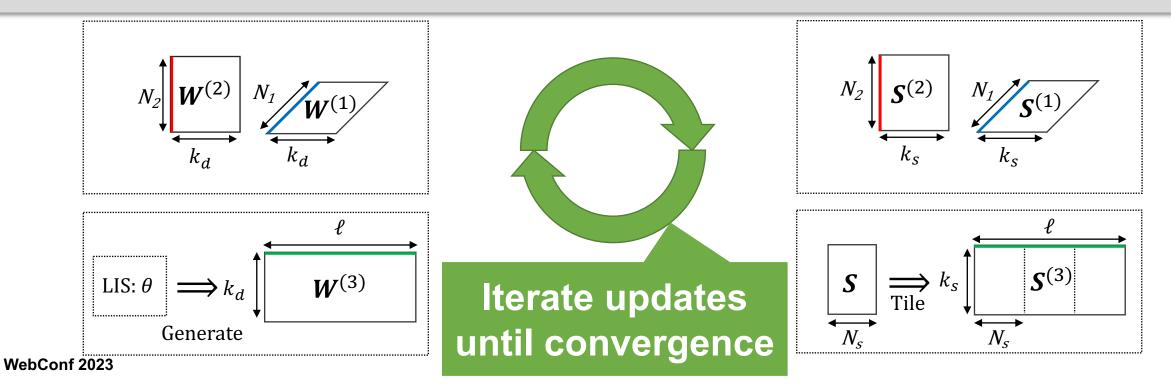
Idea: Alternating updates of multi-aspect factors

DISMO factorization

• **Given:** a multi-order tensor $\mathcal{X} \in \mathbb{N}^{N_1 \times \cdots \times N_M \times \ell}$

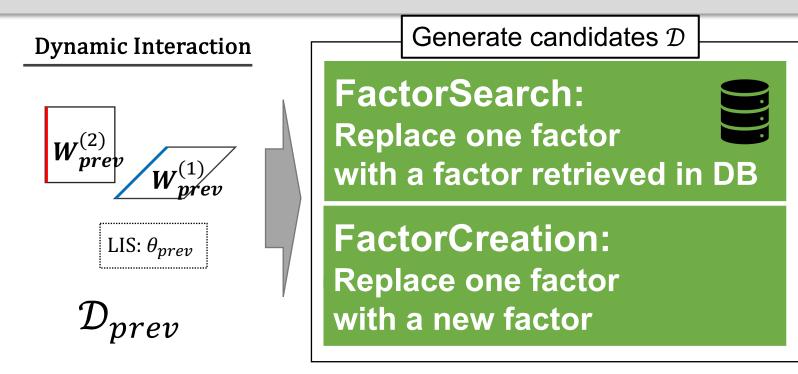
• **Object:**
$$\min_{\mathcal{D},\mathcal{S}} \| \mathcal{X} - \widehat{\mathcal{X}}_d - \widehat{\mathcal{X}}_s \|$$

Idea: Alternating updates of multi-aspect factors



- Given: a multi-order tensor $\mathcal{X} \in \mathbb{N}^{N_1 \times \cdots \times N_M \times \ell}$
- **Object:** Estimate \mathcal{D}, \mathcal{S} that minimizes $\Delta < \mathcal{X}; \mathcal{D}, \mathcal{S} >$
- Idea1: Alternating shifts in dynamic interaction set \mathcal{D}

- **Given:** a multi-order tensor $\mathcal{X} \in \mathbb{N}^{N_1 \times \cdots \times N_M \times \ell}$
- **Object:** Estimate \mathcal{D}, \mathcal{S} that minimizes $\Delta < \mathcal{X}; \mathcal{D}, \mathcal{S} >$
- Idea1: Alternating shifts in dynamic interaction set $\ensuremath{\mathcal{D}}$



- **Given:** a multi-order tensor $\mathcal{X} \in \mathbb{N}^{N_1 \times \cdots \times N_M \times \ell}$
- **Object:** Estimate \mathcal{D}, \mathcal{S} that minimizes $\Delta < \mathcal{X}; \mathcal{D}, \mathcal{S} >$
- Idea1: Alternating shifts in dynamic interaction set ${\mathcal D}$



- **Given:** a multi-order tensor $\mathcal{X} \in \mathbb{N}^{N_1 \times \cdots \times N_M \times \ell}$
- **Object:** Estimate \mathcal{D}, \mathcal{S} that minimizes $\Delta < \mathcal{X}; \mathcal{D}, \mathcal{S} >$
- Idea2: Smoothly update *S* to extract long-term patterns

Outline

- Motivation
- Problem definition
- Proposed model
- Proposed algorithms
- Experiments
- Conclusion

Experiments

- Q1. Accuracy
- Q2. Scalability
- •Q3. Effectiveness

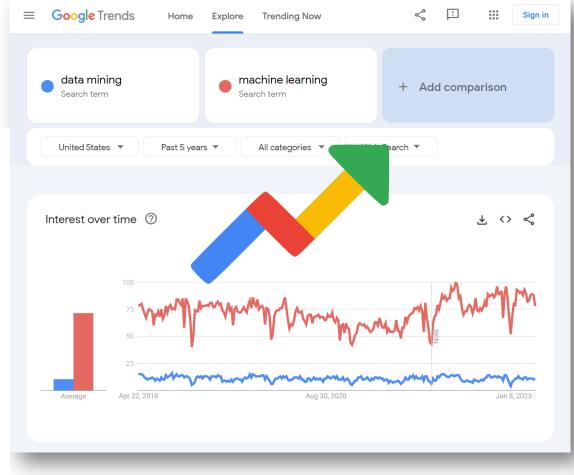
Experiments

Datasets

- 13 years (2008 ~ 2020)
- 50 states of the US

Table 3: GoogleTrends query sets.

Name	Query
Ecommerce	Amazon/Apple/BestBuy/Costco/Craigslist/Ebay/ Etsy/HomeDepot/Kohls/Macys/Target/Walmart
VoD	AppleTV/Disney/ESPN/HBO/Hulu/Netflix/Sling/ YouTube
Facilities	Aquarium/Bookstore/Gym/Library/Museum/ Theater/Zoo
Sweets	Cake/Candy/Chocolate/Cookie/Cupcake/Gum/ Icecream/Pie/Pudding



https://trends.google.com/home

WebConf 2023

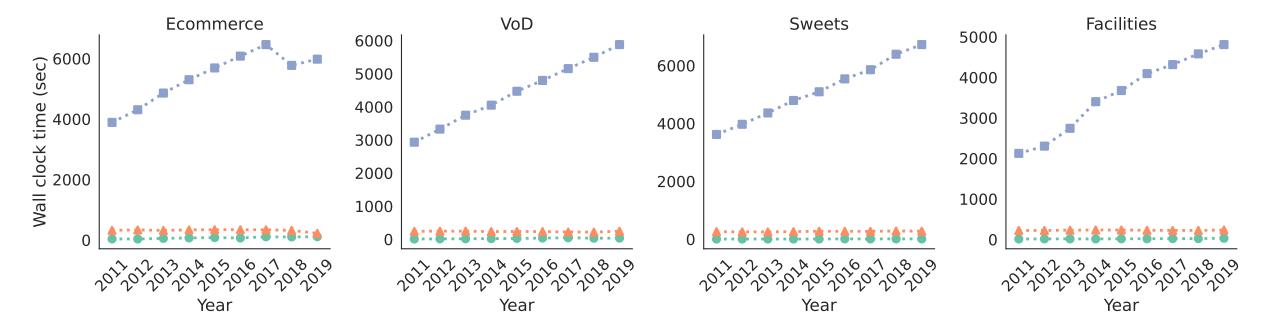
Q1. Accuracy

Table 2: Forecasting performance comparison. DISMO outperformed its competitors in terms of RMSE.

data	l _s	DISMO	DISMO-naive	CubeCast	DeepAR	SMF	TRMF
Ecommerce	13	0.0316 ± 0.0081	0.0881 ± 0.1239	<u>0.0492 ± 0.0339</u>	0.0638 ± 0.0149	0.0591 ± 0.0163	0.1755 ± 0.0207
	26	0.0368 ± 0.0103	0.1122 ± 0.1230	0.0455 ± 0.0269	0.0721 ± 0.0159	0.0604 ± 0.0164	0.1758 ± 0.0198
	39	0.0425 ± 0.0147	0.1613 ± 0.1420	0.0431 ± 0.0219	0.0776 ± 0.0167	0.0615 ± 0.0166	0.1781 ± 0.0203
Facilities	13	0.0356 ± 0.0062	0.0445 ± 0.0076	0.0890 ± 0.0089	0.0593 ± 0.0146	0.0472 ± 0.0115	0.1390 ± 0.0183
	26	0.0383 ± 0.0108	0.0458 ± 0.0093	0.0883 ± 0.0119	0.0666 ± 0.0156	0.0471 ± 0.0125	0.1388 ± 0.0161
	39	0.0406 ± 0.0131	0.0466 ± 0.0105	0.0865 ± 0.0137	0.0704 ± 0.0155	0.0482 ± 0.0130	0.1381 ± 0.0152
Sweets	13	0.0276 ± 0.0146	0.0297 ± 0.0144	0.0422 ± 0.0209	0.0340 ± 0.0167	0.0280 ± 0.0148	0.0823 ± 0.0124
	26	0.0279 ± 0.0150	0.0298 ± 0.0146	0.0405 ± 0.0183	0.0357 ± 0.0167	0.0286 ± 0.0151	0.0826 ± 0.0127
	39	0.0283 ± 0.0149	0.0299 ± 0.0146	0.0393 ± 0.0172	0.0371 ± 0.0166	0.0275 ± 0.0153	0.0830 ± 0.0128
VoD	13	0.0293 ± 0.0121	0.0558 ± 0.0136	0.0479 ± 0.0294	0.1233 ± 0.0438	0.0447 ± 0.0161	0.2297 ± 0.0489
	26	0.0336 ± 0.0155	0.0578 ± 0.0145	0.0423 ± 0.0248	0.1433 ± 0.0435	0.0452 ± 0.0158	0.2280 ± 0.0511
	39	0.0384 ± 0.0194	0.0592 ± 0.0150	0.0380 ± 0.0203	0.1505 ± 0.0419	0.0450 ± 0.0160	0.2275 ± 0.0604

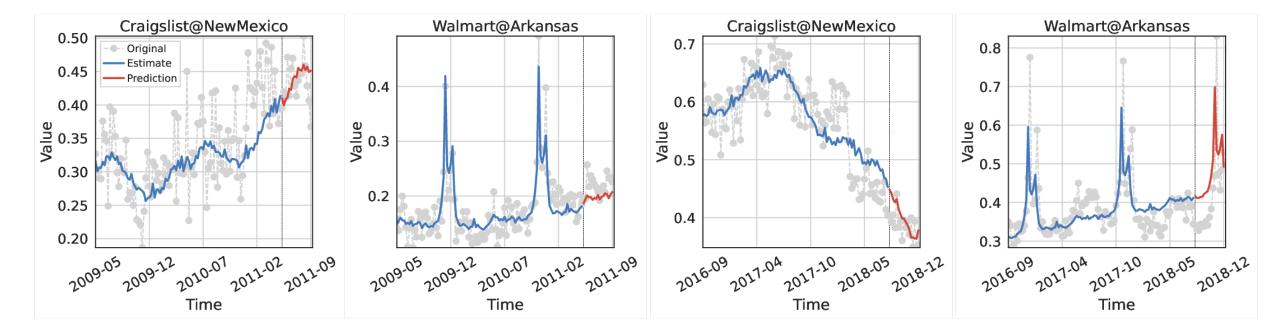
Accurate to forecast multi-steps ahead tensors

Q2. Scalability



DISMO: scalable at any time

Q3. Effectiveness

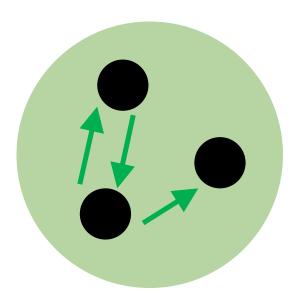


DISMO can effectively model dynamic interactions and seasonality

WebConf 2023

©2023 Kawabata et al.

Conclusion



Interpretable

Our non-linear model reveals important relationships between latent groups in multiorder tensor streams

Dynamic

Shifting trends can be detected in real time by maintaining multiple multi-aspect factors

Automatic

The number of any factors composed by our method are determined without any parameter tuning

Thank you!

Code & datasets