
Efficient Distribution Mining and Classification

Yasushi Sakurai

NTT Communication Science Labs

yasushi.sakurai@acm.org

Rosalynn Chong

University of British Columbia

rchong@interchange.ubc.ca

Lei Li

Carnegie Mellon University

leili@cs.cmu.edu

Christos Faloutsos

Carnegie Mellon University

christos@cs.cmu.edu

Abstract

We define and solve the problem of “distribution classifi-

cation”, and, in general, “distribution mining”. Given n

distributions (i.e., clouds) of multi-dimensional points,

we want to classify them into k classes, to find pat-

terns, rules and out-lier clouds. For example, consider

the 2-d case of sales of items, where, for each item

sold, we record the unit price and quantity; then, each

customer is represented as a distribution/cloud of 2-d

points (one for each item he bought). We want to group

similar users together, e.g., for market segmentation,

anomaly/fraud detection.

We propose D-Mine to achieve this goal. Our main

contribution is Theorem 3.1, which shows how to use

wavelets to speed up the cloud-similarity computations.

Extensive experiments on both synthetic and real multi-

dimensional data sets show that our method achieves

up to 400 faster wall-clock time over the naive imple-

mentation, with comparable (and occasionally better)

classification quality.

1 Introduction

Data mining and pattern discovery in traditional and

multimedia data has been attracting high interest.

Here we focus on a new type of data, namely, a

distribution, or, more informally, a “cloud” of multi-

dimensional points. We shall use the terms “cloud” and

“distribution” interchangeably.

Our goal is to operate on a collection of clouds,

and find patterns, clusters, outliers. In distribution

classification, we want to classify clouds that are similar

to labeled data, in some sense. For example, Figure 1

shows 3 distributions corresponding to 3 motion-capture

datasets. Specifically, they are the scatter-plots of the

left- and right-foot position. Each motion is clearly

a cloud of points, and we would like to classify these

motions. Arguably, Distributions #1 and #2 are more

similar to each other, and they should be both classified

into the same group (in fact, they both correspond

to “walking” motions). In contrast, Distribution #3

does not overlap with the other distributions at all, and

thus it should probably go to another group (in fact, it

belongs to a jumping motion).

There are many applications for distribution clas-

sification. Consider an e-commerce setting, where we

wish to classify customers according to their purchasing

habits. Suppose that, for every sale, we can obtain the

time the customer spent browsing, the number of items

bought, and their sales price. Thus, each customer is

a cloud of 3-d points (one for each sale she did). The

e-store would like to classify these clouds, to do market

segmentation, rule discovery (is it true that the highest

volume customers spend more time on our web site?)

and spot anomalies (e.g., identity theft). Another ex-

ample of distribution classification and mining is an SNS

system such as a blog hosting service. Consider a large

number of blog users where each user has a list of numer-

ical attributes (e.g., total number of postings, average

posting length, average number of outgoing links); sup-

pose that we can record all these attributes, on a daily

basis, for all blog users. For this collection of clouds,

one would like to find patterns and groups, e.g., to do

sociological and behavioral research.

All these questions require a good distance function

between two clouds. The ideal distance function should

(a) correspond to human intuition, declaring as ’simi-

lar’, e.g., Distributions #1 and #2 of Figure 1 and (b)

it should be fast to compute, ideally, much faster than

the number of points in the clouds P and Q. Thus the

base problem we focus on here is as follows:

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Distribution #1 Distribution #2 Distribution #3

(walking) (walking) (jumping)

Figure 1: Three distributions are shown here, from motion-capture data: they all show the scatter-plot of the

left foot position versus the right foot, for different motions. Distributions #1 and #2 “look” more similar, while

Distribution #3 “looks” different. Our proposed distance function reflects such differences.

Problem 1. (Cloud Distance Function) Given 2

clouds P and Q of d-dimensional points, design a dis-

tance function between them, and develop an algorithm

to compute it quickly

Once we have a good (and fast) distance function,

we can proceed to solve the following two problems:

Problem 2. (Cloud Classification) Given n

clouds of d-dimensional points, with a portion of them

labeled and others unlabeled, classify the unlabeled

clouds into the right group.

And, more generally, we want to find patterns:

Problem 3. (Cloud Mining) Given n clouds of d-

dimensional points, summarize the collection of clouds,

find outliers (“strange” clouds), anomalies and patterns.

Our goal is to design fast algorithms for distribution

mining and classification for large sets of multidimen-

sional data. A related topic is distribution clustering.

While we will not address the clustering in this paper,

our techniques could be similarly applied to clustering

settings. The contributions are the following:

(a) the DualWavelet method, that keeps track of

two types of wavelet coefficients for each cloud, accel-

erating the calculation of the cloud-distance function.

(b) Theorem 3.1, which proves the correctness of our

method (c) The GEM method to find a good grid-cell

size for a collection of clouds.

The rest of the paper is organized as follow: Sec-

tion 2 discusses the related work. Section 3 describes

the proposed method and identifies main tasks needed

for distribution classification. We then explain the

techniques and constraints we use in order for efficient

KL-divergence calculations. Section 4 evaluates our

method by conducting extensive experiments. Finally,

Section 5 concludes the paper and introduces future

work for our topic.

2 Related Work

We group the related work into four sections: clustering,

similarity functions between distributions, wavelets.

Classification and Clustering A huge number

of classification techniques have been proposed in var-

ious research fields, including Naive Bayes, decision

tree [1, 17], support vector machine [2] and k-nearest

neighbor [5]. We choose to use the nearest neighbor

method because it has no additional training effort,

while remains a nice asymptotic error bound [5]. A

related mining technique is clustering, with techniques

including CLARANS [15], k-means [7], BIRCH [23],

CURE [9] and many many more. We did not directly

address the distribution clustering problem, but with

the techniques we proposed in this paper could also be

adapted to clustering.

Comparing two distributions There are several

statistical methods [16] to decide whether two distribu-

tions are the same (Chi-square, Kolmogorov-Smirnoff).

However, they don’t give a score; only a yes/no an-

swer; and some of them can not be easily generalized

for higher dimensions.

Functionals that return a score are motivated from

image processing and image comparisons: The so-called

earth-moving distance [18] between two images is the

minimum energy (mass times distance) to transform

one image into the other, where mass is the gray-scale

value of each pixel. For two clouds of points P and Q

(= black-and-white images), there are several measures

of their distance/similarity: one alternative is the dis-

tance of the closest pair (min-min distance); another is

the Hausdorff distance (max-min - the maximum dis-

tance of a set P , to the nearest point in the set Q).

another would be the average of all pairwise distances

among P -Q pairs. Finally, tri-plots [21] can find pat-

terns across two large, multidimensional sets of points,

although they can not assign a distance score. The most

suitable idea for our setting is the KL (Kullback-Leibler)

divergence (see Equation (3.1)) which gives a notion of

distance between two distributions. The KL divergence

is commonly used in several fields, to measure the dis-

tance between two PDFs (probability density functions,

as in, e.g., information theory [22], pattern recognition

[19, 10]).

Probabilistic queries: A remotely related prob-

lem is the problem of probabilistic queries. Cheng et

al. [3] classifies and evaluates probabilistic queries over

uncertain data based on models of uncertainty. An in-

dexing method for regular probabilistic queries is then

proposed in [4]. In [20] Tao et al. presents an algorithm

for indexing uncertain data for any type of probability

density functions (pdf). Distributions for our work can

be expressed by pdfs as well as histograms. However,

the main difference between our study and [3] is that

our work focuses on comparing differences between dis-

tributions, while Cheng et al.s’ work focuses on locating

areas in distributions that satisfy a given threshold.

Wavelets Wavelet analysis is a powerful method

for compressing signals (time series, images, and higher

dimensionalities) [6, 16]. Wavelets have been used for

summarization of streams [8] and histograms [14].

Distribution classification and mining are problem

that, to our knowledge, have not been addressed. The

distance functions among clouds that we mentioned

earlier either expect a continuous distribution (like a

probability density function), and/or are too expensive

to compute.

3 Proposed Method

In this section, we focus on the problem of distribution

classification. This involves the following sub-problems,

that we address in each of the upcoming sub-sections:

(a) What is a good distance function to use, for clouds

of points? (b) What is the optimal grid side, to

bucketize our address space? (c) How to represent a

cloud of points compactly, to accelerate the distance

calculations? (d) What is the space and time complexity

of our method?

Table 1 lists the major symbols and their defini-

tions.

Table 1: Symbols and definitions

Symbol Definition

n number of clouds

k number of classes

m number of buckets in the grid

P,Q two clouds of points (“distributions”)

pi, qi fractions of points at i-th grid-cell

P (m) the histogram of P ,

for a grid with m buckets

dSKL symmetric KL divergence

Hs(P) entropy of cloud P, bucketized

with s segments per dimension

Wp wavelet coefficients of P

3.1 Distance function for cloud sets The heart

of the problem is to define a good distance function

between two clouds of d-dimensional points:

Task: Given two “clouds” of points P and Q in

d-dimensional space, we assess the similarity/distance

between P and Q.

Given two clouds of points P and Q, there are

several measures of their distance/similarity, as we

mention in the literature survey section.

However, the above distances suffer from one or

more of the following drawbacks: they are either too

fragile (like the min-min distance); and/or they don’t

take all the available data points into account; and/or

they are too expensive to compute.

Thus we propose to use information theory as

the basis, and specifically the KL (Kullback-Leibler)

divergence, as follows. Let’s assume for a moment that

the two clouds of points P and Q consist of samples

from two (continuous) probability density functions P

and Q, respectively. If we knew P and Q we could apply

the continuous version of the KL divergence; however,

we don’t. Thus we propose to bucketize all our clouds,

using a grid with m grid-cells and use the discrete

version of the KL divergence, defined as follows:

dKL(P,Q) =

m
∑

i=1

pi · log

(

pi

qi

)

(3.1)

where pi, qi are the fractions of points of cloud P and

Q respectively, that land into the i-th grid cell. That is,
∑m

i=1 pi =
∑m

i=1 qi = 1. Choosing a good grid-cell size

is a subtle and difficult problem, that we address with

our proposed GEM method in subsection 3.2.

The above definition is asymmetric, and thus we

propose to use the symmetric KL divergence dSKL:

dSKL(P,Q) = dKL(P,Q) + dKL(Q,P)

=
m

∑

i=1

(pi − qi) · log

(

pi

qi

)

.(3.2)

There is a subtle point we need to address. The

KL divergence expects non-zero values, however, his-

togram buckets corresponding to sparse area in multi-

dimensional space may take the zero value. To avoid

this, we introduce the Laplace estimator [13, 11]:

p′i =
pi + 1

|P | + m
· |P |.(3.3)

where pi is the original histogram value (i = 1, . . . ,m)

and p′i is the estimate of pi. |P | is the total number of

points (i.e., |P | =
∑m

i=1 pi).

Another solution is that we could simply treat

empty cells as if they had “minimum occupancy” of

ε. The value value for “minimum occupancy” should

be ε << 1/|P |, where |P | is the number of points

in the cloud P . We chose the former since it gives

better classification accuracy, although our algorithms

are completely independent of such choices.

3.2 GEM: Optimal grid-side selection

3.2.1 Motivation behind GEM Until now, we as-

sumed that the grid side was given. The question we

address here is how to automatically estimate a good

grid side, when we are given several clouds of points

P1, . . . , Pn. Equivalently, we want to find the optimal

number of segments sopt that we should subdivide each

dimension into.

We would like to have a criterion, which will operate

on the collection of clouds, and dictate a good number

of segments s per dimension. This criterion should have

a spike (or dip) at the “correct” value of s. Intuitively, s

should not be too small, because the grid will deteriorate

to having one or two cells, and all clouds will look

similar, even if they are not really similar. On the other

extreme, s should not be too large, because the resulting

grid will have a very fine granularity, with each grid-

cell containing one or zero points, and thus any pair of

clouds will have a high distance. We want the “sweet

spot” for s.

Notice that straightforward approaches are not suit-

able, because they are monotonic. For example, the

average entropy of a cloud clearly increases with the

number of segments s. The same is true for any other

variation based on entropy, like the entropy of the union

of all the clouds. Our goal boils down to the following

question: what function of s reaches an extreme when

we hit the ’optimal’ number of segments sopt? It turns

out that the (symmetric) KL divergence is also unsuit-

able since it increases monotonically with s. This leads

us to our proposed “GEM” criterion. First we describe

how to find a good value of s (number of grid-cells per

axis) for a given pair of clouds (P , Q), and then we

discuss how to extend it for a whole set of clouds.

3.2.2 GEM criterion First, we propose a criterion

to estimate the optimal number of s for a given pair of

clouds, say, P and Q.

Our idea is to normalize the symmetric KL diver-

gence, dividing it by the sum of entropies of the two

clouds. The intuition is the following: for a given s,

the KL divergence dSKL(s)(P,Q) expresses the cross-

encoding cost, that is, the number of extra bits we suf-

fer, when we encode the grid-cell id of points of cloud P ,

using the statistics from cloud Q, and vice versa. Sim-

ilarly, Hs(P) and Hs(Q) give the (self) encoding cost,

that is, the number of necessary bits, when we use the

correct statistics for each cloud. Thus, we propose to

normalize: a grid choice (with s grid-cells per dimen-

sion) would be good, if it can make the two clouds as

dissimilar (= hard to cross-encode) as possible, relative

to the intrinsic coding cost of each cloud.

Therefore, our proposed normalized KL divergence

Cs(P,Q), referred to as the pairwise GEM criterion, is

given by

Cs(P,Q) =
dSKL(s)(P,Q)

Hs(P) + Hs(Q)
(3.4)

where Hs(P), Hs(Q), dSKL(s)(P,Q) are the entropies

and the KL divergence, for a grid with s segments per

dimension. We want sopt, the optimal value of s that

maximizes the pairwise criteria as follows:

sopt(P,Q) = arg max
s

(Cs(P,Q)).(3.5)

For example, Figure 2 shows the pairwise criteria of

a sampled cloud pair of the Gaussians dataset (See

Figure 4). We pick up one from the third class (Corners)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

643216842

G
E

M
 s

co
re

Number of segments

Figure 2: Example of pairwise GEM criterion.

and the other one from the fourth class (Center &

Corners). As shown in Figure 4, it is hard to identify

the difference between these clouds if we use a small

number of segments. In Figure 2 s = 16 maximizes the

pairwise criteria, which indicates that it is necessary to

use s = 16 to identify the difference.

Once we obtain sopt() for every (sampled) pair the

final step is to choose sopt for the entire cloud set. We

could choose the median value, the average value, or

some other function. It turns out that the maximum

gives the best classification accuracy. Thus, we propose

sopt = max
all P,Q pairs

sopt(P,Q)(3.6)

If there are too many clouds in our collection, we

propose to use a random sample of (P , Q) pairs.

3.3 Cloud representation: DualWavelet We de-

scribed how to measure the distance of clouds, and how

to estimate the optimal segment size of the histogram.

The next question is how to store the cloud information,

to minimize space consumption and response time. Re-

call that we plan to bucketize the d-dimensional address

space into m grid cells, with s equal segments per di-

mension (m = sd); and for each distribution P , we could

keep the fraction of points pi that fall in the i-th bucket.

Naive Solution: The naive solution is exactly to

maintain an m-bucket histogram for each cloud, and

to use such histograms to compute the necessary KL

divergences, and eventually to run required mining

algorithm (e.g., the nearest neighbor classification). We

refer to it as NaiveDense.

However, this may require too much space, espe-

cially for higher dimensions. One solution would be to

use the top c most populated grid cells, in the spirit

of ’high end histograms’. The reason against it is that

we may ignore some sparse-populated bins, whose log-

arithm would be important for the KL divergence. We

refer to it as NaiveSparse.

Instead, we propose to compress the histograms

using Haar wavelets, and then keeping some appropriate

coefficients, as we describe next. As we show later,

this decision significantly improves both space as well

as response time, with negligible effects on the mining

results. The only tricky aspect is that if we just keep

the top c wavelet coefficients, we might not get good

accuracy for the KL divergence. This led us to the

design of the DualWavelet method that we describe

next. The main idea behind DualWavelet is to keep

the top c wavelet coefficients for the histogram P (m) =

(p1, . . . pm), as well as the top c coefficients for the

histogram of the logarithms (log p1, . . . log pm). This

is the reason we call the method DualWavelet. We

elaborate next.

Let P̂ = (p̂1, . . . , p̂m) be the histogram of the

logarithms of P = (p1, . . . , pm), i.e., p̂i = log pi. Let

Wp and Ŵp be the wavelet coefficients of P and P̂

respectively. We present our solution using Wp and

Ŵp.

Proposed Solution: We represent each distribution

as a single vector; we compute Wp and Ŵp from P and

P̂ for each distribution, and then we compute the GEM

criterion and the necessary KL divergences from the

wavelet coefficients. Finally, we apply a classification

algorithm (e.g., the nearest neighbor classification) to

the wavelet coefficients.

The cornerstone of our method is Theorem 3.1,

which effectively states that we can compute the sym-

metric KL divergence, using the appropriate wavelet co-

efficients.

Theorem 3.1. Let Wp = (wp1, . . . , wpm) and Ŵp =

(ŵp1, . . . , ŵpm) be the wavelet coefficients of P and P̂ ,

respectively. Then we have

dSKL(P,Q) =
1

2

m
∑

i=1

fpq(i)(3.7)

fpq(i) = (wpi − ŵqi)
2 + (wqi − ŵpi)

2

−(wpi − ŵpi)
2 − (wqi − ŵqi)

2.

Proof: From the definition,

dSKL(P,Q) =

m
∑

i=1

(pi − qi) · log

(

pi

qi

)

.

Then we have

dSKL(P,Q) =

m
∑

i=1

(pi − qi) · (log pi − log qi)

=
1

2

m
∑

i=1

fpq(i).

In light of Parseval’s theorem, this completes the proof.

2

The KL divergence can be obtained from Equa-

tion (3.7) using wavelets calculated from histogram

data. The number of buckets of a histogram (i.e., m)

could be large, especially for high-dimensional spaces,

while the most of buckets may be empty. The justifi-

cation of using wavelets is that very few of the wavelet

coefficients of real data sets are often significant and a

majority are small, thus, the error is limited to a very

small value. Upon calculating the wavelets from the

original histogram, we select a small number of wavelet

coefficients (say c coefficients) that have the largest en-

ergy from the original wavelet array. This indicates that

these coefficients will yield the lowest error among all

wavelets.

For Equation (3.7), we compute the KL divergence

with c coefficients, that is, we compute fpq(i) if we select

either wpi or wqi (ŵpi or ŵqi), otherwise, we can simply

ignore these coefficients since they are very close to zero.

Consider that the sequence describing the positions of

the top c coefficients of Wp and Wq is denoted as Ipq.

Then, we obtain the approximate KL divergence of P

and Q:

dSKL(P,Q) ≈
1

2

∑

i∈Ipq

fpq(i).(3.8)

The positions of the best c coefficients of Wp could be

different from those of Wq. We assume wpi = ŵpi = 0

if wpi and ŵpi are not selected.

In order to estimate the optimal number of seg-

ments for histograms, we need to compute the entropy

from each distribution (see Equation (3.4)).

Lemma 3.1. Let Wp and Ŵp be the wavelets of P and

P̂ , respectively. Then we have

H(P) =
1

2

m
∑

i=1

gp(i)(3.9)

gp(i) = (wpi − ŵpi)
2 − wp2

i − ŵp2
i .

Algorithm D-Mine

// estimate the optimal grid side, using GEM

for each # of segments s do

for each distribution P do

compute the DualWavelet coefficients

Wp and Ŵp of s;

endfor

estimate the GEM criterion Cs from the set of

the DualWavelet coefficients;

if Cs is the maximum value then

sopt := s;

endfor

// keep the DualWavelet coefficients for the optimal

// grid side

use any data mining method (classification, clustering,

outlier detection, etc) and apply it to the set of

the DualWavelet coefficients of sopt;

Figure 3: D-Mine: algorithm for distribution mining.

Proof: From the definition,

H(P) = −

m
∑

i=1

pi log pi.

From Parseval’s theorem, we have

H(P) =
1

2

m
∑

i=1

gp(i),

which completes the proof. 2

Again, since we want to compute the entropy with

the top c wavelet coefficients, Equation (3.9) becomes

H(P) ≈
1

2

∑

i∈Ip

gp(i).(3.10)

Equation (3.4) requires the KL divergence and

entropies of Pi and Pj to estimate the optimal number

of segments. The KL divergence and entropies can

be efficiently computed from their wavelets by using

Equations (3.8)(3.10).

Figure 3 shows the overall algorithm for distribution

mining.

3.4 Complexity In this section we examine the time

and space complexity of our solution and compare it

to the complexity of the naive solution. Among the

possible data mining tasks, we focus on classification, to

illustrate the effectiveness of our method. We chose the

k-nearest neighbor classification with majority voting.

We made this chose because of the simplicity and the

good performance, as we show next. Recall that n is the

number of input distributions, m is the number of grid-

cells that we impose on the address space, and c is the

number of wavelet coefficients that our method keeps.

For the classification, t is the number of distributions

(=clouds) in the training data set.

3.4.1 Time Complexity

Naive method (NaiveDense) . We have the

following Lemmas:

Lemma 3.2. The naive method requires O(mn2) time

to compute the criterion for distribution classification.

Proof: For d-dimensional histogram, the number

of buckets is m = sd. Computing the criterion for s

requires O(m) time for every distribution pair. For n

distributions, it would take O(mn2) time. 2

The calculation of the criterion requires O(mn2)

time if we take account of all n distributions. We can

optionally use random sampling of the distributions to

save the computation cost.

With respect to the time for nearest neighbor

searching, we resort to sequential scanning over the

training dataset. The reason that we do not use a multi-

dimensional index (like kd-tree, or R-tree), is because

the KL divergence does not even obey the triangle

inequality. Thus, we have:

Lemma 3.3. The naive method requires O(nmt) time

for the nearest neighbor classification.

Proof: The calculation of the nearest neighbor

classification for one distribution requires O(mt) time

because it tries to handle the values of m histogram

buckets for t distributions. This is repeated for n

number of distributions, producing a total cost of

O(nmt). 2

Proposed Solution DualWavelet . We have the

following Lemmas:

Lemma 3.4. The proposed distribution mining method

requires O(mn) time to compute all the wavelet coeffi-

cients.

Proof: Wavelets can be computed in O(m) time. For

n distributions, it would take O(mn) time. 2

Lemma 3.5. The proposed method requires O(n2) time

to estimate the optimal number of segments.

Proof: Let c be the number of wavelet coefficients.

Computing each criterion requires O(cn2) time. Since

c is a small constant value, the time complexity to

to estimate the optimal number of segments can be

simplified to O(n2) 2

Lemma 3.6. The proposed method requires O(nt) time

to perform the nearest neighbor classification.

Proof: The calculation of the nearest neighbor classi-

fication requires O(cnt) time. We handle c wavelets for

t distributions in the training data set. This is repeated

for n number of input distributions. Again, since c is

a small constant value, the time complexity to classify

distributions can be simplified to O(nt). 2

3.4.2 Space Complexity We have the following

Lemmas:

Lemma 3.7. (Space of NaiveDense) The naive

method requires at least O(mn) space.

Proof: The naive method requires storage of m-binned

histograms of n distributions, hence the complexity

O(mn). 2

Lemma 3.8. (Space of proposed method) The

proposed method requires at least O(m + n) space.

Proof: Our method initially allocates memory to store

histogram of m buckets. It then calculates the wavelet

coefficients and discards the histogram information.

Then it reduces the number of wavelet coefficients to

O(c) and allocates O(cn) memory for computing the

criterion and the classification. However, c is normally

a very small constant, which is negligible. We sum up

all the allocated memory and we get a space complexity

of O(m + n). 2

4 Experiments

In this section, we do experiments to answer the follow-

ing questions:

• GEM’s accuracy: For the optimal grid side, does

the GEM criterion lead to better mining results?

• Quality: how good is our cloud-distance function,

and its DualWavelet approximation? We compare

DualWavelet with two variants of the naive method:

(1) NaiveDense, which uses all (m) histogram

buckets to compute the distance (2) NaiveSparse,

which uses only selected buckets since m could

-15.0

-10.0

-5.0

0.0

5.0

10.0

15.0

-15.0 -10.0 -5.0 0.0 5.0 10.0 15.0
-15.0

-10.0

-5.0

0.0

5.0

10.0

15.0

-15.0 -10.0 -5.0 0.0 5.0 10.0 15.0
-15.0

-10.0

-5.0

0.0

5.0

10.0

15.0

-15.0 -10.0 -5.0 0.0 5.0 10.0 15.0
-15.0

-10.0

-5.0

0.0

5.0

10.0

15.0

-15.0 -10.0 -5.0 0.0 5.0 10.0 15.0

1 G 2 G Corners Center & Corners

Figure 4: Sample clouds, each representing one of 4 different classes in the Gaussians dataset.

be too large while the most of buckets may be

empty. We selected buckets that have the largest

values from the original histogram. As a measure

of accuracy, we use the classification error rate. For

each input dataset, we know the ground truth (that

is, the number of classes we have and the class

labels for each input cloud) and we run the nearest

neighbor classification on the dataset, with optimal

s (according to GEM), and report the classification

accuracy.

• Speed: how much faster is our method than the

naive ones, NaiveDense and NaiveSparse? How

does it scale with the database size n in terms of

the computation time?

We run the experiments on a Pentium 4 CPU of

2.53GHz, and with 2GB of memory. For the number of

wavelet coefficients c, we used enough, so that to retain

95% of the energy.

4.1 Data Sets We performed experiments on the

following real and synthetic data sets.

• Gaussians: the data set consists of n=4,000 distri-

butions, each with 10,000 points. Figure 4 shows

some members of this set. We used 3-dimensional

data for this data set. Each distribution is a mix-

ture of Gaussians (1, 2, 2d or (2d + 1) Gaussians).

There were thus 4 classes; for each class, the means

were the same but the covariance matrices varied.

The training data set contains 10 distributions for

each class.

• FinTime: This is the financial time-series bench-

mark from [12]. We used historical stock market

data for n=400 securities. The dataset consists of 3

dimensional data simulating the stock market with

parameters: starting price, increasing (decreasing)

rate and volume of transactions. Each distribution

of a stock contains 10,000 values. We chose this

setting because it resembles real data such as prod-

uct sales. There were 4 classes, and the training

data set contains 10 for each class.

• MoCap: this dataset is from subject number

16, from the CMU Motion Capture Database

(mocap.cs.cmu.edu). It contains n=58 real run-

ning, jumping and walking motions, that is, there

are 3 classes. We used 9 motions for training

and the rest of them for classification. In our

framework, a motion is represented as a cloud of

hundreds of frames, with each frame being an d-

dimensional point; each dimension corresponds to

the x, y, or z position of a body joint . Figure 7

shows sample scatter-plots of such motion data for

coordinates of the left-foot and of the right-foot)

(with only the z coordinate, for easier visualiza-

tion) In our experiments we reduce the dimension-

ality from d=93 to d=2 by using SVD (Singular

Value Decomposition), which gives better classifi-

cation accuracy.

4.2 Accuracy of GEM We evaluated the accuracy

of distribution classification when we varies the number

of segments (i.e., bucket size) of histograms. For the

classification accuracy, we used the classification error

and the “confusion matrix”. For example Table 2 shows

the confusion matrix for the MoCap dataset, where

the rows correspond to actual classes, and the columns

correspond to recovered classes. The ideal matrix

should be diagonal, in which case the classification error

is minimal.

Figure 5 shows the classification error and the

histogram of GEM, for the Gaussians and FinTime

datasets. The bottom row of the figure shows the

histogram of sopt(P,Q), the value of s that gives the

highest pairwise GEMscore (See Section 3.2). We

estimated sopt from 10,000 randomly sampled pairs.

0

5

10

15

20

25

30

35

643216842

C
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

 (
%

)

Number of segments

0

10

20

30

40

50

60

643216842

C
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

 (
%

)

Number of segments

(a) Accuracy (Gaussians) (b) Accuracy (FinTime)

(c) GEM (Gaussians) (d) GEM (FinTime)

Figure 5: Justification for our GEM criterion - Gaussians and FinTime datasets. (a) and (b): Classification

accuracy (error rate) versus number of segments s. (c) and (d): The histogram of sopt(P,Q) (the value of s that

gives the highest pairwise GEMscore). Notice that the maximum value of sopt is 16 for both datasets, which gives

zero classification error.

Figure 5 indicates that our algorithm can obtain a

good classification (i.e., it can even achieve no error)

when we choose s = 16 and higher as the number of

segments. The maximum value of sopt(P,Q) (i.e., sopt)

is s = 16. Thus, GEM perfectly spots s = 16 as the

optimal number of segments for both data sets, which

means that the user is freed from having to set the s

value.

As mentioned in Section 3.3, the cost for estimating

the optimal number of segments can be reduced by

DualWavelet. We will show later that DualWavelet

drastically reduces the classification cost. We can also

receive the same benefit when we compute the GEM

score.

4.3 Quality of proposed methods We answer two

questions here: (a) how good is the approximation that

DualWavelet uses, and (b) how good are the classifica-

tion results, of the full workflow (GEM, DualWavelet,

and classification)

For the first question, Figure 6 shows the scatter

plots of the computation cost versus the approximation

quality. The x-axis shows the computation cost for

KL divergences, and the y-axis shows their relative

approximation error rate. We compare DualWavelet

and NaiveSparse in the figure.

The figure implies a trade-off between quality and

cost, but the results of DualWavelet are close to the

lower left for both data sets, which means that the

proposed method gives excellent performance in terms

of quality and cost. In fact, it shows no error for

classification quality for Gaussians and FinTime while

it achieves a dramatic reduction in computation time.

We also study the behavior of DualWavelet for clas-

sification quality using the real motion data MoCap.

Figure 7 shows 9 distributions, 3 from each class after

all distributions are classified using our algorithm. For

simplicity of representation, only data from two dimen-

sions are displayed in the figure. We can see that our

implementation classifies the distributions accordingly.

The overall quality is represented by using confusion

matrix as shown in Table 2. While this is not per-

 0.001

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1

A
pp

ro
xi

m
at

io
n

E
rr

or
 R

at
e

(%
)

Wall clock time (ms)

NaiveSparse
DualWavelet

Gaussians

 0.001

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1

A
pp

ro
xi

m
at

io
n

E
rr

or
 R

at
e

(%
)

Wall clock time (ms)

NaiveSparse
DualWavelet

FinTime

Figure 6: Approximation quality: relative approxima-

tion error vs. wall clock time. Our method (in blue ’x’s)

gives significantly lower error, for the same computation

time.

fect for this data set, DualWavelet can classify the data

properly. The classification error of DualWaveletand

NaiveDenseis 4.1%. Note that the error rate of NaiveS-

parseis 6.1%. DualWavelet provides better classification

quality while it is much faster than the naive method.

For Gaussians and FinTime data sets, DualWavelet

perfectly find the best classification. The resulting con-

fusion matrix is a diagonal matrix, which is omitted due

to the space limitation.

4.4 Speed and Scalability Figure 8 compares Du-

alWavelet with the naive method in terms of computa-

tion cost. We vary the number of distributions we want

to classify. Note that y-axis uses logarithmic scale. We

conducted this experiment with histogram of s = 16 as

GEM suggested.

The proposed method is significantly faster than the

two variants of the naive method while it shows no error

for classification quality for both data sets. DualWavelet

achieves up to 400 times faster than NaiveDense and 6

Table 2: Confusion matrix for classification the MoCap

data set. Notice that each detected class (column)

strongly corresponds to a single actual class (row)

recovered jumping walking running

correct

jumping 3 0 0

walking 0 22 1

running 0 1 19

times faster than NaiveSparse in this experiment.

5 Conclusions and Future Work

Here we addressed the problem of distribution mining,

and proposed D-Mine, a fast and effective method to

solve it. Our main contributions are the following:

• We propose to use wavelets on both the histograms,

as well as their logarithms. Theorem 3.1 shows

that the appropriate wavelet coefficients can help

us quickly estimate the KL divergence.

• We also proposed GEM, an information-theoretic

method for choosing the optimal number of seg-

ments s.

• Based on Theorem 3.1 and on GEM, we tried near-

est neighbor classification on real and realistic data.

Our experiments show that our method works as

expected, with better classification accuracy than

the naive implementation, while being up to 400

times faster.

We illustrated our Theorem and our method on

classification. However, our Theorem would benefit

any data mining algorithm that needs to operate on

distributions, exactly because it can help estimate the

popular KL divergence, by simply using wavelets.

A promising future direction is to extend our

method for streams. As new points (e.g., sales, or stock

trades) are added to each cloud, the wavelets can eas-

ily handle these additions incrementally, and, thanks to

Theorem 3.1, we can thus still estimate quickly the new

KL divergences.

References

[1] W. Buntine. Learning classification trees. In D. J.

Hand, editor, Artificial Intelligence frontiers in statis-

tics, pages 182–201. Chapman & Hall,London, 1993.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(a) Jumping motions

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(b) Walking motions

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(c) Running motions

Figure 7: Scatter plot of sample motions (z coordinates for left and right foot)

[2] C. J. C. Burges. A tutorial on support vector machines

for pattern recognition. Data Mining and Knowledge

Discovery, 2(2):121–167, 1998.

[3] R. Cheng, D. V. Kalashnikov, and S. Prabhakar.

Evaluating probabilistic queries over imprecise data.

In Proceedings of ACM SIGMOD, pages 551–562, San

Diego, California, June 2003.

[4] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S.

Vitter. Efficient indexing methods for probabilistic

threshold queries over uncertain data. In Proceed-

ings of VLDB, pages 876–887, Toronto, Canada, Au-

gust/September 2004.

[5] T. Cover and P. Hart. Nearest neighbor pattern

classification. Information Theory, IEEE Transactions

on, 13(1):21–27, 1967.

[6] C. Faloutsos. Searching Multimedia Databases by

Content. Kluwer Academic Inc., 1996.

[7] K. Fukunaga. Introduction to Statistical Pattern

Recognition. Academic Press, 1990.

[8] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and

M. Strauss. Surfing wavelets on streams: One-pass

summaries for approximate aggregate queries. In

Proceedings of VLDB, pages 79–88, Rome, Italy, Sept.

2001.

[9] S. Guha, R. Rastogi, and K. Shim. Cure: An efficient

clustering algorithm for large databases. In Proceedings

of ACM SIGMOD, pages 73–84, Seattle, Washington,

June 1998.

[10] X. Huang, S. Z. Li, and Y. Wang. Jensen-shannon

boosting learning for object recognition. In Proceedings

of IEEE Computer Society International Conference

on Computer Vision and Pattern Recognition (CVPR),

volume 2, pages 144–149, 2005.

[11] Y. Ishikawa, Y. Machida, and H. Kitagawa. A dy-

0.01

0.1

1

10

100

1000

10000

4000300020001000

W
al

l c
lo

ck
 ti

m
e

(s
ec

)

Dataset size

NaiveDense
NaiveSparse
DualWavelet

Gaussians

0.001

0.01

0.1

1

10

100

400300200100

W
al

l c
lo

ck
 ti

m
e

(s
ec

)

Dataset size

NaiveDense
NaiveSparse
DualWavelet

FinTime

Figure 8: Scalability: wall clock time vs. database size

n (= number of distributions). DualWavelet can be up

to 400 times faster than NaiveDense and 6 times faster

than NaiveSparse.

namic mobility histogram construction method based

on markov chains. In Proceedings of Int. Conf. on

Statistical and Scientific Database Management (SS-

DBM), pages 359–368, 2006.

[12] K. J. Jacob and D. Shasha. Fintime

— a financial time series benchmark.

http://cs.nyu.edu/cs/faculty/shasha/fintime.html,

March 2000.

[13] C. D. Manning and H. Schütze. Foundations of

Statistical Natural Language Processing. The MIT

Press, 1999.

[14] Y. Matias, J. S. Vitter, and M. Wang. Wavelet-based

histograms for selectivity estimation. In SIGMOD ’98:

Proceedings of the 1998 ACM SIGMOD international

conference on Management of data, pages 448–459,

New York, NY, USA, 1998. ACM Press.

[15] R. T. Ng and J. Han. Efficient and effective clustering

methods for spatial data mining. In Proc. of VLDB

Conf., pages 144–155, Santiago, Chile, Sept. 12-15

1994.

[16] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and

B. P. Flannery. Numerical Recipes in C. Cambridge

University Press, 2nd edition, 1992.

[17] J. R. Quinlan. C4.5: programs for machine learning.

Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 1993.

[18] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth

mover’s distance as a metric for image retrieval. Int.

J. Comput. Vision, 40(2):99–121, 2000.

[19] Z. Sun. Adaptation for multiple cue integration. In

Proceedings of IEEE Computer Society International

Conference on Computer Vision and Pattern Recogni-

tion (CVPR), volume 1, pages 440–445, 2003.

[20] Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, and

S. Prabhakar. Indexing multi-dimensional uncertain

data with arbitrary probability density functions. In

Proceedings of VLDB, pages 922–933, Trondheim, Nor-

way, August/September 2005.

[21] A. Traina, C. Traina, S. Papadimitriou, and C. Falout-

sos. Tri-plots: Scalable tools for multidimensional data

mining. KDD, Aug. 2001.

[22] J.-P. Vert. Adaptive context trees and text clus-

tering. IEEE Transactions on Information Theory,

47(5):1884–1901, 2001.

[23] T. Zhang, R. Ramakrishnan, and M. Livny. Birch:

An efficient data clustering method for very large

databases. In Proceedings of ACM SIGMOD, pages

103–114, Montreal, Canada, June 1996.

