
Fast and Multi-aspect Mining of
Complex Time-stamped Event Streams

Kota Nakamura Yasuko Matsubara Koki Kawabata
SANKEN, Osaka University, Japan SANKEN, Osaka University, Japan SANKEN, Osaka University, Japan
kota88@sanken.osaka-u.ac.jp yasuko@sanken.osaka-u.ac.jp koki@sanken.osaka-u.ac.jp

Yuhei Umeda Yuichiro Wada Yasushi Sakurai
AI Lab., Fujitsu, Japan AI Lab., Fujitsu; AIP, RIKEN, Japan SANKEN, Osaka University, Japan

umeda.yuhei@fujitsu.com wada.yuichiro@fujitsu.com yasushi@sanken.osaka-u.ac.jp

ABSTRACT
Given a huge, online stream of time-evolving events with multiple
attributes, such as online shopping logs: (item, price, brand, time),
how can we summarize large, dynamic high-order tensor streams?
How can we see any hidden patterns, rules, and anomalies? Our
answer is to focus on two types of patterns, i.e., “regimes” and “com-
ponents”, over high-order tensor streams, for which we present an
efcient and efective method, namely CubeScope. Specifcally, it
identifes any sudden discontinuity and recognizes distinct dynam-
ical patterns, “regimes” (e.g., weekday/weekend/holiday patterns).
In each regime, it also performs multi-way summarization for all
attributes (e.g., item, price, brand, and time) and discovers hidden
“components” representing latent groups (e.g., item/brand groups)
and their relationship. Thanks to its concise but efective sum-
marization, CubeScope can also detect the sudden appearance of
anomalies and identify the types of anomalies that occur in practice.

Our proposed method has the following properties: (a) Efective:
it captures dynamical multi-aspect patterns, i.e., regimes and com-
ponents, and statistically summarizes all the events; (b) General:
it is practical for successful application to data compression, pat-
tern discovery, and anomaly detection on various types of tensor
streams; (c) Scalable: our algorithm does not depend on the length
of the data stream and its dimensionality. Extensive experiments
on real datasets demonstrate that CubeScope fnds meaningful pat-
terns and anomalies correctly, and consistently outperforms the
state-of-the-art methods as regards accuracy and execution speed.

CCS CONCEPTS
• Information systems → Data mining.

ACM Reference Format:
Kota Nakamura, Yasuko Matsubara, Koki Kawabata, Yuhei Umeda, Yuichiro
Wada, and Yasushi Sakurai. 2023. Fast and Multi-aspect Mining of Complex
Time-stamped Event Streams . In Proceedings of the ACM Web Conference
2023 (WWW ’23), April 30–May 04, 2023, Austin, TX, USA. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3543507.3583370

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’23, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00
https://doi.org/10.1145/3543507.3583370

1 INTRODUCTION
Given a large, online stream of time-stamped events, how can we
statistically summarize all the event streams and fnd important pat-
terns, rules, and anomalies? Time-stamped event data are generated
and collected by many real applications [10, 17, 29, 84], including
online marketing analytics [52, 75], social network/location-based
services [28, 71], and cybersecurity systems [19, 80], with increas-
ingly larger sizes and faster rates of transactions. For example, an
online shopping service could generate millions of logging entries
every second, with rich information about items and users. The
service providers would like to send targeted advertisements and
detect fraudulent activities by investigating online purchasing pat-
terns and hidden user/item relationships.

Here, let us assume that we have a large collection of event logs,
consisting of multiple attributes, e.g., online shopping: (item, price,
brand, time) and local mobility activities: (pick-up and drop-of lo-
cations, time), where huge numbers of event entries arrive online
at high bit rates, which we shall refer to as “complex time-stamped
event streams”. These data are represented as high-order tensor
streams, e.g., a 4th-order item-price-brand-time tensor stream, un-
like a previously considered multivariate time series [37], tensor
[50], or stream of elements [61], specifcally, as mentioned later
in Section3.1, whose high-dimensional, sparse, and semi-infnite
nature derails existing methods and even our interpretation of
data. So what is a good representation of complex time-stamped event
streams? This is exactly the problem we focus on in this work. We
frst present a compact yet powerful representation that summarizes
a semi-infnite collection of tensor streams. Specifcally, we aim to
capture two types of patterns, i.e., “regimes” and “components”.

In practice, real-life data streams contain various types of dis-
tinct temporal dynamical patterns of diferent durations, namely,
“regimes”, such as the weekday/weekend/holiday patterns of online
shopping services or taxi rides. In each regime, a set of events,
consisting of multiple attributes, has similar behavior and latent in-
teractions. We introduce the concept of latent “components”, which
capture hidden groups in each attribute (e.g., item groups and typi-
cal pick-up locations) and their relationships.

An important application scenario, for example, in cybersecurity,
multiple types of intrusions/anomalies, such as denial of service
or port scanning attacks, occur suddenly and need to be detected
and analyzed in real-time to minimize harm. So we would also like
to answer the question: How can we quickly detect anomalies and
identify their types? However, it is extremely challenging because
signs of the anomalies appear in one or more attributes (e.g., source

1638

https://doi.org/10.1145/3543507.3583370
https://doi.org/10.1145/3543507.3583370
mailto:permissions@acm.org
mailto:yasushi@sanken.osaka-u.ac.jp
mailto:koki@sanken.osaka-u.ac.jp
mailto:wada.yuichiro@fujitsu.com
mailto:yasuko@sanken.osaka-u.ac.jp
mailto:umeda.yuhei@fujitsu.com
mailto:kota88@sanken.osaka-u.ac.jp
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583370&domain=pdf&date_stamp=2023-04-30

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Nakamura, et al.

(a) Regime identifcation for social mobility event streams
Entertainment
Business
Night-out

(b-i) Snapshot of (b-ii) Snapshot of
(d) Original event data stream (c) Time evolution of three components three components three components
for NYC taxi rides (one week) around mid-December on pick-up location on drop-of location

Time (per hour)

0
50

100
150

Pic
k u

p l
oca

tio
n I

D

0
50

100
150

200
250

Dr
op

 o
ff

lo
ca

tio
n

ID

50
100
150
200
250

8

10

12

14

16

Nu
m

be
r o

f t
rip

s

Figure 1: Real-time modeling of CubeScope on New York City taxi rides: (a) It incrementally identifes distinct time-evolving
patterns (i.e., regimes) and their shifting points. Specifcally, Regime #1 (blue) coincides with weekdays, while Regimes #2, #3,
and #4 (orange, green, and red) capture weekends and public holidays. Also, it can adaptively recognize the sudden regime
transitions (Regimes #5, #6, · · ·) that refect social conditions under the COVID-19 pandemic. It fnds components that are
interpretable summaries for all attributes (i.e., pick-up, drop-of, time), especially for (b) pick-up/drop-of locations and (c)
time attribute. (d) The original data is a sparse and high-dimensional tensor. It exhibits no obvious components or regimes.

IP address, packet size,. . .), and event streams evolve over time,
where new types of anomalies can arise and the concept of normal
behavior changes.

In this paper, we present CubeScope, an efcient and efec-
tive mining approach capable of dealing with the above questions.
CubeScope monitors a high-order tensor stream and incrementally
recognizes dynamical multi-aspect patterns, i.e., regimes and com-
ponents, and anomalies, while updating the information for each.
Intuitively, the problem we wish to solve is as follows:

InformalProblem 1. Given a high-order tensor stream X, which
consists of events with multiple attributes and timestamps,

• Find a compact description of X that summarizes all the events,

– distinct dynamical patterns (i.e., regimes),
– multi-aspect latent trends (i.e., components),

• Report anomalies and their types

incrementally and quickly, at any point in time.

Preview of Results. Figure 1 (a)-(c) shows some of our discoveries
on local mobility data. This dataset consists of taxi ride events (pick-
up location ID, drop-of location ID, time) in New York City, with
hourly timestamps, from Jul. 1st, 2019, to Jun. 30th, 2020. Figure 1 (d)
shows the original data. The data are represented as the stream of
the 3rd-order tensor, where each aspect indicates each attribute.
Note that this tensor is sparse and high-dimensional, i.e., there are
numerous dimensions in each aspect/attribute. It does not exhibit
any obvious patterns, neither regimes nor components.

• Regime identifcation: As shown in Figure 1 (a), CubeScope in-
crementally discovers nine regimes (i.e., distinct time-evolving

patterns). Specifcally, it fnds Regimes #1 (blue) and #2 (or-
ange), corresponding to weekdays and weekends, respec-
tively. Around the end of the year, it recognizes new regimes,
Regimes #3, #4 (green, red), which coincided with certain
festive days, including Thanksgiving, Christmas, and Year-
end. The new Regimes #5 (purple) and #6 (brown) indicate
abrupt changes in human movement. In fact, due to the emer-
gence of a new viral pandemic, COVID-19, the city ordered
restaurants/bars to close on March 16th [11] and then ofces
to close on March 22nd [12]. Finally, our method generates
Regimes #8 (gray) and #9 (dark yellow) for the new weekday
and weekend human mobility patterns, respectively, after the
reopening order on June 8th [13], which allowed ofce-based
workers and in-store retail shopping to resume.

• Multi-aspect component analysis: CubeScope provides com-
ponents that are interpretable summaries for each attribute.
Figure 1 (b) shows the three major components for pick-
up/drop-of locations in Regime #1, where we manually
named them “Entertainment”, “Business”, and “Night-out”.
These areas agree with our intuition: the Entertainment com-
ponent is allocated around Central Park and nearby mu-
seums, the Business component is concentrated on major
railway stations such as Grand Central Terminal, and the
Night-out component corresponds to the area around Lower
Manhattan, which has a large number of restaurants and
bars. Figure 1 (c) shows three major components for time at-
tribute around mid-December. They show the spiking of the
Entertainment component during Christmas. The Business
component consistently exhibits high peaks on weekdays,
while it had lower value on weekends and Christmas. Lastly,

1639

Fast and Multi-aspect Mining of
Complex Time-stamped Event Streams

Table 1: Capabilities of approaches.

TI
CC

/+
+

Cu
be
M
ar
ke
r

T-
LS

TM

LD
A
/N

TM
/+
+

Tr
im
in
e

D
BS

TR
EA

M
/+
+

LO
F/
++

M
em

St
re
am

Cu
be
Sc
op

e

High-dimensional Tensor - some - - ✓ - - ✓ ✓
Sparsity - - ✓ ✓ ✓ - - ✓ ✓
Semi-infnite Data - - - - - ✓ - ✓ ✓
Segmentation ✓ ✓ ✓ - - - - - ✓
Data Compression ✓ ✓ - ✓ ✓ ✓ - - ✓
Anomaly Detection - - - - - - ✓ ✓ ✓
Dynamical Multi-aspect Patterns - - - - - - - - ✓

the Night-out component shows midnight peaks, especially
on weekends (i.e., Fri/Sat midnight).

Contributions. The main contributions of our paper are:

• Efective: We introduce dynamical multi-aspect patterns
(i.e., regimes and components), which summarize high-order
tensor streams and provide interpretable representations.
Also, we formulate the summarization problem for capturing
these patterns in a data compression paradigm.

• General: To solve the summarization problem, we design
CubeScope, which also performs data compression, pattern
discovery, and anomaly detection. Our experimental results
show its practicality on multiple domains, such as online
marketing analytics and cybersecurity.

• Scalable: Our proposed algorithm is fast and requires con-
stant computational time both with regard to the entire
stream length and the dimensionality for each attribute.

Reproducibility. Our source code and datasets are available at [6].
Outline. The rest of this paper is organized as follows. We frst
introduce related studies followed by our proposed model and al-
gorithms, experiments and conclusions.

2 RELATED WORK
The mining of time-stamped event data has attracted great interest
in many felds [30, 42, 46, 58, 66, 67, 69, 78, 82, 86–88]. Table 1 illus-
trates the relative advantages of our method, and only CubeScope
meets all the requirements.
Modeling Dynamics and Segmentation. Classical approaches
such as linear dynamical systems (LDS), and hidden Markov models
(HMM) are extended to capture distinct patterns of sequences as
described in [40, 48, 54, 83]. TICC [37] characterizes the interde-
pendence between multivariate observations based on a Markov
random feld. Such distinct time series patterns also enable us to
perform anomaly detection and forecasting [26, 63–65]. Tensor-
based approaches for time series segmentation have been proposed
[39, 47] that incorporate latent relationships between sequences.
The previous studies are designed for continuous time series and
are thus incapable of modeling sparse tensors. In recent years, many
deep neural network models have been proposed [53, 59]. T-LSTM
[17] identifes disease progression patterns with irregular time in-
tervals. Since these are mostly “black-box” models and incur high
computation costs, they cannot address streaming data summa-
rization. Moreover, none of the above studies focuses on large and
sparse tensors with a higher order than 3.

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Summarization and Clustering. Probabilistic generative mod-
els [18, 71], such as latent Dirichlet allocation (LDA) [22] and its
variants [43, 70, 89], are broadly applied to analyze large collec-
tions of categorical data. More recently, topic models have been
extended to neural-based models [55, 85] by using a variational
autoencoder [49]. A collection of events can be turned into a tensor
[41, 44, 76]. TriMine [68] summarizes an event tensor and discovers
groups of dimensions. As with [16, 51, 67, 78], the minimum de-
scription length (MDL) principle [33] is applied to summarize time
series and dynamic graphs. Unlike these methods, our work focuses
on tensor streams. The processing and clustering of data streams
[14, 32, 36, 60], such as DBSTREAM [36], have also attracted signif-
icant interest. However, these algorithms process each data point
individually and cannot capture multi-aspect features.
Anomaly Detection. Typical anomaly detection methods [15, 25,
31, 61, 81], such as local outlier factor (LOF) [24] and tree-based
approaches [34, 56], can be used in event tensors by converting mul-
tiple attributes to numerical ones. [20, 45, 62, 79, 80] use a stream
of multi-aspect records as input. MemStream [21] can learn dy-
namically changing trends to handle time-varying data distribution
known as concept drift [27, 35, 57]. Although these methods have
the ability to detect multiple anomalies, they cannot identify the
types of anomalies or capture dynamical multi-aspect patterns.

In conclusion, none of the existing methods focus specifcally
on modeling of dynamical multi-aspect patterns, summarization,
and anomaly detection in high-order tensor streams.

3 PROPOSED MODEL
In this section, we present our proposed model.

3.1 Design Philosophy of CubeScope
The symbols used in this paper are described in Appendix A. Here
we consider our settings, namely, complex time-stamped event
streams. We continuously monitor an event entry with � categori-
cal attributes and a timestamp. At the most recent time � , we have
a collection of events with �1 . . .�� unique units for each attribute
and � timestamps.

· · ·×�� ×� Definition 1 (Event tensor stream). Let X ∈ N�1 ×

be an � +1 th-order tensor stream up to the current time point � . At
every time point � that is arrived at with a non-overlapping time in-
terval � ≪ � , we can obtain the current tensor X� ∈ N�1 ×···×�� ×�

as the partial tensor of X. The element ��1 ...�� ,� of X shows the
total number of event entries of the �1-th . . .�� -th units in each
attribute at time tick � .

Figure 1 (d) shows the event tensor stream for NYC taxi rides,
where each event is of the form (pick-up ID, drop-of ID, time), � = 2.
Here, we provide the reader with three important observations.

Observation 1 (High Dimensional). This tensor has a large
number of units in each attribute, e.g., �1 = 262 and �2 = 264 in the
pick-up/drop-of location attribute.

Observation 2 (Sparse). In the fgure, most of the attribute pairs
have very sparse sequences, which derails all typical time series anal-
ysis tools because they look like noise (e.g., {0, 0, 0, 1, 0, 0, 1, 2, 0, · · · }).

1640

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Nakamura, et al.

Observation 3 (Semi-infinite). The event tensor stream evolves
over time and arrives in an unbounded stream, making it impossible
to store all the historical data.

Consequently, we aim to summarize the event tensor stream
and obtain a succinct description. Specifcally, we focus on the two
types of patterns, (P1) components (i.e., latent groups and their
relationship) and (P2) regimes (i.e., distinct time-evolving patterns).
So, what is the simplest mathematical model that can capture both
(P1) and (P2)? How can we formulate the summarization problem?
We provide the answers below.

3.2 Proposed Solution: CubeScope
We now present our model in detail. We frst describe (P1) com-
ponents in each current tensor X� by introducing multi-aspect
component factorization and then propose a compact description for
representing (P2) regimes and the whole tensor stream. Finally,
we formalize the problem as minimizing encoding cost in the data
compression paradigm.

3.2.1 Multi-aspect Component Factorization (P1). We begin with
the simplest case, where we have only a current tensor X� . Our
frst step is to describe a high-dimensional and sparse tensor X� as
a compact and interpretable model. We thus propose a new factor-
ization to model the generative process of events. In our model, we
assume that there are � major trends/components behind the event
collections. Specifcally, the �-th component is characterized by
probability distributions in terms of � attributes and time, which
are defned as follows:

• A(�)
� ∈ R�� : probability distribution over �� units of the

attribute � for the component � .
• B� ∈ R� : probability distribution over � components for the
time � .

, . . . , A(�)Here, we refer to A(1) , and B as component matrices.
Since we treat each attribute as categorical, the component matrices
can be described by employing a Dirichlet prior [22]:

A(�) ∼ Dirichlet(� (�)), B� ∼ Dirichlet(�),
�

where � (�) and � are the hyperparameters1.
We also incorporate temporal dependencies into this model so

that each component matrix captures the context of its predeces-
sors in the data stream. We assume that the means of the com-
ponents are the same as at the previous time � − � , unless the
newly arrived events X� are confrmed. With this assumption, we

A(�)can use the following Dirichlet priors: Dirichlet(� (�) 1 ˆ) and
�

Dirichlet(�1B̂�), where � A(�) and � B are the previous component ˆ ˆ
matrices at � − �� . To capture the long-term dependencies, we can
extend this approach so that it can depend on past � matrices.

A(�) A(�) ˆ∼ Dirichlet(Σ�
=1� (�)

� ˆ), B� ∼ Dirichlet(Σ�
=1�� B�) .� � � �

Consequently, the generative process can be described as follows:

• For each component � = 1, . . . , � :
– For each attribute � = 1, . . . , � :

A(�) A(�)
=1� (�) ˆ∗ ∼ Dirichlet(Σ�

�)
� � �

• For each time � = 1, . . . , � :
ˆ– B� ∼ Dirichlet(Σ�

=1�� B�)�

1We set � (�) = � = 1/� as default.

– For each entry � = 1, . . . , �� :
∗ ��,� ∼ Multinomial(B�) // Draw a latent component ��,�
∗ For each attribute � = 1, . . . , � :

(�)· � ∼ Multinomial(A(�)) , // Draw a unit in each attribute
�,� ��,�

where �� is the total number of events at time � , and ��, � is the latent
component. Each event ��, � is sampled from the component-specifc
multinomials. We note that the benefts of this model are three-fold.
First, even though the event tensor has sparse activity, our model
can discard many redundancies (e.g., noise) and summarize a set
of events into � components. Second, an event entry is generated
from � + 1 component matrices. It thus handles arbitrary-order
tensors. Third, to capture temporal dependencies, it employs past �
component matrices rather than storing tensors.

3.2.2 Compact Description (P2). Although the component matrices
concisely describe the partial tensor X� , it is insufcient for the
whole tensor stream X, containing various types of distinct dynam-
ical patterns. We thus introduce another higher-level architecture.

Definition 2 (Regime: �). Let � be a regime consisting of the
component matrices: � =

�=1, B} to describe a certain{{A(�) }�

distinct dynamical pattern with which we can divide and summarize
the entire tensor stream into segments. When there are � regimes,
a regime set is defned as Θ = {�� }�

�
=1.

Also, when there are � switching positions, the regime assign-
ments are defned as S = {�� }��=1, where �� = (�� , �) is the history
of each switching position �� to the � -th regime. Finally, we adopt
all the above parts for a compact description of X.

Definition 3 (Compact description). Let C = {�, Θ, �, S} be
a compact representation of the whole tensor stream X, namely,

• the number of regimes � and the regime set, Θ = {�� }�
�
=1,

• the number of segments � and the assignments, S = {�� }�
�=1.

3.2.3 Problem Formulation. Our fnal goal is to formulate the prob-
lem, where we summarize all data streams X into a compact repre-
sentation C. Our objective function leverages the minimum descrip-
tion length (MDL) principle [33]. In short, it follows the assumption
that the more we can compress the data, the more we can learn
about their underlying patterns. Specifcally, we evaluate the total
encoding cost, which can be used to losslessly compress the original
tensor stream X. The summarization problem is written as follows:

Problem 1. Given a whole event stream X, fnd the compact
description C, which minimizes the total encoding cost

< X; C > =< C > + < X|C >, (1)

where < C > is the model coding cost of C, and < X|C > is the data
coding cost given the model C.

Model Coding Cost. The model coding cost is the number of bits
needed to describe the model. In our model, the dimensionality
of latent components requires < � >= Σ

�
�
=1 log

∗(��) + log∗(�) +
log∗(�) 2. The number of regimes needs < � >= log∗(�). The

2Here, log∗ is the universal code length for integers.

1641

Fast and Multi-aspect Mining of
Complex Time-stamped Event Streams

model coding cost of each regime � consists of the following terms,

�∑
< A(�)< � >= > + < B >, (2)

�=1

< A(�) >= |A(�) | · (log(�) + log(�� − 1) + ��) + log∗ (|A(�) |), (3)

< B >= |B | · (log(�) + log(� − 1) + ��) + log∗ (|B |), (4)

where | · | describes the number of non-zero elements in each
of the matrices, and �� is the foating point cost3. The number
of segments needs < � >= log∗(�). Each shifting point needs
< �� >= log∗(��) + log(�).
Data Coding Cost. Given a full regime set Θ, we can encode the
data X based on Hufman coding [23], i.e, a number of bits are
assigned to each value in X. The data coding cost of X given � is
computed by: < X|� >= − log � (X|{A(�) }

�
�
=1, B). Thus, the data

coding cost of X given C is computed by:

�∑
< X|C > = − log � (X[�] |��), (5)

� =1

where X[�] is a set of partial tensors assigned by the � -th regime.
Finally, the total encoding cost < X; C > is written as follows:

< X; C > =< C > + < X|C >

=< � > + < � > + < � >

� � ∑ ∑
+ < � > + < �� > + < X|C > . (6)
� =1 �=1

4 STREAMING ALGORITHM
Thus far, we have described how we represent the two concepts,
(i.e., components and regimes), and formulate the summarization
problem (i.e., Problem 1) in a lossless compression context. Our next
goal is to solve the problem in a streaming setting. In this section,
we aim to fgure out how to incrementally summarize entire event
streams into a compact description C and also how to exploit the
compact description for streaming anomaly detection.

To tackle these problems, we now present a streaming algorithm
CubeScope, consisting of two sub-algorithms, C-Decomposer and
C-Compressor. Algorithm 1 (see Appendix B) shows the overall
procedure, and Figure 2 illustrates how the proposed algorithm
works. Intuitively, our algorithm continuously generates a regime
�� from the non-overlapping arrival tensor X� . It then updates the
compact description C with �� and measures the anomalousness of
X� . Next, we describe each sub-algorithm in detail.

4.1 C-Decomposer
We frst aim to incrementally monitor X� and estimate a candidate
regime �� (i.e., {A(�) }�

�
=1, B), which best describes X� . According

to the generative process in section 3.2.1, we propose an efcient
estimation with collapsed Gibbs sampling [73]. Specifcally, for
each non-zero entry ��1,...,�� ,� in X� , we draw latent components

3We set 8 bits as the default by following [66, 82].

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Figure 2: Illustration of CubeScope algorithm. C-

N�1 ×�2 ×�
Decomposer: Given a current tensor X� ∈ ,
it frst decomposes X�

into a candidate regime �� depending
on past � regimes (� = 2 in this fgure). C-Compressor: it
assigns the optimal regime for X�

among the candidate
regime �� and the regimes {�� }�

�
=1 (= Θ). If the candidate

regime is assigned, CubeScope inserts it into the regime set
Θ as ��+1. It also computes the anomalousness score for X�

.

��1,...,�� ,� with the probability � :

� (��1,...,�� ,� = � | X� , B ′ , B̂, �, {A(�) ′ , Â (�) , � (�) }��
=1)

′Í� � (�) Í�
=1 � (�) (�)

� ′ +
=1 �� �̂�,� Ö � + � �̂�,� � �,�� � �,�� ∝ · , (7)Í�

=1 � ′ + �� �=1
Í�
�=
�
1 � (�) ′ + �� (�)

� �,� �,��

(�)where � and ��,� are the total counts of that component � is
�,��

assigned to the �� -th unit and time-tick � , respectively. Note that
the prime (e.g., � ′) indicates the count yielded by excluding the

�,�
entry ��1,...,�� ,� . After the sampler has burned-in, we can obtain

A(�) }� the component matrices for X� , i.e., { ˜
�=1 and B̃ , as follows:

(�) Í�
=1 � (�) (�) Í� ˆ

Ã (�) �
�,��

+
� � �̂�,�� ˜ ��,� +

�=1 �� ��,�
�,��

∝ Í�� (�) , B�,� ∝ Í�
. (8)

�=1 � + �� (�)
�=1 ��,� + ��

�,��

Algorithm 2 (see Appendix B) shows C-Decomposer in de-
tail. It frst assigns the latent component ��1,...,�� ,� for each entry
��1,...,�� ,� in X� with Equation (7). Once the latent components
are determined, we can compute the objective matrices simply with
Equation (8). Here, we keep past � component matrices in the past
parameter set, i.e., a FIFO queue � with size �. After computing the
current component matrices, the oldest matrices are removed, and
the estimated matrices are inserted into � .

Even though our tensor data is high-dimensional (Observation 1),
C-Decomposer does not depend on dimensionality, i.e., it takes
� (�) time, where � is the number of events (see Lemma 4.1 for
details). In contrast, conventional tensor algorithms such as alternat-
ing least squares (ALS) [50] scale with respect to all the attributes,
i.e., take � (Î

�
�
=1 ��) time, which may become very computation-

ally demanding for high-order tensors (� ≥ 4).

1642

Nakamura, et al. WWW ’23, April 30–May 04, 2023, Austin, TX, USA

4.2 C-Compressor
We next describe C-Compressor in steps. Algorithm 3 (see Appen-
dix B) shows the overall procedure. After obtaining the candidate
regime �� , our next goal is to fnd compact description C for the
whole tensor stream X. However, X is semi-infnite (Observation 3),
and we thus cannot process all historical data. To efciently fnd
the compact description C, we adopt an insertion-based algorithm,
where it maintains a reasonable description for X and generates
a regime if necessary. Specifcally, the algorithm tracks only two
regimes, the previous regime �� and the candidate regime �� . Given
a current tensor X� with the two regimes, the algorithm compares
the extra cost according to Equation (6) for each regime, and then
chooses the next procedure so that the additional cost is minimized:

• If C-Compressor uses �� , it stays in the previous regime.
• If �� is chosen, C-Compressor frst fnds a more suitable
regime in Θ to avoid duplication. Then, the least expensive
regime is adopted.

Here, the additional cost < X� ; �∗ > is written as follows:

< X� ; �∗ > = Δ < C > + < X� |�∗ >, (9)
Δ < C > = log∗ (� + 1) − log∗ (�) + < �∗ >

+ log∗ (� + 1) − log∗ (�) + < � >, (10)

where �∗ indicates any regime. If we need to shift another ex-
isting regime to represent X� , then Δ < C >= log∗(� + 1) −
log∗(�)+ < � >; if the description of X� requires new regimes, it
costs all of the terms in Equation (10); otherwise, Δ < C >= 0.
Online Regime Updates. Whenever an existing regime is selected,
each count in the existing regime is updated by adding �� :

(�) Í� (�) (�)
� +

=1 � (�)
� �̂ + � �

A(�) �,�� � �,�� �,�� ˜ ← , (11)
�,�� Í�� (�) Í�� (�)

�=1 � + �� (�) +
�=1 � �

�,�� �,��

(�)where � (e.g., � �) is a count in the candidate regime. B̃
�,� is�,��

analogous, and omitted for brevity. The efect of the candidate
regime is decayed as the existing regime is updated; in other words,
each regime converges as it updates.
Anomaly Detection. Finally, we exploit the compact description C
for anomaly detection. Compression-based techniques are naturally
suited for anomaly and rare instance detection. In a given compact
description C, the high usage regime compresses the majority of all
past data with a short code length. In other words, it represents the
norm in the data stream and thus it needs long code length against
rare instances. We thus consider the encoding cost of X� as its
anomalousness score; the higher the compression cost, the more
likely it is “to arouse suspicion that it was generated by a diferent
mechanism” [38].

���� = arg max |S−1 |,�
� ∈�

����� (X�) = < X� |����� >, (12)

where |S−1 | is the total segment length of the regime �� . Note that, �
in data streams, the concept of normal changes over time, and this
is known as concept drift [21]. This approach can adaptively change
the norm to judge incoming tensors as the concept drift.

Lemma 4.1 (Time complexity of CubeScope). The time com-

plexity of CubeScope is at least � (�) and at most � (� + �) per

Table 2: Dataset description

Dataset The form of entry Order

Local Mobility: Ride information attributes & timestamp → #rides

#1 NYC-Taxi [8] (Pick-up/Drop-of location ID, Time) 3
#2 Bike-Share [2] (User’s age, Start/End station ID, Time) 4

E-commerce: Purchase information attributes & timestamp → #purchases

#3 Jewelry [4] (Price, Brand, Gem, Accessory type, Time) 4
#4 Electronics [3] (Brand, Item category, Time) 3

Network trafc/intrusion: Access detail attributes & timestamp → #accesses

(Protocol type, Service, Flag, Land, Duration
Src/Dst bytes, Wrong fragment, Urgent, Time)

(Proto, Src/Dst IP Addr, Src/Dst Pt,
Flags,Duration,Packets,Bytes, Time)

”
(Src/Dst bytes, Count, Same srv/Serror/Srv serror rate,
Dst host serror rate/same src port rate/srv serrors rate,
Dst host count/srv count, Duration,Service,Flag,Time)

process, where � is the number of regimes and � is the total number Í Í Í

#5 AirForce [5]

#6 External [1]

#7 OpenStack [1]
#8 Kyoto [9]

10

10

10
15

of event entries in X�
(i.e., �1

· · · �� � ��1,...,�� ,�).

Proof. Please see Appendix B. □

5 EXPERIMENTS
In this section, we evaluate the performance of CubeScope. We
answer the following questions through the experiments.
(Q1) Efectiveness: How successfully does CubeScope discover

compact description C in given tensor streams?
(Q2) Accuracy: How accurately does it achieve modeling, cluster-

ing, and streaming anomaly detection?
(Q3) Scalability: How does it scale in terms of computational time?

Datasets & Experimental Setup. We use eight real datasets and
four synthetics. The real datasets contain the event tensor streams
of local mobility, e-commerce, and network trafc/intrusion and are
summarized in Table 2. The synthetics and experimental settings
are described in Appendix C.1.
Baselines. Our experiments are evaluated with twelve baselines.

Probabilistic generative models:
• Latent Dirichlet Allocation (LDA) [22] - A classical topic
model, where the topic distribution is a multinomial.

• Neural Topic Model (NTM) [85] - A topic model based on
neural variational inference.

• TriMine [68] - A factorization method for a high-order tensor,
whose entries consists of multiple attributes and a timestamp.

Clustering approaches for time series, tensor, and data streams:
• K-means - The standard K-means clustering algorithm using
Euclidean distance.

• TICC [37] - A clustering method for multivariate time series,
where each cluster is characterized by a correlation network.

• CubeMarker [39] - An ofine approach for discovering dis-
tinct patterns in tensor time series.

• Time-Aware LSTM (T-LSTM) [17] - A time series clustering
method for sequences with irregular time intervals.

• DBSTREAM [36] - A clustering algorithm for evolving data
streams, which incrementally updates the density of clusters.

Unsupervised anomaly detection methods:
• Local Outlier Factor (LOF) [24] - A density-based method
for a collection of data points.

1643

Fast and Multi-aspect Mining of
Complex Time-stamped Event Streams WWW ’23, April 30–May 04, 2023, Austin, TX, USA

(a) Regime identifcation

Sun Mon Tue Wed Thu Fri Sat
Process interval

Luxury
Middle

Affordable

Co
m

po
ne

nt

0.25
0.50
0.75

(b-i) Regime#1 (normal sale)

Sun Mon Tue Wed Thu Fri Sat
Process interval

Luxury
Middle

Affordable

Co
m

po
ne

nt

0.00
0.25
0.50
0.75

(b-ii) Regime#2 (Black Friday sale)

Sun Mon Tue Wed Thu Fri Sat
Process interval

Luxury
Middle

Affordable

Co
m

po
ne

nt

0.00
0.25
0.50
0.75

(b-iii) Regime#3 (Memorial Day sale)

$1K

$700

$350

$50
(c-i) Luxury component

$1K

$700

$350

$50
(c-ii) Middle component

$1K

$700

$350

$50
(c-iii) Afordable component

Figure 3: Market analysis of CubeScope on the Jewelry dataset: (a) CubeScope adaptively captured the changes in purchase
behaviors caused by the sale. (b) The three components (Luxury, Middle, Afordable) for time. A darker color denotes a stronger
relationship between each component and the time. It shows when the components attract consumer interest. (c) The three
components for each attribute (price/brand/gem/accessory type) in Regime #1. Each of the columns shows four attributes. A
darker color in the price rank and a larger size in the word cloud denote a stronger relationship with the component.

Figure 4: Real-time intrusion detection of CubeScope on AirForce dataset: the stars indicate intrusions. It successfully identifed
the multiple types of intrusions of diferent durations (i.e., Regime #2: Smurf, Regime #3: Probe attacks, Regime #4: Neptune).

• Isolation forest (iForest) [56] - An ofine method, where a
forest of random cuts of data points isolates outliers.

• Robust Random Cut Forest (RRCF) [34] - A tree-based ap-
proach, which is designed for use with streaming data.

• MemStream [21] - A streaming approach using a denoising
autoencoder and a memory module.

5.1 Q1.Efectiveness
We frst demonstrate how efectively CubeScope works on real
datasets. Please also see the results in Electronics in Appendix C.2.
Local Mobility. The results for NYC-Taxi have already been pre-
sented in Figure 1. As already seen, CubeScope identifes multiple
regimes and their shifting points (Figure 1 (a)), and captures latent
components (Figure 1 (b)(c)). These patterns refect complicated
social conditions and help us to understand human activities.
Online Marketing Analytics. Figure 3 shows our mining result
for the Jewelry dataset. This dataset is an e-commerce-log collected
from an anonymous jewelry store. Each of the logs consists of four
attributes, namely 20 prices, 6 anonymous brands, 32 gems, and 8
accessory types, with 12-hour timestamps. The price attribute is
defned every ffty dollars up to 1K dollars i.e., 20 stages.

• Regime identifcation: As shown in Figure 3 (a), CubeScope
generates Regime #1 and starts monitoring the tensor stream.
In late November, it detects a regime transition and gener-
ates Regime #2. Similarly, in late May, it generates a new

Regime #3. These periods coincide with Black Friday 4 and
Memorial Day 5. This suggests our method captures the
change in purchase behaviors caused by the sale.

• Multi-aspect component analysis: Figure 3 (b)(c) shows three
components, which we manually named “Afordable”, “Mid-
dle”, and “Luxury”. First, Figure 3 (b) shows the three com-
ponents for the time attribute (i.e., B) in each regime. It
demonstrates when each component attracts consumer in-
terest. Figure 3 (c) shows the three components for each
attribute (i.e., {A(�) }

�
4
=1) in Regime #1. The components

reveal the latent groups in four attributes (i.e., price, brand,
gem, accessory type). It shows that each component (row) is
strongly related to diferent brands or accessories.

Here, we provide the reader with some application scenarios. For
targeted advertising and promotion strategies, analysts investigate
purchase logs with millions, billions or even trillions [74] of events.
However, this approach requires expert knowledge and time re-
sources. Since CubeScope can automatically and efciently summa-
rize a massive amount of data into just a handful of components, it
could provide analysts with a summary of the market or user pref-
erences. Also, it is a more critical issue to analyze how the purchase
behaviors change due to fads and sales. Our method recognizes the

4Black Friday is a big sale event on the 4th Friday of November.
5On Memorial Day, most jewelry shops hold special sales.

1644

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Nakamura, et al.

4 8 16
of components

8

9

10

11

Ne
ga

tiv
e

lo
g-

lik
el

ih
oo

d #1 NY-Taxi

4 8 16
of components

14

15

16

17

18 #2 Bike-Share

4 8 16
of components

6

8

10

#3 Jewelry

4 8 16
of components

6

8

10

#4 Electronics

4 8 16
of components

0

10

20

#5 Airforce

4 8 16
of components

0

20

40

60
#6 External

4 8 16
of components

20

40

60 #7 OpenStack

4 8 16
of components

0

20

40

60

#8 Kyoto

Method
CubeScope
NTM
TriMine
LDA

Figure 5: Modeling accuracy of CubeScope: the method consistently outperforms its baselines (lower is better).

Syn1 Syn2 Syn3 Syn4 Airforce ExternalOpenStack
Dataset

0

1

2

Co
nd

iti
on

al
 E

nt
ro

py Method
CubeScope
CubeMarker
DBSTREAM
T-LSTM
TICC
K-means

Figure 6: Clustering accuracy with respect to conditional
entropy (lower is better).

0.0 0.5 1.0
False Positive Rate

0.00

0.25

0.50

0.75

1.00

Tr
ue

 P
os

iti
ve

 R
at

e

CubeScope
MemStream
RRCF
iForest
LOF

Figure 7: Detection accuracy (higher is better): CubeScope
consistently wins. (left) The ROC curve on External dataset.
(right) The ROC-AUC on all datasets.

Airforce External Opentack Kyoto
Dataset

0.0

0.5

1.0

AU
C

Method
CubeScope
MemStream
RRCF
iForest
LOF

2 3 4 5
Time ×104

101

103

105

W
al

l c
lo

ck
 ti

m
e

(s
)

CubeScope
NTM

TriMine
LDA

2 3 4 5
of records ×106

40

60

80

W
al

l c
lo

ck
 ti

m
e

(s
)

CubeScope

Figure 8: Scalability of CubeScope: (left) Wall clock time vs.
data stream length. CubeScope surpasses its competitors at
any time. It is up to 312,000x faster than the baselines. (right)
Average wall clock time vs. # of records in a process. The
algorithm scales linearly.

changes in dynamics as regime transitions and adaptively generates
the summary for each regime.
Cybersecurity. We demonstrate the real-time intrusion detection
of CubeScope. Figure 4 shows the result for the AirForce dataset,
which contains multiple intrusions simulated in a military net-
work environment within 1.2 million records. We investigated the
detected regimes and found that most corresponded to actual intru-
sions. For example, Regime #2 (orange) and Regime #4 (red) corre-
spond to Smurf and Neptune attacks, respectively. Regime #3 (green)
captures IP sweep/Stan/Port sweep. These intrusions are catego-
rized as probe attacks [77]. Most importantly, these anomalies arise
over time and thus their numbers, durations, and features are un-
known in advance, whereas CubeScope is fully automatic. It auto-
matically recognizes anomalies and their types while updating the
information for each type of anomaly in a streaming setting. We

also conducted a quantitative analysis of this result in terms of the
clustering and anomaly detection in Section 5.2.

5.2 Q2. Accuracy
We next evaluate the accuracy of CubeScope in terms of modeling,
clustering, and anomaly detection.
Modeling. We compared the modeling accuracy of CubeScope
and the probabilistic generative models. Figure 5 shows the average
negative log-likelihood of every current tensor X� of length 168
for each model. For a fair comparison, we use 4, 8, and 16 compo-
nents/topics for all models. A lower value indicates better model
construction. Unsurprisingly, CubeScope achieves high modeling
accuracy on all datasets because it can capture high-order tensor
streams. Since LDA and NTM handle a tensor as a large matrix,
they cannot capture multi-aspect features. TriMine is designed for
a high-dimensional and sparse tensor, but it cannot capture tensor
streams containing various time-evolving patterns (i.e., regimes).
Clustering. Next, we show how accurately CubeScope can fnd
regimes. We use both labeled datasets and synthetics because it is
insufcient to evaluate only real datasets containing some time-
evolving patterns that are not repeated (i.e., a few clusters appear
once). We generated four types of synthetics as follows [37] (see Ap-
pendix C.1 for details), and evaluated them ten times and reported
the mean and standard deviation values. Finally, we compare a
standard measure of conditional entropy (CE) from the confusion
matrix (CM) of the prediction regime labels against true cluster
labels. The CE score shows the diference between two clusters us-

���,� ���,� ing the following equation: �� = −Σ�, � log . NoteΣ�,� ���,� Σ � ���,�
that an ideal confusion matrix must be diagonal, in which case
�� = 0. Figure 6 compares CubeScope with clustering methods.
Our method consistently outperforms its competitors because it
can handle high-dimensional and sparse tensors. TICC failed to
capture sparse sequences. T-LSTM is designed for sequences with
sparsity but cannot handle high-dimensional tensors. CubeMarker
can capture tensor time series but cannot handle sparse tensors.
DBSTREAM has the ability to recognize clusters in data streams
but cannot capture multi-aspect features in tensor streams.
Anomaly Detection. We evaluate anomaly detection performance
for four real datasets containing ground truth anomalies. We frst
compute anomaly scores for CubeScope and unsupervised base-
lines, and then select the top-� most anomalous periods (� =
20, 40, . . .). Next, we compute true and false positive rates for each
method’s output. Figure 7 shows the ROC curve for External dataset
and ROC-AUC for all datasets. A higher value indicates better de-
tection accuracy. CubeScope achieves a high detection accuracy for
every dataset, while other methods cannot detect anomalies very
well because only our approach captures dynamical multi-aspect
patterns and utilizes them for subsequent anomaly detection.

1645

Fast and Multi-aspect Mining of
Complex Time-stamped Event Streams

5.3 Q3. Scalability
Finally, we evaluate the computational time needed by CubeScope
for large tensor streams. The left part of Figure 8 shows the wall
clock time of an experiment performed on a large NYC-Taxi dataset.
Thanks to the incremental update, our method is independent of
data stream length. In fact, our method achieved a constant compu-
tation time, which was up to fve orders of magnitude faster than its
baselines. The right part of Figure 8 shows the computational time
of C-Decomposer when varying the size of an input tensor. Since
CubeScope achieves fast and efcient model estimation for � (�)
time (as discussed in Lemma 4.1), the complexity scales linearly
with respect to the number of events.

6 CONCLUSION
In this paper, we focused on the dynamic summarization of high-
order event tensor streams and presented CubeScope, which ex-
hibits all the desirable properties that we listed in the introduction;

• Efective: it incrementally captures dynamical multi-aspect
patterns and summarizes a semi-infnite collection of event
tensor streams into an interpretable representation.

• General: our experiments with various datasets showed that
CubeScope successfully discovers meaningful patterns and
anomalies, and outperforms state-of-the-art modeling, clus-
tering, and anomaly detection methods.

• Scalable: its computational time is constant and indepen-
dent of the input data length and the dimensionality in each
attribute.

ACKNOWLEDGMENTS
We sincerely thank the anonymous reviewers, for their time and
efort during the review process. This work was supported by JSPS
KAKENHI Grant-in-Aid for Scientifc Research Number JP20H00585,
JP21H03446, JP22K17896, NICT 03501, MIC/SCOPE JP192107004,
JST-AIP JPMJCR21U4, ERCA-Environment Research and Technol-
ogy Development Fund JPMEERF20201R02.

REFERENCES
[1] [n.d.]. CIDDS (Coburg Intrusion Detection Data Sets). https://www.hs-coburg.

de/forschung/forschungsprojekte-oefentlich/informationstechnologie/cidds-
coburg-intrusion-detection-data-sets.html

[2] [n.d.]. Citi Bike Trip Histories. https://ride.citibikenyc.com/system-data
[3] [n.d.]. eCommerce purchase history from electronics store. https://www.kaggle.

com/mkechinov/ecommerce-purchase-history-from-electronics-store
[4] [n.d.]. eCommerce purchase history from jewelry store. https://www.kaggle.com/

mkechinov/ecommerce-purchase-history-from-jewelry-store
[5] [n.d.]. KDD Cup 1999 Data. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.

html
[6] [n.d.]. CubeScope. https://github.com/kotaNakm/CubeScope
[7] [n.d.]. River:online machine learning in Python. https://riverml.xyz/dev/api/

cluster/DBSTREAM/
[8] [n.d.]. TLC Trip Record Data. https://www1.nyc.gov/site/tlc/about/tlc-trip-

record-data.page
[9] [n.d.]. Trafc Data from Kyoto University’s Honeypots. https://www.takakura.

com/Kyoto_data/
[10] 2019. Predicting pregnancy using large-scale datafrom a women’s health tracking

mobile application. In WWW. 2999–3005.
[11] 2020. https://www1.nyc.gov/assets/home/downloads/pdf/executive-orders/2020/

eeo-100.pdf.
[12] 2020. https://www.state.gov/wp-content/uploads/2020/03/2020-03-20-Notice-

New-York-on-Pause-Order.pdf.
[13] 2020. https://www.governor.ny.gov/news/governor-cuomo-announces-new-

york-city-enter-phase-1-reopening-june-8-and-fve-regions-enter.

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

[14] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S. Yu. 2003. A
Framework for Clustering Evolving Data Streams. In VLDB. 81–92.

[15] Leman Akoglu, Hanghang Tong, and Danai Koutra. 2015. Graph based anomaly
detection and description: a survey. Data mining and knowledge discovery 29, 3
(2015), 626–688.

[16] Miguel Araujo, Spiros Papadimitriou, Stephan Günnemann, Christos Faloutsos,
Prithwish Basu, Ananthram Swami, Evangelos E Papalexakis, and Danai Koutra.
2014. Com2: fast automatic discovery of temporal (‘comet’) communities. In
Pacifc-Asia Conference on Knowledge Discovery and Data Mining. Springer, 271–
283.

[17] Inci M. Baytas, Cao Xiao, Xi Zhang, Fei Wang, Anil K. Jain, and Jiayu Zhou. 2017.
Patient Subtyping via Time-Aware LSTM Networks. In KDD. 65–74.

[18] Alex Beutel, Kenton Murray, Christos Faloutsos, and Alexander J Smola. 2014.
Cobaf: collaborative bayesian fltering. In WWW. 97–108.

[19] Siddharth Bhatia, Arjit Jain, Pan Li, Ritesh Kumar, and Bryan Hooi. 2021. MStream:
Fast Anomaly Detection in Multi-Aspect Streams. In WWW. ACM / IW3C2, 3371–
3382.

[20] Siddharth Bhatia, Arjit Jain, Pan Li, Ritesh Kumar, and Bryan Hooi. 2021. MStream:
Fast Anomaly Detection in Multi-Aspect Streams. In WWW. 3371–3382.

[21] Siddharth Bhatia, Arjit Jain, Shivin Srivastava, Kenji Kawaguchi, and Bryan Hooi.
2022. MemStream: Memory-Based Streaming Anomaly Detection. In WWW ’22:
The ACM Web Conference 2022, Virtual Event, Lyon, France, April 25 - 29, 2022,
Frédérique Laforest, Raphaël Troncy, Elena Simperl, Deepak Agarwal, Aristides
Gionis, Ivan Herman, and Lionel Médini (Eds.). ACM, 610–621.

[22] David M Blei, Andrew Y Ng, and Michael I Jordan. 2003. Latent dirichlet allocation.
the Journal of machine Learning research 3 (2003), 993–1022.

[23] Christian Böhm, Christos Faloutsos, Jia-Yu Pan, and Claudia Plant. 2007. Ric:
Parameter-free noise-robust clustering. TKDD 1, 3 (2007), 10–es.

[24] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. 2000.
LOF: Identifying Density-Based Local Outliers. In Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data (SIGMOD ’00). Associ-
ation for Computing Machinery, New York, NY, USA, 93–104.

[25] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly Detection:
A Survey. ACM Comput. Surv. 41, 3, Article 15 (jul 2009), 58 pages.

[26] Pudi Chen, Shenghua Liu, Chuan Shi, Bryan Hooi, Bai Wang, and Xueqi Cheng.
2018. NeuCast: Seasonal Neural Forecast of Power Grid Time Series.. In IJCAI.
3315–3321.

[27] Lianhua Chi, Bin Li, Xingquan Zhu, Shirui Pan, and Ling Chen. 2017. Hashing
for adaptive real-time graph stream classifcation with concept drifts. IEEE
transactions on cybernetics 48, 5 (2017), 1591–1604.

[28] Eunjoon Cho, Seth A. Myers, and Jure Leskovec. 2011. Friendship and mobility:
user movement in location-based social networks. In KDD. 1082–1090.

[29] Gianmarco De Francisci Morales, Albert Bifet, Latifur Khan, Joao Gama, and Wei
Fan. 2016. Iot big data stream mining. In KDD. 2119–2120.

[30] Shohreh Deldari, Daniel V. Smith, Hao Xue, and Flora D. Salim. 2021. Time Series
Change Point Detection with Self-Supervised Contrastive Predictive Coding. In
WWW. ACM / IW3C2, 3124–3135.

[31] Hadi Fanaee-T and João Gama. 2016. Tensor-based anomaly detection: An
interdisciplinary survey. Knowledge-Based Systems 98 (2016), 130–147.

[32] Shufeng Gong, Yanfeng Zhang, and Ge Yu. 2017. Clustering stream data by
exploring the evolution of density mountain. Proceedings of the VLDB Endowment
11, 4 (2017), 393–405.

[33] Peter D Grünwald, In Jae Myung, and Mark A Pitt. 2005. Advances in minimum
description length: Theory and applications. MIT press.

[34] Sudipto Guha, Nina Mishra, Gourav Roy, and Okke Schrijvers. 2016. Robust
Random Cut Forest Based Anomaly Detection on Streams. In Proceedings of the
33rd International Conference on International Conference on Machine Learning -
Volume 48 (ICML’16). JMLR.org, 2712–2721.

[35] Manish Gupta, Jing Gao, Charu C Aggarwal, and Jiawei Han. 2013. Outlier
detection for temporal data: A survey. IEEE Transactions on Knowledge and data
Engineering 26, 9 (2013), 2250–2267.

[36] Michael Hahsler and Matthew Bolaños. 2016. Clustering data streams based on
shared density between micro-clusters. IEEE Transactions on Knowledge and Data
Engineering 28, 6 (2016), 1449–1461.

[37] David Hallac, Sagar Vare, Stephen Boyd, and Jure Leskovec. 2017. Toeplitz inverse
covariance-based clustering of multivariate time series data. In KDD.

[38] Douglas M Hawkins. 1980. Identifcation of outliers. Vol. 11. Springer.
[39] Takato Honda, Yasuko Matsubara, Ryo Neyama, Mutsumi Abe, and Yasushi

Sakurai. 2019. Multi-aspect mining of complex sensor sequences. In ICDM.
[40] Bryan Hooi, Shenghua Liu, Asim Smailagic, and Christos Faloutsos. 2017. BeatLex:

Summarizing and Forecasting Time Series with Patterns. In PKDD, Vol. 10535.
3–19.

[41] Bryan Hooi, Kijung Shin, Shenghua Liu, and Christos Faloutsos. 2019. SMF:
Drift-aware matrix factorization with seasonal patterns. In SIAM. 621–629.

[42] Wenjie Hu, Yang Yang, Ziqiang Cheng, Carl Yang, and Xiang Ren. 2021. Time-
series event prediction with evolutionary state graph. In Proceedings of the 14th
ACM International Conference on Web Search and Data Mining. 580–588.

1646

https://www.hs-coburg.de/forschung/forschungsprojekte-oeffentlich/informationstechnologie/cidds-coburg-intrusion-detection-data-sets.html
https://www.hs-coburg.de/forschung/forschungsprojekte-oeffentlich/informationstechnologie/cidds-coburg-intrusion-detection-data-sets.html
https://www.hs-coburg.de/forschung/forschungsprojekte-oeffentlich/informationstechnologie/cidds-coburg-intrusion-detection-data-sets.html
https://ride.citibikenyc.com/system-data
https://www.kaggle.com/mkechinov/ecommerce-purchase-history-from-electronics-store
https://www.kaggle.com/mkechinov/ecommerce-purchase-history-from-electronics-store
https://www.kaggle.com/mkechinov/ecommerce-purchase-history-from-jewelry-store
https://www.kaggle.com/mkechinov/ecommerce-purchase-history-from-jewelry-store
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://github.com/kotaNakm/CubeScope
https://riverml.xyz/dev/api/cluster/DBSTREAM/
https://riverml.xyz/dev/api/cluster/DBSTREAM/
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.takakura.com/Kyoto_data/
https://www.takakura.com/Kyoto_data/
https://www1.nyc.gov/assets/home/downloads/pdf/executive-orders/2020/eeo-100.pdf
https://www1.nyc.gov/assets/home/downloads/pdf/executive-orders/2020/eeo-100.pdf
https://JMLR.org
https://www.governor.ny.gov/news/governor-cuomo-announces-new

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Nakamura, et al.

[43] Tomoharu Iwata, Shinji Watanabe, Takeshi Yamada, and Naonori Ueda. 2009.
Topic tracking model for analyzing consumer purchase behavior. In IJCAI.

[44] Jun-Gi Jang and U Kang. 2021. Fast and Memory-Efcient Tucker Decomposition
for Answering Diverse Time Range Queries. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining. 725–735.

[45] Meng Jiang, Alex Beutel, Peng Cui, Bryan Hooi, Shiqiang Yang, and Christos
Faloutsos. 2015. A general suspiciousness metric for dense blocks in multimodal
data. In 2015 IEEE International Conference on Data Mining. IEEE, 781–786.

[46] Harshavardhan Kamarthi, Lingkai Kong, Alexander Rodríguez, Chao Zhang, and
B Aditya Prakash. 2022. CAMul: Calibrated and Accurate Multi-view Time-Series
Forecasting. In Proceedings of the ACM Web Conference 2022. 3174–3185.

[47] Koki Kawabata, Yasuko Matsubara, Takato Honda, and Yasushi Sakurai. 2020.
Non-Linear Mining of Social Activities in Tensor Streams. In KDD. 2093–2102.

[48] Koki Kawabata, Yasuko Matsubara, and Yasushi Sakurai. 2019. Automatic se-
quential pattern mining in data streams. In CIKM. 1733–1742.

[49] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 (2013).

[50] Tamara G Kolda and Brett W Bader. 2009. Tensor decompositions and applications.
SIAM review 51, 3 (2009), 455–500.

[51] Danai Koutra, U Kang, Jilles Vreeken, and Christos Faloutsos. 2014. Vog: Summa-
rizing and understanding large graphs. In Proceedings of the 2014 SIAM interna-
tional conference on data mining. SIAM, 91–99.

[52] Mathias Kraus and Stefan Feuerriegel. 2019. Personalized purchase prediction of
market baskets with Wasserstein-based sequence matching. In KDD. 2643–2652.

[53] Changhee Lee and Mihaela Van Der Schaar. 2020. Temporal phenotyping using
deep predictive clustering of disease progression. In ICML. 5767–5777.

[54] Lei Li, B Aditya Prakash, and Christos Faloutsos. 2010. Parsimonious linear
fngerprinting for time series. Technical Report. CARNEGIE-MELLON UNIV
PITTSBURGH PA SCHOOL OF COMPUTER SCIENCE.

[55] Xiangsheng Li, Jiaxin Mao, Weizhi Ma, Yiqun Liu, Min Zhang, Shaoping Ma,
Zhaowei Wang, and Xiuqiang He. 2021. Topic-Enhanced Knowledge-Aware
Retrieval Model for Diverse Relevance Estimation. In WWW. 756–767.

[56] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2012. Isolation-based anomaly
detection. ACM Transactions on Knowledge Discovery from Data (TKDD) 6, 1
(2012), 1–39.

[57] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and Guangquan Zhang. 2018.
Learning under concept drift: A review. IEEE Transactions on Knowledge and
Data Engineering 31, 12 (2018), 2346–2363.

[58] Yue Lu, Renjie Wu, Abdullah Mueen, Maria A Zuluaga, and Eamonn Keogh.
2022. Matrix Profle XXIV: Scaling Time Series Anomaly Detection to Trillions
of Datapoints and Ultra-fast Arriving Data Streams. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 1173–1182.

[59] Qianli Ma, Jiawei Zheng, Sen Li, and Gary W Cottrell. 2019. Learning representa-
tions for time series clustering. Advances in neural information processing systems
32 (2019), 3781–3791.

[60] Stratos Mansalis, Eirini Ntoutsi, Nikos Pelekis, and Yannis Theodoridis. 2018. An
evaluation of data stream clustering algorithms. Statistical Analysis and Data
Mining: The ASA Data Science Journal 11, 4 (2018), 167–187.

[61] Emaad Manzoor, Hemank Lamba, and Leman Akoglu. 2018. xstream: Outlier
detection in feature-evolving data streams. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 1963–1972.

[62] Hing-Hao Mao, Chung-Jung Wu, Evangelos E Papalexakis, Christos Faloutsos,
Kuo-Chen Lee, and Tien-Cheu Kao. 2014. Malspot: Multi 2 malicious network
behavior patterns analysis. In Pacifc-Asia Conference on Knowledge Discovery
and Data Mining. Springer, 1–14.

[63] Yasuko Matsubara and Yasushi Sakurai. 2016. Regime Shifts in Streams: Real-time
Forecasting of Co-evolving Time Sequences. In KDD. 1045–1054.

[64] Yasuko Matsubara and Yasushi Sakurai. 2019. Dynamic Modeling and Forecasting
of Time-Evolving Data Streams. In KDD. 458–468.

[65] Yasuko Matsubara, Yasushi Sakurai, and Christos Faloutsos. 2014. AutoPlait:
Automatic Mining of Co-evolving Time Sequences. In SIGMOD.

[66] Yasuko Matsubara, Yasushi Sakurai, and Christos Faloutsos. 2015. The Web as
a Jungle: Non-Linear Dynamical Systems for Co-evolving Online Activities. In
WWW.

[67] Yasuko Matsubara, Yasushi Sakurai, and Christos Faloutsos. 2016. Non-Linear
Mining of Competing Local Activities. In WWW.

[68] Yasuko Matsubara, Yasushi Sakurai, Christos Faloutsos, Tomoharu Iwata, and
Masatoshi Yoshikawa. 2012. Fast mining and forecasting of complex time-stamped
events. In KDD. 271–279.

[69] Charalampos Mavroforakis, Isabel Valera, and Manuel Gomez-Rodriguez. 2017.
Modeling the Dynamics of Learning Activity on the Web. In WWW. ACM, 1421–
1430.

[70] Yu Meng, Yunyi Zhang, Jiaxin Huang, Yu Zhang, Chao Zhang, and Jiawei Han.
2020. Hierarchical Topic Mining via Joint Spherical Tree and Text Embedding. In
KDD. 1908–1917.

[71] Maya Okawa, Tomoharu Iwata, Takeshi Kurashima, Yusuke Tanaka, Hiroyuki
Toda, and Naonori Ueda. 2019. Deep Mixture Point Processes: Spatio-temporal
Event Prediction with Rich Contextual Information. In KDD. 373–383.

[72] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011), 2825–2830.

[73] Ian Porteous, David Newman, Alexander Ihler, Arthur Asuncion, Padhraic Smyth,
and Max Welling. 2008. Fast collapsed gibbs sampling for latent dirichlet alloca-
tion. In KDD. 569–577.

[74] Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gustavo Batista,
Brandon Westover, Qiang Zhu, Jesin Zakaria, and Eamonn Keogh. 2012. Searching
and mining trillions of time series subsequences under dynamic time warping.
In Proceedings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining. 262–270.

[75] Yasushi Sakurai, Yasuko Matsubara, and Christos Faloutsos. 2016. Mining Big
Time-series Data on the Web. In WWW. 1029–1032.

[76] Aaron Schein, John Paisley, David M Blei, and Hanna Wallach. 2015. Bayesian
poisson tensor factorization for inferring multilateral relations from sparse dyadic
event counts. In KDD. 1045–1054.

[77] Benedetto Marco Serinelli, Anastasija Collen, and Niels Alexander Nijdam. 2020.
Training guidance with kdd cup 1999 and nsl-kdd data sets of anidinr: Anomaly-
based network intrusion detection system. Procedia Computer Science 175 (2020),
560–565.

[78] Neil Shah, Danai Koutra, Tianmin Zou, Brian Gallagher, and Christos Faloutsos.
2015. TimeCrunch: Interpretable Dynamic Graph Summarization. In KDD.

[79] Lei Shi, Aryya Gangopadhyay, and Vandana P Janeja. 2015. STenSr: Spatio-
temporal tensor streams for anomaly detection and pattern discovery. Knowledge
and Information Systems 43, 2 (2015), 333–353.

[80] Kijung Shin, Bryan Hooi, Jisu Kim, and Christos Faloutsos. 2017. Densealert:
Incremental dense-subtensor detection in tensor streams. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 1057–1066.

[81] Koen Smets and Jilles Vreeken. 2011. The odd one out: Identifying and character-
ising anomalies. In Proceedings of the 2011 SIAM international conference on data
mining. SIAM, 804–815.

[82] Tsubasa Takahashi, Bryan Hooi, and Christos Faloutsos. 2017. Autocyclone:
Automatic mining of cyclic online activities with robust tensor factorization. In
WWW. 213–221.

[83] Veronica Tozzo, Federico Ciech, Davide Garbarino, and Alessandro Verri. 2021.
Statistical Models Coupling Allows for Complex Local Multivariate Time Series
Analysis. In KDD. 1593–1603.

[84] Yichen Wang, Robert Chen, Joydeep Ghosh, Joshua C Denny, Abel Kho, You
Chen, Bradley A Malin, and Jimeng Sun. 2015. Rubik: Knowledge guided tensor
factorization and completion for health data analytics. In KDD. 1265–1274.

[85] Yue Wang, Jing Li, Hou Pong Chan, Irwin King, Michael R. Lyu, and Shuming
Shi. 2019. Topic-Aware Neural Keyphrase Generation for Social Media Language.
In ACL. 2516–2526.

[86] Yuan Xue, Denny Zhou, Nan Du, Andrew M. Dai, Zhen Xu, Kun Zhang, and Claire
Cui. 2020. Deep State-Space Generative Model For Correlated Time-to-Event
Predictions. In KDD. ACM, 1552–1562.

[87] Jaewon Yang, Julian McAuley, Jure Leskovec, Paea LePendu, and Nigam Shah.
2014. Finding progression stages in time-evolving event sequences. In WWW.
783–794.

[88] Shuochao Yao, Shaohan Hu, Yiran Zhao, Aston Zhang, and Tarek F. Abdelzaher.
2017. DeepSense: A Unifed Deep Learning Framework for Time-Series Mobile
Sensing Data Processing. In WWW. ACM, 351–360.

[89] Jianhua Yin, Daren Chao, Zhongkun Liu, Wei Zhang, Xiaohui Yu, and Jianyong
Wang. 2018. Model-based clustering of short text streams. In Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining.
2634–2642.

1647

X

Fast and Multi-aspect Mining of
Complex Time-stamped Event Streams

Table 3: Symbols and defnitions.

Symbol Defnition

� Number of attributes of complex event tensor
�1 . . .�� A set consisting of a number of unique units in each attribute
� Length of whole tensor stream
� Length of current tensor

· · ·×�� ×� Whole event tensor stream, X ∈ N�1 ×

X� ∈ N�1 ×···×�� ×� Current event tensor, X�

� Number of latent components
A(�) �-th attribute component matrix, � × ��
B Time component matrix, � × �
� FIFO queue for retaining past component matrices
� The size of queue �

� Number of regimes
� -th regime parameter, i.e., �� = {A(1) , . . . , A(�) , B}��

Θ Regime set, i.e., Θ = {�1, . . . , �� }
� Number of regime assignments (i.e., segments)

Trajectory of shift to � -th regime at time �� , i.e., �� = (�� , �)��
S Regime assignments, i.e., S = {�1, . . . , �� }
|S−1 | Total segment length of the regime �� �

C Compact description, i.e., C = {�, Θ,�, S}
����� (X�) Anomalousness score of X�

Algorithm 1 CubeScope (X� , C, �)
∈ N�1 ×...×�� ×�

Input: 1. Current tensor X�

2. Previous candidate solution C = {�, Θ, �, S}
3. Previous past parameter set �

Output: 1. Updated candidate solution C′
′2. Updated past parameter set �

3. Anomalousness score ����� (X�)
′1: �� , � = C-Decomposer (X� , �);

2: C′ , ����� (X�) = C-Compressor (�� , X� , C);
3: return C′ , � ′ , ����� (X�) ;

Algorithm 2 C-Decomposer (X� , �)
∈ N�1 ×...×�� ×�

Input: 1. Current tensor X�

2. Previous past parameter set �
Output: 1. Current model parameter set �� = {A(1) , . . . A(�) , B}

′2. Updated past parameter set �
1: for each iteration do
2: for each non-zero element � in X�

do
3: for each entry for � do
4: Draw hidden variable �; // According to Eq. (7)
5: end for
6: end for
7: end for

, . . . , A(�)8: Compute A(1) , B; //According to Eq. (8)
, . . . , A(�)9: �� ← A(1) , B;

10: � .deque; // Remove the oldest set of component matrices
11: � ′ ← � .enque(��); // Insert a set of current estimated matrices ��

′12: return �� , � ;

APPENDIX

A PROPOSED MODEL
Table 3 lists the symbols and defnitions used in this paper. All
logarithms are to base 2, and by convention we use 0 log 0 = 0.

B STREAMING ALGORITHM
Algorithm 1 shows the overall procedure for CubeScope, which
composed of C-Decomposer (Algorithm 2) and C-Compressor
(Algorithm. 3). C-Decomposer continuously monitors a current
tensor X� and generates a regime �� . Then, C-Compressor updates
the compact description C with �� and measures the anomalousness
of X� .

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Algorithm 3 C-Compressor (�� , X� , C)
Input: 1. Candidate model parameter set �� = {A(1) , . . . A(�) , B}

∈ N�1 ×...×�� ×� 2. New observation tensor X�

3. Previous compact description C = {�, Θ,�, S}
′

Output: 1. Updated compact description C′ = {� ′ , Θ ′ ,� , S′ }
2. Anomalousness score ����� (X�)

1: /* Update compact description C */
2: if < X� ; �� > is less than < X� ; �� > then
3: /* Stay in the previous regime �� */

′4: � ← Regime update(�� , ��) ; // According to Eq. (11) �
5: else
6: �� = arg min < X� ; � >;

� ∈Θ

7: if < X� ; �� > is less than < X� ; �� > then
8: /* Shift to the candidate regime �� */
9: � ′ ← � + 1; Θ ′ ← Θ ∪ �� ;

′10: � ← � + 1; S′ ← S ∪ (�, � + 1) ;
11: else
12: /* Shift to the existing regime �� */

′13: �� ← Regime update(�� , ��) ; // According to Eq. (11)
′14: � ← � + 1; S′ ← S ∪ (�, �) ;

15: end if
16: end if
17: /* Compute anomalousness score*/
18: ���� ← arg max |S−1 | ;�

� ∈�

19: ����� (X�) ←< X� |����� >;
′20: return C′ = {� ′ , Θ ′ � S′ }, ����� (X�) ;

Proof of Lemma 4.1.

Proof. For each time point, CubeScope frst runs C-Decomposer,
which draws hidden variables ��,� with each entry for non-zero
element ��,� in X� . This process requires � (#���� · ��), where
#���� is the number of iterations for drawing �, � is the number
of components, and � is the total number of event entries in X� Í Í Í
(i.e., �1

· · · �� � ��1,...,�� ,�). Since #���� and � are small val-
ues and constant, they are negligible. Thus, the complexity of C-
Decomposer is � (�). In C-Compressor, it tracks �� and �� . If
it employs the previous regime �� for current tensor X� , it can
quickly update the regime, which requires � (1) time. Otherwise,
it then tries to fnd the optimal regime in Θ, which requires � (�)
time. Overall, CubeScope needs these two algorithms. Thus, the
complexity is at least � (�) and at most � (� + �) per process. □

Model Initialization. When we start the iteration with regime
set Θ and � for past parameter set, we uniformly take several
sample segments with interval � from initial tensor X� and then
estimate the model parameters �� for each. The most appropriate
regime set is determined by monitoring the total encoding cost
while increasing the number of model parameters �� :

Θ = arg min < X� ; Θ >, (13)
Θ∈Θ�

where Θ� = {��1, ��2, . . . } is a set of regimes estimated from each
sample. We also set � to the average interval of the shifting points
(i.e., the average length of segments).
Process Interval � . The parameter � determines the size of a cur-
rent tensor, as well as the minimum granularity of regimes. Users
need to know regimes under various granularities (e.g., daily and
weekly patterns), thus � is generally chosen depending on the ap-
plication. The runtime of C-Decomposer scales linearly with the
number of records in a current tensor rather than the size of � . Al-
though a larger � imposes the algorithm to process a larger current
tensor, there should be a small impact on the runtime because we
assume sparse tensor streams.

1648

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Nakamura, et al.

(a) Market regimes

(c-i) Popular brands in (c-ii) Popular items in
White goods (top) and White goods (top) and
Small/Kitchen (bottom) Small/Kitchen (bottom)

(b) Time evolution of two major components components. components.

(d) Changes of popular
items with regime

transitions

Figure 9: Customer behavior modeling on Electronics: (a) CubeScope discovered a total of four regimes that refect the
seasonality of customer behavior. (b) Two components show clear daily periodicity; The White goods component spikes at night.
The Small/Kitchen component shows high peaks during the daytime. (c) Popular brand/item categories for each component.
A larger size denotes a closer relationship. (d) Popular item categories change with regime transitions. Top: air conditioners
become the most frequent item in Regime #2 (early Summer). Bottom: air heaters are the popular items in Regime #4 (Fall).

C EXPERIMENTS

C.1 Experimental Setup
We conducted our experiments on an Intel Xeon E5-2637 3.5GHz
quad core CPU with 192GB of memory and running Linux.
Generating the Datasets. We frst generate four types of sparse
event tensors (1, 2, 3, and 4), which have 100� observations as
X ∈ N100×100×100×100. Each attribute of an event entry is drawn
from multinomial distributions whose parameter is defned by ran-
dom values [0.1, 0.5] and a Dirichlet prior. Finally, four diferent
synthetic datasets are built by using diferent combinations of
event tensors as follows [37]: “1,2,1”, “1,2,3,2,1”, “1,2,3,4,1,2,3,4”,
“1,2,2,1,3,3,3,1”.
Implementaion & Parameters. We used the open-source imple-
mentation of LDA, K-means, LOF, and iForest in [72]. For NTM, we
implemented it based on the pytorch framework and applied Adam
optimization with a learning rate of 1� − 3, following the design and
the parameter setting in [85]. We also used open-sourced implemen-
tations of TICC [37], T-LSTM [17], RRCF [34], CubeMarker [39],
and MemStream [21], provided by the authors, following parameter
settings as suggested in the original papers. For a fair comparison in
terms of computational time, we implemented TriMine in Python,
following C implementation provided by the authors. The input
for LDA/NTM is bag-of-words representations of all the categories,

· ·+��)i.e., W ∈ N� ×(�1 +· . In evaluation of clustering accuracy, the
width of a current tensor is set with 10. Since TICC and T-LSTM
need to specify the number of clusters, we set the true number of
clusters. DBSTREAM, which is implemented in [7], and CubeScope
are automatically determine the number of clusters. We set the
radius of each micro-clusters as 8.5 for DBSTREAM, and the num-
ber of components � = 8 for CubeScope. To validate detection
accuracy, we set � = 1 for all methods. We used a 5� length of the
stream to conduct the model initialization for CubeScope.

C.2 Efectiveness
We also demonstrate how efectively CubeScope works on the
Electronics dataset.
Online Marketing Analytics. Figure 9 shows stream mining re-
sults of CubeScope on the Electronics. This data is the purchase data
obtained over a year from a large home appliances and electronics
online store. The data contains a list of two attributes; 867 brands
and 124 item categories with an hourly timestamp.

• Regime identifcation: CubeScope discovered four type of
regimes in Figure 9 (a). Specifcally, our method found Regime
#2 during a short period around July, and then discovered
Regime #3 for the summer season and Regime #4 for the fall
season. This result shows that the behaviors of purchases
shift with the transition of seasons.

• Multi-aspect component analysis: Figure 9 (b) shows the tem-
poral evolution of two major components, which are shown
in the time component matrix B in Regime #1. We manually
named the two components “White goods” and “Small/Kitchen”.
These components exhibit contrasting behavior. The White
goods sequence peaks at night, while the Small/Kitchen
sequence peaks during the daytime. Figure 9 (c) shows
the attribute component matrices {A(�) }

�
2
=1 in Regime

#1, namely the latent relationships between two compo-
nents (row) and two attributes (column). Figure 9 (d) shows
the changes of popular item categories in association with
regime transitions. These changes make sense. As shown
in the top fgure, the White goods component in Regime #2
(early summer) has the strongest relationship with an air con-
ditioner. Similarly, the bottom fgure shows the Small/Kitchen
component in Regime #4 (Fall), where an air heater appeared
as a popular item.

1649

	Abstract
	1 Introduction
	2 Related work
	3 Proposed model
	3.1 Design Philosophy of CubeScope
	3.2 Proposed Solution: CubeScope

	4 Streaming Algorithm
	4.1 C-Decomposer
	4.2 C-Compressor

	5 Experiments
	5.1 Q1.Effectiveness
	5.2 Q2. Accuracy
	5.3 Q3. Scalability

	6 Conclusion
	Acknowledgments
	References
	A Proposed model
	B Streaming Algorithm
	C Experiments
	C.1 Experimental Setup
	C.2 Effectiveness

