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ABSTRACT 
Given a huge, online stream of time-evolving events with multiple 
attributes, such as online shopping logs: (item, price, brand, time), 
how can we summarize large, dynamic high-order tensor streams? 
How can we see any hidden patterns, rules, and anomalies? Our 
answer is to focus on two types of patterns, i.e., “regimes” and “com-
ponents”, over high-order tensor streams, for which we present an 
efcient and efective method, namely CubeScope. Specifcally, it 
identifes any sudden discontinuity and recognizes distinct dynam-
ical patterns, “regimes” (e.g., weekday/weekend/holiday patterns). 
In each regime, it also performs multi-way summarization for all 
attributes (e.g., item, price, brand, and time) and discovers hidden 
“components” representing latent groups (e.g., item/brand groups) 
and their relationship. Thanks to its concise but efective sum-
marization, CubeScope can also detect the sudden appearance of 
anomalies and identify the types of anomalies that occur in practice. 

Our proposed method has the following properties: (a) Efective: 
it captures dynamical multi-aspect patterns, i.e., regimes and com-
ponents, and statistically summarizes all the events; (b) General: 
it is practical for successful application to data compression, pat-
tern discovery, and anomaly detection on various types of tensor 
streams; (c) Scalable: our algorithm does not depend on the length 
of the data stream and its dimensionality. Extensive experiments 
on real datasets demonstrate that CubeScope fnds meaningful pat-
terns and anomalies correctly, and consistently outperforms the 
state-of-the-art methods as regards accuracy and execution speed. 

CCS CONCEPTS 
• Information systems → Data mining. 

ACM Reference Format: 
Kota Nakamura, Yasuko Matsubara, Koki Kawabata, Yuhei Umeda, Yuichiro 
Wada, and Yasushi Sakurai. 2023. Fast and Multi-aspect Mining of Complex 
Time-stamped Event Streams . In Proceedings of the ACM Web Conference 
2023 (WWW ’23), April 30–May 04, 2023, Austin, TX, USA. ACM, New York, 
NY, USA, 12 pages. https://doi.org/10.1145/3543507.3583370 

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for proft or commercial advantage and that copies bear this notice and the full citation 
on the frst page. Copyrights for components of this work owned by others than the 
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specifc permission 
and/or a fee. Request permissions from permissions@acm.org. 
WWW ’23, April 30–May 04, 2023, Austin, TX, USA 
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM. 
ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00 
https://doi.org/10.1145/3543507.3583370 

1 INTRODUCTION 
Given a large, online stream of time-stamped events, how can we 
statistically summarize all the event streams and fnd important pat-
terns, rules, and anomalies? Time-stamped event data are generated 
and collected by many real applications [10, 17, 29, 84], including 
online marketing analytics [52, 75], social network/location-based 
services [28, 71], and cybersecurity systems [19, 80], with increas-
ingly larger sizes and faster rates of transactions. For example, an 
online shopping service could generate millions of logging entries 
every second, with rich information about items and users. The 
service providers would like to send targeted advertisements and 
detect fraudulent activities by investigating online purchasing pat-
terns and hidden user/item relationships. 

Here, let us assume that we have a large collection of event logs, 
consisting of multiple attributes, e.g., online shopping: (item, price, 
brand, time) and local mobility activities: (pick-up and drop-of lo-
cations, time), where huge numbers of event entries arrive online 
at high bit rates, which we shall refer to as “complex time-stamped 
event streams”. These data are represented as high-order tensor 
streams, e.g., a 4th-order item-price-brand-time tensor stream, un-
like a previously considered multivariate time series [37], tensor 
[50], or stream of elements [61], specifcally, as mentioned later 
in Section3.1, whose high-dimensional, sparse, and semi-infnite 
nature derails existing methods and even our interpretation of 
data. So what is a good representation of complex time-stamped event 
streams? This is exactly the problem we focus on in this work. We 
frst present a compact yet powerful representation that summarizes 
a semi-infnite collection of tensor streams. Specifcally, we aim to 
capture two types of patterns, i.e., “regimes” and “components”. 

In practice, real-life data streams contain various types of dis-
tinct temporal dynamical patterns of diferent durations, namely, 
“regimes”, such as the weekday/weekend/holiday patterns of online 
shopping services or taxi rides. In each regime, a set of events, 
consisting of multiple attributes, has similar behavior and latent in-
teractions. We introduce the concept of latent “components”, which 
capture hidden groups in each attribute (e.g., item groups and typi-
cal pick-up locations) and their relationships. 

An important application scenario, for example, in cybersecurity, 
multiple types of intrusions/anomalies, such as denial of service 
or port scanning attacks, occur suddenly and need to be detected 
and analyzed in real-time to minimize harm. So we would also like 
to answer the question: How can we quickly detect anomalies and 
identify their types? However, it is extremely challenging because 
signs of the anomalies appear in one or more attributes (e.g., source 
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(a) Regime identifcation for social mobility event streams 
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Figure 1: Real-time modeling of CubeScope on New York City taxi rides: (a) It incrementally identifes distinct time-evolving 
patterns (i.e., regimes) and their shifting points. Specifcally, Regime #1 (blue) coincides with weekdays, while Regimes #2, #3, 
and #4 (orange, green, and red) capture weekends and public holidays. Also, it can adaptively recognize the sudden regime 
transitions (Regimes #5, #6, · · · ) that refect social conditions under the COVID-19 pandemic. It fnds components that are 
interpretable summaries for all attributes (i.e., pick-up, drop-of, time), especially for (b) pick-up/drop-of locations and (c) 
time attribute. (d) The original data is a sparse and high-dimensional tensor. It exhibits no obvious components or regimes. 

IP address, packet size,. . .), and event streams evolve over time, 
where new types of anomalies can arise and the concept of normal 
behavior changes. 

In this paper, we present CubeScope, an efcient and efec-
tive mining approach capable of dealing with the above questions. 
CubeScope monitors a high-order tensor stream and incrementally 
recognizes dynamical multi-aspect patterns, i.e., regimes and com-
ponents, and anomalies, while updating the information for each. 
Intuitively, the problem we wish to solve is as follows: 

InformalProblem 1. Given a high-order tensor stream X, which 
consists of events with multiple attributes and timestamps, 

• Find a compact description of X that summarizes all the events, 

– distinct dynamical patterns (i.e., regimes), 
– multi-aspect latent trends (i.e., components), 

• Report anomalies and their types 

incrementally and quickly, at any point in time. 

Preview of Results. Figure 1 (a)-(c) shows some of our discoveries 
on local mobility data. This dataset consists of taxi ride events (pick-
up location ID, drop-of location ID, time) in New York City, with 
hourly timestamps, from Jul. 1st, 2019, to Jun. 30th, 2020. Figure 1 (d) 
shows the original data. The data are represented as the stream of 
the 3rd-order tensor, where each aspect indicates each attribute. 
Note that this tensor is sparse and high-dimensional, i.e., there are 
numerous dimensions in each aspect/attribute. It does not exhibit 
any obvious patterns, neither regimes nor components. 

• Regime identifcation: As shown in Figure 1 (a), CubeScope in-
crementally discovers nine regimes (i.e., distinct time-evolving 

patterns). Specifcally, it fnds Regimes #1 (blue) and #2 (or-
ange), corresponding to weekdays and weekends, respec-
tively. Around the end of the year, it recognizes new regimes, 
Regimes #3, #4 (green, red), which coincided with certain 
festive days, including Thanksgiving, Christmas, and Year-
end. The new Regimes #5 (purple) and #6 (brown) indicate 
abrupt changes in human movement. In fact, due to the emer-
gence of a new viral pandemic, COVID-19, the city ordered 
restaurants/bars to close on March 16th [11] and then ofces 
to close on March 22nd [12]. Finally, our method generates 
Regimes #8 (gray) and #9 (dark yellow) for the new weekday 
and weekend human mobility patterns, respectively, after the 
reopening order on June 8th [13], which allowed ofce-based 
workers and in-store retail shopping to resume. 

• Multi-aspect component analysis: CubeScope provides com-
ponents that are interpretable summaries for each attribute. 
Figure 1 (b) shows the three major components for pick-
up/drop-of locations in Regime #1, where we manually 
named them “Entertainment”, “Business”, and “Night-out”. 
These areas agree with our intuition: the Entertainment com-
ponent is allocated around Central Park and nearby mu-
seums, the Business component is concentrated on major 
railway stations such as Grand Central Terminal, and the 
Night-out component corresponds to the area around Lower 
Manhattan, which has a large number of restaurants and 
bars. Figure 1 (c) shows three major components for time at-
tribute around mid-December. They show the spiking of the 
Entertainment component during Christmas. The Business 
component consistently exhibits high peaks on weekdays, 
while it had lower value on weekends and Christmas. Lastly, 
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Table 1: Capabilities of approaches. 
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High-dimensional Tensor - some - - ✓ - - ✓ ✓ 
Sparsity - - ✓ ✓ ✓ - - ✓ ✓ 
Semi-infnite Data - - - - - ✓ - ✓ ✓ 
Segmentation ✓ ✓ ✓ - - - - - ✓ 
Data Compression ✓ ✓ - ✓ ✓ ✓ - - ✓ 
Anomaly Detection - - - - - - ✓ ✓ ✓ 
Dynamical Multi-aspect Patterns - - - - - - - - ✓ 

the Night-out component shows midnight peaks, especially 
on weekends (i.e., Fri/Sat midnight). 

Contributions. The main contributions of our paper are: 

• Efective: We introduce dynamical multi-aspect patterns 
(i.e., regimes and components), which summarize high-order 
tensor streams and provide interpretable representations. 
Also, we formulate the summarization problem for capturing 
these patterns in a data compression paradigm. 

• General: To solve the summarization problem, we design 
CubeScope, which also performs data compression, pattern 
discovery, and anomaly detection. Our experimental results 
show its practicality on multiple domains, such as online 
marketing analytics and cybersecurity. 

• Scalable: Our proposed algorithm is fast and requires con-
stant computational time both with regard to the entire 
stream length and the dimensionality for each attribute. 

Reproducibility. Our source code and datasets are available at [6]. 
Outline. The rest of this paper is organized as follows. We frst 
introduce related studies followed by our proposed model and al-
gorithms, experiments and conclusions. 

2 RELATED WORK 
The mining of time-stamped event data has attracted great interest 
in many felds [30, 42, 46, 58, 66, 67, 69, 78, 82, 86–88]. Table 1 illus-
trates the relative advantages of our method, and only CubeScope 
meets all the requirements. 
Modeling Dynamics and Segmentation. Classical approaches 
such as linear dynamical systems (LDS), and hidden Markov models 
(HMM) are extended to capture distinct patterns of sequences as 
described in [40, 48, 54, 83]. TICC [37] characterizes the interde-
pendence between multivariate observations based on a Markov 
random feld. Such distinct time series patterns also enable us to 
perform anomaly detection and forecasting [26, 63–65]. Tensor-
based approaches for time series segmentation have been proposed 
[39, 47] that incorporate latent relationships between sequences. 
The previous studies are designed for continuous time series and 
are thus incapable of modeling sparse tensors. In recent years, many 
deep neural network models have been proposed [53, 59]. T-LSTM 
[17] identifes disease progression patterns with irregular time in-
tervals. Since these are mostly “black-box” models and incur high 
computation costs, they cannot address streaming data summa-
rization. Moreover, none of the above studies focuses on large and 
sparse tensors with a higher order than 3. 
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Summarization and Clustering. Probabilistic generative mod-
els [18, 71], such as latent Dirichlet allocation (LDA) [22] and its 
variants [43, 70, 89], are broadly applied to analyze large collec-
tions of categorical data. More recently, topic models have been 
extended to neural-based models [55, 85] by using a variational 
autoencoder [49]. A collection of events can be turned into a tensor 
[41, 44, 76]. TriMine [68] summarizes an event tensor and discovers 
groups of dimensions. As with [16, 51, 67, 78], the minimum de-
scription length (MDL) principle [33] is applied to summarize time 
series and dynamic graphs. Unlike these methods, our work focuses 
on tensor streams. The processing and clustering of data streams 
[14, 32, 36, 60], such as DBSTREAM [36], have also attracted signif-
icant interest. However, these algorithms process each data point 
individually and cannot capture multi-aspect features. 
Anomaly Detection. Typical anomaly detection methods [15, 25, 
31, 61, 81], such as local outlier factor (LOF) [24] and tree-based 
approaches [34, 56], can be used in event tensors by converting mul-
tiple attributes to numerical ones. [20, 45, 62, 79, 80] use a stream 
of multi-aspect records as input. MemStream [21] can learn dy-
namically changing trends to handle time-varying data distribution 
known as concept drift [27, 35, 57]. Although these methods have 
the ability to detect multiple anomalies, they cannot identify the 
types of anomalies or capture dynamical multi-aspect patterns. 

In conclusion, none of the existing methods focus specifcally 
on modeling of dynamical multi-aspect patterns, summarization, 
and anomaly detection in high-order tensor streams. 

3 PROPOSED MODEL 
In this section, we present our proposed model. 

3.1 Design Philosophy of CubeScope 
The symbols used in this paper are described in Appendix A. Here 
we consider our settings, namely, complex time-stamped event 
streams. We continuously monitor an event entry with � categori-
cal attributes and a timestamp. At the most recent time � , we have 
a collection of events with �1 . . .�� unique units for each attribute 
and � timestamps. 

· · ·×�� ×� Definition 1 (Event tensor stream). Let X ∈ N�1 × 

be an � +1 th-order tensor stream up to the current time point � . At 
every time point � that is arrived at with a non-overlapping time in-
terval � ≪ � , we can obtain the current tensor X� ∈ N�1 ×···×�� ×� 

as the partial tensor of X. The element ��1 ...�� ,� of X shows the 
total number of event entries of the �1-th . . .�� -th units in each 
attribute at time tick � . 

Figure 1 (d) shows the event tensor stream for NYC taxi rides, 
where each event is of the form (pick-up ID, drop-of ID, time), � = 2. 
Here, we provide the reader with three important observations. 

Observation 1 (High Dimensional). This tensor has a large 
number of units in each attribute, e.g., �1 = 262 and �2 = 264 in the 
pick-up/drop-of location attribute. 

Observation 2 (Sparse). In the fgure, most of the attribute pairs 
have very sparse sequences, which derails all typical time series anal-
ysis tools because they look like noise (e.g., {0, 0, 0, 1, 0, 0, 1, 2, 0, · · · }). 
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Observation 3 (Semi-infinite). The event tensor stream evolves 
over time and arrives in an unbounded stream, making it impossible 
to store all the historical data. 

Consequently, we aim to summarize the event tensor stream 
and obtain a succinct description. Specifcally, we focus on the two 
types of patterns, (P1) components (i.e., latent groups and their 
relationship) and (P2) regimes (i.e., distinct time-evolving patterns). 
So, what is the simplest mathematical model that can capture both 
(P1) and (P2)? How can we formulate the summarization problem? 
We provide the answers below. 

3.2 Proposed Solution: CubeScope 
We now present our model in detail. We frst describe (P1) com-
ponents in each current tensor X� by introducing multi-aspect 
component factorization and then propose a compact description for 
representing (P2) regimes and the whole tensor stream. Finally, 
we formalize the problem as minimizing encoding cost in the data 
compression paradigm. 

3.2.1 Multi-aspect Component Factorization (P1). We begin with 
the simplest case, where we have only a current tensor X� . Our 
frst step is to describe a high-dimensional and sparse tensor X� as 
a compact and interpretable model. We thus propose a new factor-
ization to model the generative process of events. In our model, we 
assume that there are � major trends/components behind the event 
collections. Specifcally, the �-th component is characterized by 
probability distributions in terms of � attributes and time, which 
are defned as follows: 

• A(�)
� ∈ R�� : probability distribution over �� units of the 

attribute � for the component � . 
• B� ∈ R� : probability distribution over � components for the 
time � . 

, . . . , A(� )Here, we refer to A(1) , and B as component matrices. 
Since we treat each attribute as categorical, the component matrices 
can be described by employing a Dirichlet prior [22]: 

A(�) ∼ Dirichlet(� (�) ), B� ∼ Dirichlet(� ),
� 

where � (�) and � are the hyperparameters1. 
We also incorporate temporal dependencies into this model so 

that each component matrix captures the context of its predeces-
sors in the data stream. We assume that the means of the com-
ponents are the same as at the previous time � − � , unless the 
newly arrived events X� are confrmed. With this assumption, we 

A(�)can use the following Dirichlet priors: Dirichlet(� (�) 1 ˆ ) and
� 

Dirichlet(�1B̂� ), where � A(�) and � B are the previous component ˆ ˆ 
matrices at � − �� . To capture the long-term dependencies, we can 
extend this approach so that it can depend on past � matrices. 

A(�) A(�) ˆ∼ Dirichlet(Σ� 
=1� (�) 

� ˆ ), B� ∼ Dirichlet(Σ� 
=1�� B� ) .� � � � 

Consequently, the generative process can be described as follows: 

• For each component � = 1, . . . , � : 
– For each attribute � = 1, . . . , � : 

A(�) A(�)
=1� (�) ˆ∗ ∼ Dirichlet(Σ� 

� )
� � � 

• For each time � = 1, . . . , � : 
ˆ– B� ∼ Dirichlet(Σ� 

=1�� B� )� 

1We set � (�) = � = 1/� as default. 

– For each entry � = 1, . . . , �� : 
∗ ��,� ∼ Multinomial(B� ) // Draw a latent component ��,� 
∗ For each attribute � = 1, . . . , � : 

(�)· � ∼ Multinomial(A(�) ) , // Draw a unit in each attribute 
�,� ��,� 

where �� is the total number of events at time � , and ��, � is the latent 
component. Each event ��, � is sampled from the component-specifc 
multinomials. We note that the benefts of this model are three-fold. 
First, even though the event tensor has sparse activity, our model 
can discard many redundancies (e.g., noise) and summarize a set 
of events into � components. Second, an event entry is generated 
from � + 1 component matrices. It thus handles arbitrary-order 
tensors. Third, to capture temporal dependencies, it employs past � 
component matrices rather than storing tensors. 

3.2.2 Compact Description (P2). Although the component matrices 
concisely describe the partial tensor X� , it is insufcient for the 
whole tensor stream X, containing various types of distinct dynam-
ical patterns. We thus introduce another higher-level architecture. 

Definition 2 (Regime: � ). Let � be a regime consisting of the 
component matrices: � = 

�=1, B} to describe a certain{{A(�) }� 

distinct dynamical pattern with which we can divide and summarize 
the entire tensor stream into segments. When there are � regimes, 
a regime set is defned as Θ = {�� }�

� 
=1. 

Also, when there are � switching positions, the regime assign-
ments are defned as S = {�� }��=1, where �� = (�� , � ) is the history 
of each switching position �� to the � -th regime. Finally, we adopt 
all the above parts for a compact description of X. 

Definition 3 (Compact description). Let C = {�, Θ, �, S} be 
a compact representation of the whole tensor stream X, namely, 

• the number of regimes � and the regime set, Θ = {�� }�
� 
=1, 

• the number of segments � and the assignments, S = {�� }� 
�=1. 

3.2.3 Problem Formulation. Our fnal goal is to formulate the prob-
lem, where we summarize all data streams X into a compact repre-
sentation C. Our objective function leverages the minimum descrip-
tion length (MDL) principle [33]. In short, it follows the assumption 
that the more we can compress the data, the more we can learn 
about their underlying patterns. Specifcally, we evaluate the total 
encoding cost, which can be used to losslessly compress the original 
tensor stream X. The summarization problem is written as follows: 

Problem 1. Given a whole event stream X, fnd the compact 
description C, which minimizes the total encoding cost 

< X; C > =< C > + < X|C >, (1) 

where < C > is the model coding cost of C, and < X|C > is the data 
coding cost given the model C. 

Model Coding Cost. The model coding cost is the number of bits 
needed to describe the model. In our model, the dimensionality 
of latent components requires < � >= Σ

�
� 
=1 log

∗(��) + log∗(�) + 
log∗(�) 2. The number of regimes needs < � >= log∗(�). The 

2Here, log∗ is the universal code length for integers. 
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model coding cost of each regime � consists of the following terms, 

�∑ 
< A(�)< � >= > + < B >, (2) 

�=1 

< A(�) >= |A(�) | · (log(� ) + log(�� − 1) + �� ) + log∗ ( |A(�) | ), (3) 

< B >= |B | · (log(� ) + log(� − 1) + �� ) + log∗ ( |B | ), (4) 

where | · | describes the number of non-zero elements in each 
of the matrices, and �� is the foating point cost3. The number 
of segments needs < � >= log∗(�). Each shifting point needs 
< �� >= log∗(�� ) + log(�). 
Data Coding Cost. Given a full regime set Θ, we can encode the 
data X based on Hufman coding [23], i.e, a number of bits are 
assigned to each value in X. The data coding cost of X given � is 
computed by: < X|� >= − log � (X|{A(�) }

�
� 
=1, B). Thus, the data 

coding cost of X given C is computed by: 

�∑ 
< X|C > = − log � (X[� ] |�� ), (5) 

� =1 

where X[� ] is a set of partial tensors assigned by the � -th regime. 
Finally, the total encoding cost < X; C > is written as follows: 

< X; C > =< C > + < X|C > 

=< � > + < � > + < � > 

� � ∑ ∑ 
+ < � > + < �� > + < X|C > . (6) 
� =1 �=1 

4 STREAMING ALGORITHM 
Thus far, we have described how we represent the two concepts, 
(i.e., components and regimes), and formulate the summarization 
problem (i.e., Problem 1) in a lossless compression context. Our next 
goal is to solve the problem in a streaming setting. In this section, 
we aim to fgure out how to incrementally summarize entire event 
streams into a compact description C and also how to exploit the 
compact description for streaming anomaly detection. 

To tackle these problems, we now present a streaming algorithm 
CubeScope, consisting of two sub-algorithms, C-Decomposer and 
C-Compressor. Algorithm 1 (see Appendix B) shows the overall 
procedure, and Figure 2 illustrates how the proposed algorithm 
works. Intuitively, our algorithm continuously generates a regime 
�� from the non-overlapping arrival tensor X� . It then updates the 
compact description C with �� and measures the anomalousness of 
X� . Next, we describe each sub-algorithm in detail. 

4.1 C-Decomposer 
We frst aim to incrementally monitor X� and estimate a candidate 
regime �� (i.e., {A(�) }�

� 
=1, B), which best describes X� . According 

to the generative process in section 3.2.1, we propose an efcient 
estimation with collapsed Gibbs sampling [73]. Specifcally, for 
each non-zero entry ��1,...,�� ,� in X� , we draw latent components 

3We set 8 bits as the default by following [66, 82]. 
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Figure 2: Illustration of CubeScope algorithm. C-

N�1 ×�2 ×� 
Decomposer: Given a current tensor X� ∈ , 
it frst decomposes X� 

into a candidate regime �� depending 
on past � regimes (� = 2 in this fgure). C-Compressor: it 
assigns the optimal regime for X� 

among the candidate 
regime �� and the regimes {�� }�

� 
=1 (= Θ). If the candidate 

regime is assigned, CubeScope inserts it into the regime set 
Θ as ��+1. It also computes the anomalousness score for X� 

. 

��1,...,�� ,� with the probability � : 

� (��1,...,�� ,� = � | X� , B ′ , B̂, �, {A(�) ′ , Â (�) , � (�) }�� 
=1 )

′Í� � (�) Í� 
=1 � (�) (�)

� ′ + 
=1 �� �̂�,� Ö � + � �̂�,� � �,�� � �,�� ∝ · , (7)Í� 

=1 � ′ + �� �=1 
Í�
�= 
� 
1 � (�) ′ + �� (�)

� �,� �,�� 

(�)where � and ��,� are the total counts of that component � is
�,��

assigned to the �� -th unit and time-tick � , respectively. Note that 
the prime (e.g., � ′ ) indicates the count yielded by excluding the 

�,� 
entry ��1,...,�� ,� . After the sampler has burned-in, we can obtain 

A(�) }� the component matrices for X� , i.e., { ˜ 
�=1 and B̃ , as follows: 

(�) Í� 
=1 � (�) (�) Í� ˆ 

Ã (�) �
�,�� 

+ 
� � �̂�,�� ˜ ��,� + 

�=1 �� ��,� 
�,�� 

∝ Í�� (�) , B�,� ∝ Í� 
. (8) 

�=1 � + �� (�) 
�=1 ��,� + �� 

�,�� 

Algorithm 2 (see Appendix B) shows C-Decomposer in de-
tail. It frst assigns the latent component ��1,...,�� ,� for each entry 
��1,...,�� ,� in X� with Equation (7). Once the latent components 
are determined, we can compute the objective matrices simply with 
Equation (8). Here, we keep past � component matrices in the past 
parameter set, i.e., a FIFO queue � with size �. After computing the 
current component matrices, the oldest matrices are removed, and 
the estimated matrices are inserted into � . 

Even though our tensor data is high-dimensional (Observation 1), 
C-Decomposer does not depend on dimensionality, i.e., it takes 
� (� ) time, where � is the number of events (see Lemma 4.1 for 
details). In contrast, conventional tensor algorithms such as alternat-
ing least squares (ALS) [50] scale with respect to all the attributes, 
i.e., take � ( Î 

�
� 
=1 �� ) time, which may become very computation-

ally demanding for high-order tensors (� ≥ 4). 

1642



Nakamura, et al. WWW ’23, April 30–May 04, 2023, Austin, TX, USA 

4.2 C-Compressor 
We next describe C-Compressor in steps. Algorithm 3 (see Appen-
dix B) shows the overall procedure. After obtaining the candidate 
regime �� , our next goal is to fnd compact description C for the 
whole tensor stream X. However, X is semi-infnite (Observation 3), 
and we thus cannot process all historical data. To efciently fnd 
the compact description C, we adopt an insertion-based algorithm, 
where it maintains a reasonable description for X and generates 
a regime if necessary. Specifcally, the algorithm tracks only two 
regimes, the previous regime �� and the candidate regime �� . Given 
a current tensor X� with the two regimes, the algorithm compares 
the extra cost according to Equation (6) for each regime, and then 
chooses the next procedure so that the additional cost is minimized: 

• If C-Compressor uses �� , it stays in the previous regime. 
• If �� is chosen, C-Compressor frst fnds a more suitable 
regime in Θ to avoid duplication. Then, the least expensive 
regime is adopted. 

Here, the additional cost < X� ; �∗ > is written as follows: 

< X� ; �∗ > = Δ < C > + < X� |�∗ >, (9) 
Δ < C > = log∗ (� + 1) − log∗ (�) + < �∗ > 

+ log∗ (� + 1) − log∗ (�) + < � >, (10) 

where �∗ indicates any regime. If we need to shift another ex-
isting regime to represent X� , then Δ < C >= log∗(� + 1) − 
log∗(�)+ < � >; if the description of X� requires new regimes, it 
costs all of the terms in Equation (10); otherwise, Δ < C >= 0. 
Online Regime Updates. Whenever an existing regime is selected, 
each count in the existing regime is updated by adding �� : 

(�) Í� (�) (�)
� + 

=1 � (�) 
� �̂ + � � 

A(�) �,�� � �,�� �,�� ˜ ← , (11)
�,�� Í�� (�) Í�� (�)

�=1 � + �� (�) + 
�=1 � � 

�,�� �,�� 

(�)where � (e.g., � � ) is a count in the candidate regime. B̃ 
�,� is�,��

analogous, and omitted for brevity. The efect of the candidate 
regime is decayed as the existing regime is updated; in other words, 
each regime converges as it updates. 
Anomaly Detection. Finally, we exploit the compact description C 
for anomaly detection. Compression-based techniques are naturally 
suited for anomaly and rare instance detection. In a given compact 
description C, the high usage regime compresses the majority of all 
past data with a short code length. In other words, it represents the 
norm in the data stream and thus it needs long code length against 
rare instances. We thus consider the encoding cost of X� as its 
anomalousness score; the higher the compression cost, the more 
likely it is “to arouse suspicion that it was generated by a diferent 
mechanism” [38]. 

���� = arg max |S−1 |,� 
� ∈� 

����� (X� ) = < X� |����� >, (12) 

where |S−1 | is the total segment length of the regime �� . Note that, � 
in data streams, the concept of normal changes over time, and this 
is known as concept drift [21]. This approach can adaptively change 
the norm to judge incoming tensors as the concept drift. 

Lemma 4.1 (Time complexity of CubeScope). The time com-

plexity of CubeScope is at least � (� ) and at most � (� + �) per 

Table 2: Dataset description 

Dataset The form of entry Order 

Local Mobility: Ride information attributes & timestamp → #rides 

#1 NYC-Taxi [8] (Pick-up/Drop-of location ID, Time) 3 
#2 Bike-Share [2] (User’s age, Start/End station ID, Time) 4 

E-commerce: Purchase information attributes & timestamp → #purchases 

#3 Jewelry [4] (Price, Brand, Gem, Accessory type, Time) 4 
#4 Electronics [3] (Brand, Item category, Time) 3 

Network trafc/intrusion: Access detail attributes & timestamp → #accesses 

(Protocol type, Service, Flag, Land, Duration 
Src/Dst bytes, Wrong fragment, Urgent, Time) 

(Proto, Src/Dst IP Addr, Src/Dst Pt, 
Flags,Duration,Packets,Bytes, Time)

” 
(Src/Dst bytes, Count, Same srv/Serror/Srv serror rate, 
Dst host serror rate/same src port rate/srv serrors rate, 
Dst host count/srv count, Duration,Service,Flag,Time) 

process, where � is the number of regimes and � is the total number Í Í Í 

#5 AirForce [5] 

#6 External [1] 

#7 OpenStack [1] 
#8 Kyoto [9] 

10 

10 

10 
15 

of event entries in X� 
(i.e., �1 

· · · �� � ��1,...,�� ,� ). 

Proof. Please see Appendix B. □ 

5 EXPERIMENTS 
In this section, we evaluate the performance of CubeScope. We 
answer the following questions through the experiments. 
(Q1) Efectiveness: How successfully does CubeScope discover 

compact description C in given tensor streams? 
(Q2) Accuracy: How accurately does it achieve modeling, cluster-

ing, and streaming anomaly detection? 
(Q3) Scalability: How does it scale in terms of computational time? 

Datasets & Experimental Setup. We use eight real datasets and 
four synthetics. The real datasets contain the event tensor streams 
of local mobility, e-commerce, and network trafc/intrusion and are 
summarized in Table 2. The synthetics and experimental settings 
are described in Appendix C.1. 
Baselines. Our experiments are evaluated with twelve baselines. 

Probabilistic generative models: 
• Latent Dirichlet Allocation (LDA) [22] - A classical topic 
model, where the topic distribution is a multinomial. 

• Neural Topic Model (NTM) [85] - A topic model based on 
neural variational inference. 

• TriMine [68] - A factorization method for a high-order tensor, 
whose entries consists of multiple attributes and a timestamp. 

Clustering approaches for time series, tensor, and data streams: 
• K-means - The standard K-means clustering algorithm using 
Euclidean distance. 

• TICC [37] - A clustering method for multivariate time series, 
where each cluster is characterized by a correlation network. 

• CubeMarker [39] - An ofine approach for discovering dis-
tinct patterns in tensor time series. 

• Time-Aware LSTM (T-LSTM) [17] - A time series clustering 
method for sequences with irregular time intervals. 

• DBSTREAM [36] - A clustering algorithm for evolving data 
streams, which incrementally updates the density of clusters. 

Unsupervised anomaly detection methods: 
• Local Outlier Factor (LOF) [24] - A density-based method 
for a collection of data points. 
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(b-ii) Regime#2 (Black Friday sale) 
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(b-iii) Regime#3 (Memorial Day sale) 
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Figure 3: Market analysis of CubeScope on the Jewelry dataset: (a) CubeScope adaptively captured the changes in purchase 
behaviors caused by the sale. (b) The three components (Luxury, Middle, Afordable) for time. A darker color denotes a stronger 
relationship between each component and the time. It shows when the components attract consumer interest. (c) The three 
components for each attribute (price/brand/gem/accessory type) in Regime #1. Each of the columns shows four attributes. A 
darker color in the price rank and a larger size in the word cloud denote a stronger relationship with the component. 

Figure 4: Real-time intrusion detection of CubeScope on AirForce dataset: the stars indicate intrusions. It successfully identifed 
the multiple types of intrusions of diferent durations (i.e., Regime #2: Smurf, Regime #3: Probe attacks, Regime #4: Neptune). 

• Isolation forest (iForest) [56] - An ofine method, where a 
forest of random cuts of data points isolates outliers. 

• Robust Random Cut Forest (RRCF) [34] - A tree-based ap-
proach, which is designed for use with streaming data. 

• MemStream [21] - A streaming approach using a denoising 
autoencoder and a memory module. 

5.1 Q1.Efectiveness 
We frst demonstrate how efectively CubeScope works on real 
datasets. Please also see the results in Electronics in Appendix C.2. 
Local Mobility. The results for NYC-Taxi have already been pre-
sented in Figure 1. As already seen, CubeScope identifes multiple 
regimes and their shifting points (Figure 1 (a)), and captures latent 
components (Figure 1 (b)(c)). These patterns refect complicated 
social conditions and help us to understand human activities. 
Online Marketing Analytics. Figure 3 shows our mining result 
for the Jewelry dataset. This dataset is an e-commerce-log collected 
from an anonymous jewelry store. Each of the logs consists of four 
attributes, namely 20 prices, 6 anonymous brands, 32 gems, and 8 
accessory types, with 12-hour timestamps. The price attribute is 
defned every ffty dollars up to 1K dollars i.e., 20 stages. 

• Regime identifcation: As shown in Figure 3 (a), CubeScope 
generates Regime #1 and starts monitoring the tensor stream. 
In late November, it detects a regime transition and gener-
ates Regime #2. Similarly, in late May, it generates a new 

Regime #3. These periods coincide with Black Friday 4 and 
Memorial Day 5. This suggests our method captures the 
change in purchase behaviors caused by the sale. 

• Multi-aspect component analysis: Figure 3 (b)(c) shows three 
components, which we manually named “Afordable”, “Mid-
dle”, and “Luxury”. First, Figure 3 (b) shows the three com-
ponents for the time attribute (i.e., B) in each regime. It 
demonstrates when each component attracts consumer in-
terest. Figure 3 (c) shows the three components for each 
attribute (i.e., {A(�) }

� 
4 
=1) in Regime #1. The components 

reveal the latent groups in four attributes (i.e., price, brand, 
gem, accessory type). It shows that each component (row) is 
strongly related to diferent brands or accessories. 

Here, we provide the reader with some application scenarios. For 
targeted advertising and promotion strategies, analysts investigate 
purchase logs with millions, billions or even trillions [74] of events. 
However, this approach requires expert knowledge and time re-
sources. Since CubeScope can automatically and efciently summa-
rize a massive amount of data into just a handful of components, it 
could provide analysts with a summary of the market or user pref-
erences. Also, it is a more critical issue to analyze how the purchase 
behaviors change due to fads and sales. Our method recognizes the 

4Black Friday is a big sale event on the 4th Friday of November. 
5On Memorial Day, most jewelry shops hold special sales. 
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Figure 5: Modeling accuracy of CubeScope: the method consistently outperforms its baselines (lower is better). 
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Figure 6: Clustering accuracy with respect to conditional 
entropy (lower is better). 
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Figure 7: Detection accuracy (higher is better): CubeScope 
consistently wins. (left) The ROC curve on External dataset. 
(right) The ROC-AUC on all datasets. 
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Figure 8: Scalability of CubeScope: (left) Wall clock time vs. 
data stream length. CubeScope surpasses its competitors at 
any time. It is up to 312,000x faster than the baselines. (right) 
Average wall clock time vs. # of records in a process. The 
algorithm scales linearly. 

changes in dynamics as regime transitions and adaptively generates 
the summary for each regime. 
Cybersecurity. We demonstrate the real-time intrusion detection 
of CubeScope. Figure 4 shows the result for the AirForce dataset, 
which contains multiple intrusions simulated in a military net-
work environment within 1.2 million records. We investigated the 
detected regimes and found that most corresponded to actual intru-
sions. For example, Regime #2 (orange) and Regime #4 (red) corre-
spond to Smurf and Neptune attacks, respectively. Regime #3 (green) 
captures IP sweep/Stan/Port sweep. These intrusions are catego-
rized as probe attacks [77]. Most importantly, these anomalies arise 
over time and thus their numbers, durations, and features are un-
known in advance, whereas CubeScope is fully automatic. It auto-
matically recognizes anomalies and their types while updating the 
information for each type of anomaly in a streaming setting. We 

also conducted a quantitative analysis of this result in terms of the 
clustering and anomaly detection in Section 5.2. 

5.2 Q2. Accuracy 
We next evaluate the accuracy of CubeScope in terms of modeling, 
clustering, and anomaly detection. 
Modeling. We compared the modeling accuracy of CubeScope 
and the probabilistic generative models. Figure 5 shows the average 
negative log-likelihood of every current tensor X� of length 168 
for each model. For a fair comparison, we use 4, 8, and 16 compo-
nents/topics for all models. A lower value indicates better model 
construction. Unsurprisingly, CubeScope achieves high modeling 
accuracy on all datasets because it can capture high-order tensor 
streams. Since LDA and NTM handle a tensor as a large matrix, 
they cannot capture multi-aspect features. TriMine is designed for 
a high-dimensional and sparse tensor, but it cannot capture tensor 
streams containing various time-evolving patterns (i.e., regimes). 
Clustering. Next, we show how accurately CubeScope can fnd 
regimes. We use both labeled datasets and synthetics because it is 
insufcient to evaluate only real datasets containing some time-
evolving patterns that are not repeated (i.e., a few clusters appear 
once). We generated four types of synthetics as follows [37] (see Ap-
pendix C.1 for details), and evaluated them ten times and reported 
the mean and standard deviation values. Finally, we compare a 
standard measure of conditional entropy (CE) from the confusion 
matrix (CM) of the prediction regime labels against true cluster 
labels. The CE score shows the diference between two clusters us-

���,� ���,� ing the following equation: �� = −Σ�, � log . NoteΣ�,� ���,� Σ � ���,� 
that an ideal confusion matrix must be diagonal, in which case 
�� = 0. Figure 6 compares CubeScope with clustering methods. 
Our method consistently outperforms its competitors because it 
can handle high-dimensional and sparse tensors. TICC failed to 
capture sparse sequences. T-LSTM is designed for sequences with 
sparsity but cannot handle high-dimensional tensors. CubeMarker 
can capture tensor time series but cannot handle sparse tensors. 
DBSTREAM has the ability to recognize clusters in data streams 
but cannot capture multi-aspect features in tensor streams. 
Anomaly Detection. We evaluate anomaly detection performance 
for four real datasets containing ground truth anomalies. We frst 
compute anomaly scores for CubeScope and unsupervised base-
lines, and then select the top-� most anomalous periods (� = 
20, 40, . . .). Next, we compute true and false positive rates for each 
method’s output. Figure 7 shows the ROC curve for External dataset 
and ROC-AUC for all datasets. A higher value indicates better de-
tection accuracy. CubeScope achieves a high detection accuracy for 
every dataset, while other methods cannot detect anomalies very 
well because only our approach captures dynamical multi-aspect 
patterns and utilizes them for subsequent anomaly detection. 
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5.3 Q3. Scalability 
Finally, we evaluate the computational time needed by CubeScope 
for large tensor streams. The left part of Figure 8 shows the wall 
clock time of an experiment performed on a large NYC-Taxi dataset. 
Thanks to the incremental update, our method is independent of 
data stream length. In fact, our method achieved a constant compu-
tation time, which was up to fve orders of magnitude faster than its 
baselines. The right part of Figure 8 shows the computational time 
of C-Decomposer when varying the size of an input tensor. Since 
CubeScope achieves fast and efcient model estimation for � (� )
time (as discussed in Lemma 4.1), the complexity scales linearly 
with respect to the number of events. 

6 CONCLUSION 
In this paper, we focused on the dynamic summarization of high-
order event tensor streams and presented CubeScope, which ex-
hibits all the desirable properties that we listed in the introduction; 

• Efective: it incrementally captures dynamical multi-aspect 
patterns and summarizes a semi-infnite collection of event 
tensor streams into an interpretable representation. 

• General: our experiments with various datasets showed that 
CubeScope successfully discovers meaningful patterns and 
anomalies, and outperforms state-of-the-art modeling, clus-
tering, and anomaly detection methods. 

• Scalable: its computational time is constant and indepen-
dent of the input data length and the dimensionality in each 
attribute. 
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Fast and Multi-aspect Mining of 
Complex Time-stamped Event Streams 

Table 3: Symbols and defnitions. 

Symbol Defnition 

� Number of attributes of complex event tensor 
�1 . . .�� A set consisting of a number of unique units in each attribute 
� Length of whole tensor stream 
� Length of current tensor 

· · ·×�� ×� Whole event tensor stream, X ∈ N�1 × 

X� ∈ N�1 ×···×�� ×� Current event tensor, X� 

� Number of latent components 
A(�) �-th attribute component matrix, � × �� 
B Time component matrix, � × � 
� FIFO queue for retaining past component matrices 
� The size of queue � 

� Number of regimes 
� -th regime parameter, i.e., �� = {A(1) , . . . , A(� ) , B}�� 

Θ Regime set, i.e., Θ = {�1, . . . , �� }
� Number of regime assignments (i.e., segments) 

Trajectory of shift to � -th regime at time �� , i.e., �� = (�� , � )�� 
S Regime assignments, i.e., S = {�1, . . . , �� }
|S−1 | Total segment length of the regime �� � 

C Compact description, i.e., C = {�, Θ,�, S} 
����� (X� ) Anomalousness score of X� 

Algorithm 1 CubeScope (X� , C, �) 
∈ N�1 ×...×�� ×� 

Input: 1. Current tensor X� 

2. Previous candidate solution C = {�, Θ, �, S} 
3. Previous past parameter set � 

Output: 1. Updated candidate solution C′ 
′2. Updated past parameter set � 

3. Anomalousness score ����� (X� )
′1: �� , � = C-Decomposer (X� , �); 

2: C′ , ����� (X� ) = C-Compressor (�� , X� , C); 
3: return C′ , � ′ , ����� (X� ) ; 

Algorithm 2 C-Decomposer (X� , �) 
∈ N�1 ×...×�� ×� 

Input: 1. Current tensor X� 

2. Previous past parameter set � 
Output: 1. Current model parameter set �� = {A(1) , . . . A(� ) , B}

′2. Updated past parameter set � 
1: for each iteration do 
2: for each non-zero element � in X� 

do 
3: for each entry for � do 
4: Draw hidden variable �; // According to Eq. (7) 
5: end for 
6: end for 
7: end for 

, . . . , A(� )8: Compute A(1) , B; //According to Eq. (8) 
, . . . , A(� )9: �� ← A(1) , B; 

10: � .deque; // Remove the oldest set of component matrices 
11: � ′ ← � .enque(�� ); // Insert a set of current estimated matrices �� 

′12: return �� , � ; 

APPENDIX 

A PROPOSED MODEL 
Table 3 lists the symbols and defnitions used in this paper. All 
logarithms are to base 2, and by convention we use 0 log 0 = 0. 

B STREAMING ALGORITHM 
Algorithm 1 shows the overall procedure for CubeScope, which 
composed of C-Decomposer (Algorithm 2) and C-Compressor 
(Algorithm. 3). C-Decomposer continuously monitors a current 
tensor X� and generates a regime �� . Then, C-Compressor updates 
the compact description C with �� and measures the anomalousness 
of X� . 
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Algorithm 3 C-Compressor (�� , X� , C) 
Input: 1. Candidate model parameter set �� = {A(1) , . . . A(� ) , B}

∈ N�1 ×...×�� ×� 2. New observation tensor X� 

3. Previous compact description C = {�, Θ,�, S}
′

Output: 1. Updated compact description C′ = {� ′ , Θ ′ ,� , S′ }
2. Anomalousness score ����� (X� )

1: /* Update compact description C */ 
2: if < X� ; �� > is less than < X� ; �� > then 
3: /* Stay in the previous regime �� */ 

′4: � ← Regime update(�� , �� ) ; // According to Eq. (11) � 
5: else 
6: �� = arg min < X� ; � >; 

� ∈Θ 

7: if < X� ; �� > is less than < X� ; �� > then 
8: /* Shift to the candidate regime �� */ 
9: � ′ ← � + 1; Θ ′ ← Θ ∪ �� ; 

′10: � ← � + 1; S′ ← S ∪ (�, � + 1) ; 
11: else 
12: /* Shift to the existing regime �� */ 

′13: �� ← Regime update(�� , �� ) ; // According to Eq. (11) 
′14: � ← � + 1; S′ ← S ∪ (�, � ) ; 

15: end if 
16: end if 
17: /* Compute anomalousness score*/ 
18: ���� ← arg max |S−1 | ;� 

� ∈� 

19: ����� (X� ) ←< X� |����� >; 
′20: return C′ = {� ′ , Θ ′ � S′ }, ����� (X� ) ; 

Proof of Lemma 4.1. 

Proof. For each time point, CubeScope frst runs C-Decomposer, 
which draws hidden variables ��,� with each entry for non-zero 
element ��,� in X� . This process requires � (#���� · �� ), where 
#���� is the number of iterations for drawing �, � is the number 
of components, and � is the total number of event entries in X� Í Í Í
(i.e., �1 

· · · �� � ��1,...,�� ,� ). Since #���� and � are small val-
ues and constant, they are negligible. Thus, the complexity of C-
Decomposer is � (� ). In C-Compressor, it tracks �� and �� . If 
it employs the previous regime �� for current tensor X� , it can 
quickly update the regime, which requires � (1) time. Otherwise, 
it then tries to fnd the optimal regime in Θ, which requires � (�)
time. Overall, CubeScope needs these two algorithms. Thus, the 
complexity is at least � (� ) and at most � (� + �) per process. □ 

Model Initialization. When we start the iteration with regime 
set Θ and � for past parameter set, we uniformly take several 
sample segments with interval � from initial tensor X� and then 
estimate the model parameters �� for each. The most appropriate 
regime set is determined by monitoring the total encoding cost 
while increasing the number of model parameters �� : 

Θ = arg min < X� ; Θ >, (13) 
Θ∈Θ� 

where Θ� = {��1, ��2, . . . } is a set of regimes estimated from each 
sample. We also set � to the average interval of the shifting points 
(i.e., the average length of segments). 
Process Interval � . The parameter � determines the size of a cur-
rent tensor, as well as the minimum granularity of regimes. Users 
need to know regimes under various granularities (e.g., daily and 
weekly patterns), thus � is generally chosen depending on the ap-
plication. The runtime of C-Decomposer scales linearly with the 
number of records in a current tensor rather than the size of � . Al-
though a larger � imposes the algorithm to process a larger current 
tensor, there should be a small impact on the runtime because we 
assume sparse tensor streams. 
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(a) Market regimes 

(c-i) Popular brands in (c-ii) Popular items in 
White goods (top) and White goods (top) and 
Small/Kitchen (bottom) Small/Kitchen (bottom) 

(b) Time evolution of two major components components. components. 

(d) Changes of popular 
items with regime 

transitions 

Figure 9: Customer behavior modeling on Electronics: (a) CubeScope discovered a total of four regimes that refect the 
seasonality of customer behavior. (b) Two components show clear daily periodicity; The White goods component spikes at night. 
The Small/Kitchen component shows high peaks during the daytime. (c) Popular brand/item categories for each component. 
A larger size denotes a closer relationship. (d) Popular item categories change with regime transitions. Top: air conditioners 
become the most frequent item in Regime #2 (early Summer). Bottom: air heaters are the popular items in Regime #4 (Fall). 

C EXPERIMENTS 

C.1 Experimental Setup 
We conducted our experiments on an Intel Xeon E5-2637 3.5GHz 
quad core CPU with 192GB of memory and running Linux. 
Generating the Datasets. We frst generate four types of sparse 
event tensors (1, 2, 3, and 4), which have 100� observations as 
X ∈ N100×100×100×100. Each attribute of an event entry is drawn 
from multinomial distributions whose parameter is defned by ran-
dom values [0.1, 0.5] and a Dirichlet prior. Finally, four diferent 
synthetic datasets are built by using diferent combinations of 
event tensors as follows [37]: “1,2,1”, “1,2,3,2,1”, “1,2,3,4,1,2,3,4”, 
“1,2,2,1,3,3,3,1”. 
Implementaion & Parameters. We used the open-source imple-
mentation of LDA, K-means, LOF, and iForest in [72]. For NTM, we 
implemented it based on the pytorch framework and applied Adam 
optimization with a learning rate of 1� − 3, following the design and 
the parameter setting in [85]. We also used open-sourced implemen-
tations of TICC [37], T-LSTM [17], RRCF [34], CubeMarker [39], 
and MemStream [21], provided by the authors, following parameter 
settings as suggested in the original papers. For a fair comparison in 
terms of computational time, we implemented TriMine in Python, 
following C implementation provided by the authors. The input 
for LDA/NTM is bag-of-words representations of all the categories, 

· ·+�� )i.e., W ∈ N� ×(�1 +· . In evaluation of clustering accuracy, the 
width of a current tensor is set with 10. Since TICC and T-LSTM 
need to specify the number of clusters, we set the true number of 
clusters. DBSTREAM, which is implemented in [7], and CubeScope 
are automatically determine the number of clusters. We set the 
radius of each micro-clusters as 8.5 for DBSTREAM, and the num-
ber of components � = 8 for CubeScope. To validate detection 
accuracy, we set � = 1 for all methods. We used a 5� length of the 
stream to conduct the model initialization for CubeScope. 

C.2 Efectiveness 
We also demonstrate how efectively CubeScope works on the 
Electronics dataset. 
Online Marketing Analytics. Figure 9 shows stream mining re-
sults of CubeScope on the Electronics. This data is the purchase data 
obtained over a year from a large home appliances and electronics 
online store. The data contains a list of two attributes; 867 brands 
and 124 item categories with an hourly timestamp. 

• Regime identifcation: CubeScope discovered four type of 
regimes in Figure 9 (a). Specifcally, our method found Regime 
#2 during a short period around July, and then discovered 
Regime #3 for the summer season and Regime #4 for the fall 
season. This result shows that the behaviors of purchases 
shift with the transition of seasons. 

• Multi-aspect component analysis: Figure 9 (b) shows the tem-
poral evolution of two major components, which are shown 
in the time component matrix B in Regime #1. We manually 
named the two components “White goods” and “Small/Kitchen”. 
These components exhibit contrasting behavior. The White 
goods sequence peaks at night, while the Small/Kitchen 
sequence peaks during the daytime. Figure 9 (c) shows 
the attribute component matrices {A(�) }

� 
2 
=1 in Regime 

#1, namely the latent relationships between two compo-
nents (row) and two attributes (column). Figure 9 (d) shows 
the changes of popular item categories in association with 
regime transitions. These changes make sense. As shown 
in the top fgure, the White goods component in Regime #2 
(early summer) has the strongest relationship with an air con-
ditioner. Similarly, the bottom fgure shows the Small/Kitchen 
component in Regime #4 (Fall), where an air heater appeared 
as a popular item. 
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