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Complex Time-stamped Event Streams are Everywhere

q A huge, online stream of time-stamped events with multiple attributes

CyberSecurityLocal mobility E-commerce
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Complex Time-stamped Event Streams are Everywhere

E-commerce

q A huge, online stream of time-stamped events with multiple attributes

3 attributes (M=3)
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Complex Time-stamped Event Streams are Everywhere

q A huge, online stream of time-stamped events with multiple attributes

Local mobility 

2 attributes (M=2)
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High-dimensional
Sparse
Semi-infinite
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Limitations & Challenges
Complex time-stamped event streams …

derail existing methods and even our interpretation

3rd –order tensor stream:
each aspect indicates each attributes

Because this is…

High-order tensor streams
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Q. How can we summarize large, dynamic high-order tensor streams? 
Q. How can we see any hidden patterns, rules, and anomalies?

Our Questions
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Q. How can we summarize large, dynamic high-order tensor streams? 
Q. How can we see any hidden patterns, rules, and anomalies?

Our answer is …

to focus on two types of patterns,
Regimes and Components

Our Questions
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Our Answer: Regimes and Components

Regimes: Distinct time-evolving patterns 

→Time

qSummarize semi-infinite event stream into a handful number of segments

Local mobility 
(NY-taxi rides)
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Our Answer: Regimes and Components

Components: Multi-aspect latent trends

Timestamp (Pick-up time)

qSummarize high-deimensional and sparse events into major groups

Pick-up location Drop-off location

Local mobility 
(NY-taxi rides)
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Introduction

Model

Algorithm

Experiments

Conclusion

Outline
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q Event stream, which consist of {M attributes + Timestamp} 

→ M+1th-order tensor stream

q Continuously obtain current tensors

12

Our Settings: Complex Time-stamped Event Streams

𝜏
𝑈!

𝑈"
Time 𝑡 → 

Event tensor streams:

𝑇
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Q1. What is the simplest mathmatical model for components? 
Q2. How can we represent regimes and summarize the whole stream? 
Q3. How can we formulate the summarization problem?

G1. Multi-aspect component factorization
G2. Compact description
G3. Problem formulation in a data compression paradigm 

Proposed Model
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G1. Multi-aspect Component Factorization

Goal: to describe a high-dimensional and sparse tensor
as compact and interpretable model    

Multi-aspect Component factorization
q Model the generative process of events 
q Assume that there are 𝐾 major trends/components
q 𝑘-th component is defined by probability distribution

w.r.t. M attributes and time

I 𝐾
𝐀(𝟐)

𝐀(𝟏)

𝐁
𝜏

𝑈%

𝑈&

𝜏

Component matrices
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G1. Multi-aspect Component Factorization

qSummarize sparse activity into 𝐾 components 

qMutli-aspect property: handle arbitrary-order tensors

qOnline setting: capture temporal dependencies without storing tensors

The generative process:
Capture 
temporal dependencies
without storing tensors

Details in paper

Details in paper
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Goal: to represent the whole stream    , containing distinct dynamical patterns 
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G2. Compact description 

𝜏Event tensor streams:𝑈!

𝑈"

𝜃& 𝜃&𝜃' 𝜃( 𝜃)

Regime:
𝜃 = {{𝐀!}!"#$ , 𝐁} Time 𝑡 → 

Compact description: 𝒞 = 𝑅, Θ, 𝐺, 𝒮
q the number of regimes 𝑅 and the regime set Θ
q the number of segments 𝐺 and the assignments 𝒮
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Summarization Problem
Find the compact description 𝒞, which minimizes the total encoding cost

Model 
coding cost

Data 
coding cost

G3. Problem Formulation: Data Compression Paradigm

What is good summarization?
q Minimum Description Length (MDL) principle:

“the more we can compress the data,
the more we can learn about their underlying patterns”

q Evaluate the total encoding cost, 
which is used to losslessly compress the original data streams

17
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G3. Problem Formulation: Data Compression Paradigm

18

Dimensionality 
Number 
of regimes

Number 
of segments

q Model Coding Cost: the number of bits needed to describe the model 𝒞
q Data Coding Cost:  the coding cost of data     given the model 𝒞

Each regime Each segment

Coding cost of 
each segment
given regimes

Details in paper
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Given: 
Complex time-stamped event streams

CubeScope
q Finds

q Components (Multi-aspect latent trends/groups)
q Regimes (Distinct time-evolving patterns)

q Detects anomalies and their types

Streaming Algorithm: CubeScope
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Streaming Algorithm: CubeScope

Our CubeScope consists of two sub-algorithms:

q C-Decomposer:
q incrementally monitors  
q estimates a candidate regime 𝜃$

q C-Compressor:
q Updates the compact description 𝒞
q Measures the anomalousness of 



© 2023 Kota Nakamura et.alWWW’23 22

qRegime estimation
with collapsed Gibbs sampling

C-Decomposer

C-Decomposer is Efficient
q Independ on dimensionality, i.e., it takes 𝑂 𝑁  , N: the number of events
q Conventional algorithms (e.g., ALS) are expensive for high-order tensor

these scale w.r.t. all the attributes, i.e., take 𝑂 ∏%&'
( 𝑈%
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C-Compressor

qInsertion-based algorithm:  
Maintains a resonable description 𝒞 for    and generates new regime if necessary

q Compares encoding costs
between 𝜃$ and 𝜃)

Candidate regime 𝜃'
Previous regime 𝜃(

MDL
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C-Compressor: Stream Anomaly Detection

q Compression-based anomaly detection
q Higher compression cost → higher anomalousness score

C-Compressor is Adaptive
q The concept of normal changes over time
→ Adaptively change the baseline to judge incoming tensors

q Data streams contain multiple anomalies over time
→ Discard anomalies from the baseline
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Q1. Effectiveness:
How successfully does it discover meaningful patterns?

Q2. Accuracy:
How accurately does it achieve modeling, clustering, and anomaly detection?

Q3. Scalability:
How does it scale in terms of computational time?

Experimental Questions

We aim to evaluate that CubeScope has ...
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12 datasets 
(8 real-world datasets + 4 synthetics)

Experimental Setup

12 Baselines
q LDA
q NTM
q TriMine
q K-means
q TICC
q CubeMarker
q T-LSTM
q DBSTREAM
q LOF
q iForest
q RRCF
q MemStream

Probabilistic 
generative models

Clustering approaches 
for time series, tensor, 
and data streams

Unsupervised anomaly 
detection methods
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Jewerly Dataset: 4rd-order tensor stream
{Time, Price, Brand, Gem, Accessory type}

Q1. Effectiveness: Online Marketing Analytics
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Jewerly Dataset: 4rd-order tensor stream
{Time, Price, Brand, Gem, Accessory type}

Q1. Effectiveness: Online Marketing Analytics

Regimes:
Distinct dynamical patterns

Changes in 
Purchase behavior
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Jewerly Dataset: 4rd-order tensor stream
{Time, Price, Brand, Gem, Accessory type}

Q1. Effectiveness: Online Marketing Analytics

Components:
multi-aspect latent trends

User preferences 
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Q1. Effectiveness: Cybersecurity

found Regimes that most corresponded to actual intrusions
q These intrusions arise over time and thus 

their numbers, durations, and features are unknown in advance

AirForce Dataset: 10th-order tensor stream
{Time,Protocol type, Service, Flag, Land, Dura9on, Src/Dst bytes, Wrong fragment, Urgent}

→Time
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[Modeling] Negative log-likelihood: lower is better

Q2. Accuracy: Modeling, Clustering, Anomaly Detection

[Clustering] CE score: lower is better [Anomaly Detection] AUC score: higher is better

“How does CubeScope achieve 
modeling, clustering, and anomaly detection?”

CubeScope consistently outperforms its baselines
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105x

Q3. Scalability

“How does CubeScope scale in terms of computational time?”

CubeScope is up to 312,000x faster than baselines
and scales linearly
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Conclusion

Effective
q Introduce regimes and components
q Formulate the summarization problem for capturing these patterns
q Design CubeScope to solve the summarization problem

General
q Perform data compression, pattern discovery, and anomaly detection
q Practical in multiple domains, 

such as local mobility, online market analytics, and cybersecurity

Scalable
q Fast and constant computational time

w.r.t. the entire stream length and its dimensionality 
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Thank you!

CubeScope

Data&Code:


