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Abstract Subsequence matching is a basic problem in the
field of data stream mining. In recent years, there has been
significant research effort spent on efficiently finding sub-
sequences similar to a query sequence. Another challenging
issue in relation to subsequence matching is how we identify
common local patterns when both sequences are evolving.
This problem arises in trend detection, clustering, and out-
lier detection. Dynamic time warping (DTW) is often used
for subsequence matching and is a powerful similarity mea-
sure. However, the straightforward method using DTW in-
curs a high computation cost for this problem. In this paper,
we propose a one-pass algorithm, CrossMatch, that achieves
the above goal. CrossMatch addresses two important chal-
lenges: (1) how can we identify common local patterns effi-
ciently without any omission? (2) how can we find common
local patterns in data stream processing? To tackle these
challenges, CrossMatch incorporates three ideas: (1) a scor-
ing function, which computes the DTW distance indirectly
to reduce the computation cost, (2) a position matrix, which
stores starting positions to keep track of common local pat-
terns in a streaming fashion, and (3) a streaming algorithm,
which identifies common local patterns efficiently and out-
puts them on the fly. We provide a theoretical analysis and
prove that our algorithm does not sacrifice accuracy. Our
experimental evaluation and case studies show that Cross-
Match can incrementally discover common local patterns in
data streams within constant time (per update) and space.
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1 Introduction

Data streams are becoming increasingly important in sev-
eral domains including financial data analysis [68], sensor
network monitoring [74], moving object trajectories [15,
38], web click-stream analysis [42,48,59], and network traf-
fic analysis [37]. Many applications require time-series data
streams to be continuously monitored in real time, and the
processing and mining of data streams are attracting in-
creasing interest. In addition to providing SQL-like support
for data stream management systems (DSMS), it is crucial
to detect hidden patterns that may exist in data streams,
and subsequence matching is one of the key techniques for
achieving this goal.

Much of the previous work on subsequence matching
over data streams has focused on finding subsequences sim-
ilar to a query sequence [16,58,72]. In this setting, one is a
fixed sequence and the other is an evolving sequence. This
approach works well if we have already determined the pat-
terns we want to find. However, we consider co-evolving
sequences and focus on the problem of identifying common
local patterns between them. That is, our goal is to auto-
matically detect all common local patterns over data streams
without a query sequence. The problem we want to solve is
as follows.

Given two data streams, determine common local patterns
and their periodicities taking account of time scaling.

This problem is defined in detail in Section 3, in Fig. 1 we
present a visual intuition. The two datasets in Fig. 1 (a) show
humidity readings from two different sensors. The sensors
send the readings approximately every minute. These se-
quences are roughly similar, but a part of the sequences is
different. Intuitively, the problem is to identify the partial
similarity of the sequences through data stream processing.
In this example, we discover two common patterns marked
with vertical lines: Subseq. #1 and #2. The matches between
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Fig. 1 Illustration of problem. Two humidity sequences have two com-
mon local patterns. Our proposed method identifies their positions and
similarities in a streaming fashion.

the two patterns are shown in Fig. 1 (b). The lines represent
the matches between the elements ofX andY and corre-
spond to a diagonal if the two subsequences match perfectly.
We identify their similarities and matching points, i.e., the
starting and end positions of each sequence, in a streaming
fashion, and report each match as early as possible.

This problem motivates us to develop the following im-
portant techniques: (1) trend detection, which is the abil-
ity to detect the most frequently occurring patterns in data
streams, (2) clustering, which is the ability to find sequences
that look similar and to group them, and (3) outlier detec-
tion, which is the ability to discover anomalous patterns
by comparing common patterns. These exciting techniques
could also provide interpretations of clusters and anomalies
by annotating them in an online fashion.

In addition to the above techniques, we also consider the
following interesting applications.

– Web analysis: Web access patterns are very dynamic be-
cause of both the dynamics of web site content and struc-
ture, and the changes in the users’ interests. A contin-
uous monitoring of web access will reveal interesting
usage patterns or profiles and provide users with more
suitable, customized services in real time. Webmasters
may cluster users into groups based on their common
characteristics for user behavioral analysis. Web site de-
signers can use typical browsing patterns to personalize
the user’s experience on the website. These groups and

patterns essentially correspond to groups of common lo-
cal patterns.

– Motion capture: The recognition of human motion has
been attracting intense interest in relation to computer
animation, sports, and medical care. Motion data se-
quences are sampled many times per second and are data
streams of high dimensionality. Humans never repeat ex-
actly the same action patterns, and the actions tend to
differ in terms of their duration. This appears as variabil-
ity in the speed of human motion. For example, an actor
may walk quickly or slowly. Such variability can mani-
fest itself as time scaling, namely a stretching or shrink-
ing of time-series data. Our approach aids trend detec-
tion, which can be used to identify particular movement
styles for game creators, and outlier detection, which
can be used by coaches to analyze athletes’ performance
by identifying time-varying common motions (i.e., com-
mon local patterns).

– Sensor network: In sensor networks, sensors send their
readings frequently. Each sensor produces a stream of
data, and those streams need to be monitored and com-
bined to detect interesting changes in the environment. It
is likely that users are interested in one or more sensors
within a particular spatial region. These interests are ex-
pressed as trends and similar patterns, i.e., common local
patterns.

What similarity measures are suitable for detecting com-
mon local patterns? There are a large number of similar-
ity measures for time-series analysis[22]. Unlike the tra-
ditional setting, data streams arrive continuously. Subse-
quence matching should focus on asynchronous data be-
cause streams frequently have different sampling rates. The
mechanism should be robust against noise and provide scal-
ing of the time axis. We use dynamic time warping (DTW)
[9,54] to solve this problem. DTW is a robust and widely
used measure in several domains [32,34,45]. It is also suit-
able for subsequence matching since it provides time scal-
ing (such as the stretching or shrinking of a portion of a
sequence along the time axis) [4,35,61,71,75].

What are the significant challenges in terms of detect-
ing common local patterns over data streams? Typically,
DTW is applied to limited situations in an offline manner.
To identify common local patterns with DTW, we have to
divide data streams into all possible subsequences and com-
pute the similarities between them because we have no ad-
vance knowledge about the patterns we are seeking. Since
data streams arrive online at high bit rates and are poten-
tially unbounded in size, the computation time and memory
space increase greatly. Ideally, we need a solution that can
return correct results without any omissions, even at high
speeds.

Recently, the work in [65,66] addressed the problem of
finding common local patterns in data streams. Problem def-
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inition and its solution using DTW are introduced in [66],
but the work does not provide any theoretical guarantees
with respect to answer accuracy and it output overlapping
results. In [65] we modified the problem definition and de-
vised two ideas, a scoring function (Section 4.2.1) and a po-
sition matrix (Section 4.2.2). In this paper, while we share
the same goals, we present a new streaming algorithm (Sec-
tion 4.2.3), which incorporates these ideas and at the same
time provides strict guarantees for our results (Section 4.3).
By introducing a global constraint for DTW, which is suit-
able for stream settings, our algorithm improves the time and
space requirements. Moreover, we propose enhanced solu-
tions for different environments (Sections 5 and 6) and make
our algorithm more robust.

Our contributions in this paper are as follows.

– We present CrossMatch, which can efficiently detect
common local patterns in data streams. CrossMatch is
a one-pass algorithm, which is strictly based on DTW
and guarantees correct results.

– In our theoretical analysis, we prove that CrossMatch
does not sacrifice accuracy and detects the optimal
subsequences. Moreover, we discuss the complexity
in terms of computation time and memory space and
show that CrossMatch significantly reduces the required
amounts of these resources and achieves constant time
(per update) and space.

– For more effectiveness, we propose a sampling approach
that introduces an approximation for CrossMatch. Our
solution works properly for sampled sequences and
achieves a significant reduction in resources.

– As regards the accuracy and complexity for detecting
common local patterns, we empirically show its useful-
ness on several real and synthetic datasets.

– We address a more challenging problem of finding com-
mon local patterns in multiple data streams, and show
that CrossMatch can be effectively applied to this prob-
lem.

The remainder of this paper is organized as follows.
Section 2 discusses related work and Section 3 provides
the problem definition. In Section 4 we describe the ideas
behind CrossMatch and its algorithm, and in Section 5
we introduce a sampling approach for CrossMatch. Sec-
tion 6 presents an enhanced algorithm for multiple streams.
Section 7 reviews our experimental results, which clearly
demonstrate the effectiveness of CrossMatch. Section 8 pro-
vides our conclusion.

2 Related Work

Related work falls broadly into three categories: time-series
similarity search, stream management and stream mining.
We review each category.

Time-series analysis and similarity search. Time-
series analysis has been studied for many years. Most of the
proposed methods focus on similarity queries with a query
sequence. There are several distance measures for similar-
ity queries on time-series data, e.g., euclidean distance [25],
dynamic time warping (DTW) [9,54], distance based on the
longest common subsequence (LCSS) [67], edit distance
with real penalty (EDP) [14], and edit distance on real se-
quence (EDR) [15]. These distance measures are selected
depending on the difference of the matching strategy in ap-
plication domains.

To efficiently perform the similarity search efficiently,
data sequences are transformed to lower dimensional points
with a dimensionality reduction technique. Agrawal et al. [2]
and Faloutsos et al. [25] have utilized discrete Fourier trans-
formation (DFT), and have inserted each point into an R-
tree [8]. Other reduction techniques include discrete wavelet
transform (DWT) [53], singular value decomposition (SVD)
[33], piecewise aggregate approximation (PAA) [70], and
adaptive piecewise constant approximation (APCA) [36].
Cao et al. [10] have proposed a data reduction technique for
spatio-temporal data.

Sequence matching has attracted a lot of research
interest, and very successful methods have been devel-
oped for time-series data [4,35,61]. MDMWP [31] is a
fast ranked subsequence matching solution. Ranked subse-
quence matching finds the top-k similar subsequences to a
query sequence from data sequences. It introduces two tight
lower bounds and prunes unnecessary subsequence access
requests at the index level. EBSM [5] is a method for ap-
proximate subsequence matching under DTW. The key idea
is to convert subsequence matching to vector matching. For
the conversion, EBSM uses precomputed alignments be-
tween database sequences and query sequences. Rakthan-
manon et al. [55] have focused on one trillion length time-
series and several different many tens of billions time-series
data and have proposed a method for searching exactly un-
der DTW. By introducing the four optimizations based on
the early stop of the computation and lower bounds, they
have shown that their method is much faster than the recent
search method for DTW. The above methods focus mainly
on stored sequences.

As regards subsequence matching based on DTW in data
streams, Zhou et al. [72] presented an efficient batch filter-
ing method. They observe a special property of data streams,
which is that successive subsequences in a stream often
overlap to some extent, and improve the performance by uti-
lizing such overlapping information as filters for lower and
upper bounds. Sakurai et al. [58] presented SPRING, which
efficiently monitors multiple numerical streams. They in-
troduce two new ideas; star-padding and subsequence time
warping matrix. These methods can accurately detect simi-
lar subsequences in a constant time without fixing the win-
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dow size. On the other hand, Chen et al. [16] proposed an
original distance function that supports shifting and scaling
in both the time and amplitude dimensions and used it as a
similarity measure for the efficient and continuous detection
of patterns in a streaming time sequence. The above methods
are powerful for dealing with problems where fixed length
query sequences are given. However, they scale poorly and
so are ineffective with respect to our target problem.

Regarding the detection of common local patterns over
data streams, the most relevant work is [66], which proposed
an algorithm for finding similar subsequences. From an al-
gorithmic perspective, a highly relevant work is [65], which
presents an algorithm based on DTW. However, the algo-
rithm in [66] does not guarantee the correctness of results
and outputs subsequences with redundant information. Both
algorithms are linear with regard to time and space. This
paper not only overcomes the issues of accuracy and com-
plexity, but is also more efficient in detecting common local
patterns.

In the field of bioinformatics, search techniques for
biological sequences have been studied and the Smith-
Waterman algorithm is used to find local similarities [63].
The studies in this area focus on symbol sequences.
Whereas, our problem focuses on numerical sequences. Our
method differs in that it computes the DTW distance pre-
cisely and guarantees the detection of subsequences with the
minimum distance.

Continuous queries and data stream management.
Broadly related work includes data stream management sys-
tems (DSMSs). Their common goal is to provide a general-
purpose infrastructure for the efficient management of data
streams. Sample systems includeAurora [1], Stream[44],
Telegraph[12], Gigascope[19], andOSCAR[13]. Algorith-
mic work includes query processing [41], scheduling [6,11],
and load shedding [20,64]. As regards continuous queries,
Arasu et al. [3] studied the memory requirements of con-
tinuous queries overrelational data streams. SOLE [43] is
a scalable algorithm for continuous spatio-temporal queries
in data streams. To address multiple streams and queries, it
provides a framework with caching of uncertainty regions
and a shared operator on a shared buffer.

Approximation and adaptivity are also key features for
DSMSs, such as sampling [7], sketches [17,23,27], statistics
[21,28], and wavelets [30]. The main goal of these methods
is to estimate a global aggregate (e.g., sum, count, average)
over a fixed window on the recent data.

The emphasis in the above works is to support traditional
SQL queries on streams. None of them try to find patterns.

Stream mining. Many other previous studies have at-
tempted pattern discovery in a streaming scenario. Mueen et
al. [46] presented the first online motif discovery algorithm
to accurately monitor and maintain motifs, which represent
repeated subsequences in time-series, in real time. AWSOM

[50] is one of the first streaming algorithms for forecasting,
and it is used to discover arbitrary periodicities in a time
sequence. Zhu et al. [73] focused on monitoring multiple
streams in real time and proposed StatStream, which com-
putes pairwise correlations among all streams. The SPIRIT
method [51] is used to address the problem of capturing
correlations and finding hidden variables corresponding to
trends in collections of co-evolving data streams. BRAID
[60] detects lag correlations between data streams by using
geometric probing and smoothing to approximate the exact
correlation. Papadimitriou et al. [52] proposed an algorithm
for discovering optimal local patterns, which concisely de-
scribe the main trends in data streams. DynaMMo [40] sum-
marizes and compresses multiple sequences and finds latent
variables among them.

On the other hand, there are effective methods that ad-
dress massive time-series streams as applications for data
center management. Reeves et al. [56] addressed the prob-
lem of the space-efficient archiving of time-series streams
and the fast processing of several statistical and data mining
queries regarding that archived data. They focused on the
problem that traditional database systems have addressed
space-efficient archiving and query processing separately,
and proposed Cypress, which preprocesses and decomposes
each data stream into a small number of substreams, and an-
swers common queries directly from a set of them rather
than reconstructing the original stream. Mueen et al. [47]
considered the problem of computing all-pair correlations
in a warehouse containing a large number of time-series. A
high I/O and CPU overhead make the fast computation of
correlations a challenging issue. They proposed a caching
algorithm to optimize overall I/O cost and two approxima-
tion algorithms to reduce CPU costs.

These techniques focus on trend detection, correlation,
motif discovery, and prediction, and so are not solutions for
our goal, which is to find common local patterns based on
DTW.

In our experiment on CrossMatch, we used scatter plots
to show its outputs, which were the optimal subsequence
pairs. Recurrence plot [24] and dot plot [69] have been pro-
posed for visual sequence analysis and mining of time-series
data; they focus on the visualization of the similar parts
of sequences on a scatter plot. Our objective is to identify
which of the subsequences ofX andY are similar by apply-
ing the DTW approach in an online manner, and so differs
from their objective and approach.

3 Problem definition

In this section, we introduce dynamic time warping (DTW)
[9,54], and then define the problem that forms our objective.
The main symbols used in this paper are shown in Table 1.
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Table 1 Definitions of main symbols

Symbols Definitions

X Data sequence/stream of lengthn
Y Data sequence/stream of lengthm
xi i-th element ofX
yj j-th element ofY
X[is : ie] Subsequences ofX andY , including elements
Y [js : je] in positionsis, js throughie, je

ε Distance threshold for finding qualifying subsequences
lmin Threshold of subsequence length
lx Length ofX[is : ie]
ly Length ofY [js : je]
L(lx, ly) Function for length betweenX[is : ie] andY [js : je]
w Width of warping scope
d(i, j) Distance of(i, j) in time warping matrix
v(i, j) Score of(i, j) in score matrix
s(i, j) Starting position of(i, j) in position matrix
X Sampled data sequence ofX
Y Sampled data sequence ofY
xi i-th element ofX
yj j-th element ofY
fNq Nyquist frequency
Tx Fixed sampling period ofX
Ty Fixed sampling period ofY

3.1 Preliminaries

DTW is a transformation that allows sequences to be
stretched along the time axis to minimize the distance be-
tween them (see Fig.2). The DTW distance of two sequences
is the sum of the tick-to-tick distances after the two se-
quences have been optimally warped to match each other.
To align two sequences, we construct a ‘time warping ma-
trix’. The warping path is a set of grid cells in the time warp-
ing matrix, which represents the alignment between the se-
quences. Consider two sequences,X = (x1, x2, ..., xn) of
lengthn andY = (y1, y2, ..., ym) of lengthm. Their DTW
distanceD(X,Y ) is defined as

D(X,Y ) = d(n,m)

d(i, j) = ||xi − yj || + min











d(i, j − 1)

d(i − 1, j)

d(i − 1, j − 1)

d(0, 0) = 0, d(i, 0) = d(0, j) = ∞

(i = 1, ..., n; j = 1, ...,m).

(1)

Note that ||xi − yj || = (xi − yj)
2 is the distance be-

tween two numerical values in cell(i, j) of the time warp-
ing matrix. Note that other choices (say, absolute difference
||xi − yj || = |xi − yj |) can also be used; our algorithm is
completely independent of the choice made. To avoid de-
generated matching, where a relatively small section of one
sequence maps onto a relatively large section of another, the
warping path is limited by global constraints. The warping
scopew is the area that the warping path is allowed to visit
in the time warping matrix. The Sakoe-Chiba band [57] is a

X = {x1 , x2 , …, xi , …, xn}

Y = {y1 , y2 , …, yj , …, ym}

x1
xn

y1

ym

X

Y

w

Fig. 2 Illustration of DTW. The left figure indicates the alignment of
measurements. The right figure indicates the optimal warping pathin a
warping scope.

well-known global constraint that restricts the warping path
to the range of|i − j| ≤ w.

DTW requiresO(nm) time since the time warping ma-
trix consists ofnm cells. Note that the space complex-
ity is O(m) (or O(n)) since the algorithm needs only two
columns (i.e., the current and previous columns) of the
time warping matrix to compute the DTW distance. By us-
ing the warping scope, the time complexity is reduced to
O(nw + mw). The space complexity isO(w) because we
need only2w cells.

3.2 Cross-similarity

Data streamX is a discrete, semi-infinite sequence of num-
bersx1, x2, . . ., xn, . . ., wherexn is the most recent value.
Note thatn increases with every new time-tick. LetX[is :

ie] be the subsequence ofX that starts from time-tickis
and ends atie, and letY [js : je] be the subsequence of
Y that starts from time-tickjs and ends atje. The lengths
of X[is : ie] and Y [js : je] are lx = ie − is + 1 and
ly = je−js+1, respectively. Our goal is to find the common
local patterns of sequences by data stream processing based
on DTW. That is, we want to detect subsequence pairs that
satisfy

D(X[is : ie], Y [js : je]) ≤ εL(lx, ly), (2)

whereD(X[is : ie], Y [js : je]) is the DTW distance be-
tweenX[is : ie] andY [js : je], ε is a distance threshold,
andL is a function that sets the length of the subsequence. In
this paper, the algorithm usesL(lx, ly) = (lx + ly)/2, which
is the average length of the two subsequences, but the user
can employ any other choice (e.g.,L(lx, ly) = max(lx, ly)

or L(lx, ly) = min(lx, ly)). The DTW distance increases as
the subsequence length increases since it is the sum of the
distances between elements. Therefore, the distance thresh-
old should be proportional to the subsequence length. Ac-
cordingly, we set it atεL(lx, ly).

Equation (2) allows us to detect subsequence pairs with-
out regard to the subsequence length. In practice, however,
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we might detect shorter and meaningless matching pairs due
to the influence of noise. We introduce the concept of subse-
quence match length to enable us to discard such meaning-
less pairs and to detect the optimal pairs that satisfy ‘real’
user requirements. We formally define the ‘cross-similarity’
betweenX andY , which indicates common local patterns.

Definition 1 (Cross-similarity [65]) Given two sequences
X and Y , a distance thresholdε, and a threshold of sub-
sequence lengthlmin, X[is : ie] andY [js : je] have the
property of cross-similarity if this sequence pair satisfies the
following condition.

D(X[is : ie], Y [js : je]) ≤ ε(L(lx, ly) − lmin). (3)

The minimum lengthlmin of subsequence matches should
be given by the users. The subsequences that satisfy this
equation are guaranteed to have lengths exceedinglmin. We
also agree that the user should select the length functionL

as well aslmin to obtain desirable results.
We should also mention the following point: whenever

a subsequence pair matches, there will be several other
matches that strongly overlap the ‘local minimum’ best
match. Specifically, an overlap is simply the relation that
two subsequence pairs have a common alignment, which is
defined as follows:

Definition 2 (Overlap) Given two warping paths for sub-
sequence pairs ofX andY , their overlap is defined as the
condition where the paths share at least one element.

Overlaps provide the user with redundant information,
and would slow down the algorithm since all useless ‘solu-
tions’ are tracked and reported. Our solution is to detect the
local best subsequences from the set of overlapping subse-
quences. Thus, our goal is to find the best match of cross-
similarity.

Problem 1 Given two sequencesX and Y , thresholdsε,
and lmin, report all subsequence pairs,X[is : ie] and
Y [js : je], that satisfy the following conditions.

1. X[is : ie] and Y [js : je] have the property of cross-
similarity.

2. D(X[is : ie], Y [js : je])−ε(L(lx, ly)−lmin) is the min-
imum value among the set of overlapping subsequence
pairs that satisfies the first condition.

Hereafter we use ‘qualifying’ subsequence pairs to refer to
pairs that satisfy the first condition, and we use ‘optimal’
subsequence pairs to refer to pairs that satisfy both condi-
tions.

Typically, new elements in data streams, i.e., those that
have occurred recently, are usually more significant than
those in the distant past [18]. To limit the cell in the ma-
trix and focus on recent elements, we utilize a concept of
global constraint for DTW, namely the Sacoe-Chiba band

[57]. More specifically, for each sequenceX and Y , we
compute the cells from the recent element (e.g.,xn or ym)
to an element of the warping scopew ago. If m = n, the
warping scope is exactly equal to the Sakoe-Chiba band.

4 Proposed method

In this section, we describe a straightforward solution to find
the best match of cross-similarity in data streams and also
present our one-pass algorithm, CrossMatch.

4.1 Naive solution

The most straightforward solution to this problem is to con-
sider all possible subsequences ofX[is : ie] (1≤ is <ie≤n),
and all possible subsequences ofY [js :je] (1≤js <je≤m)
in the warping scope and apply the standard DTW dynamic
programming algorithm. We call this methodNaive.

Let di,j(p, q) be the distance of cell(p, q) in the time
warping matrix that starts fromi on thex-axis andj on the
y-axis, and letw be the width of the warping scope. The
distance of the subsequence matching betweenX andY can
be obtained as follows.

D(X[is : ie], Y [js : je]) = dis,js
(lx, ly)

di,j(p, q)= ||xi+p−1−yj+q−1||+min











di,j(p, q−1)

di,j(p−1, q)

di,j(p−1, q−1)

di,j(0, 0) = 0, di,j(p, 0) = di,j(0, q) = ∞

(i = 1, ..., n; p = 1, ..., n−i+1;

j = 1, ...,m; q = 1, ...,m−j+1;

n − w ≤ i + p ≤ n; m − w ≤ j + q ≤ m; )

(4)

The naive solution creates a new matrix at every new time-
tick and updates the distance arrays of incomingxi at time-
tick i and that of incomingyj at time-tickj in each exist-
ing time warping matrix. It then determines the subsequence
pair for whichD(X[is : ie], Y [js : je])−ε(L(lx, ly)−lmin)

is the minimum value among the set of overlapping subse-
quence pairs.

Fig. 3 shows an example of a naive solution to the prob-
lem of subsequence matching. Letw be the width of the
warping scope (the gray cell in the figure). The naive so-
lution updatesO(w) distance values per time-tick on each
matrix when an element of the sequence arrives. The naive
solution requiresO(nw2+mw2) time (per update) and space
because it has to handle a total ofO(nw+mw) matrices to
compute the DTW distance. In practice, it is not feasible to
compute the distance in a streaming setting.
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Y y1

ym

X
x1

xn

Fig. 3 Illustration of subsequence matching using the naive solution.
The naive solution maintains matrices starting from every time-tick.

j=1

j=m

Y

X

i=1 i=n

Fig. 4 Illustration of CrossMatch. The black cells indicate the warping
paths of the optimal subsequence pairs and the gray cells indicate the
warping scope.

4.2 CrossMatch

As mentioned in the previous section, the naive solution cre-
ates too many matrices because it computes the distance val-
ues between all possible subsequences. The distance thresh-
old is proportional to the subsequence length (cf. Defini-
tion 1). The naive solution attempts to find the subsequence
pairs semipermanently in each matrix. If we prune dissim-
ilar subsequence pairs and reduce the number of matrices,
the distance computations become much more efficient. Our
method is motivated by this idea.

Our method, CrossMatch, computes the similarity score
that corresponds to the DTW distance and identifies dis-
similar subsequences. We find ‘good’ matches in a single
matrix efficiently by pruning the subsequences (see Fig.
4). Our method, which realizes these concepts, consists of
three ideas: a new scoring function, a position matrix, and a
streaming algorithm that uses them.

4.2.1 Scoring function

To identify the dissimilar subsequences early, we propose
computing the DTW distance indirectly by using ascoring
function. The scoring function has the following two char-

acteristics: (a) it provides a non-negative cumulative score,
and (b) its operation is reversible with respect to the DTW
distance.

The scoring function is essentially based on the dynamic
programming approach. Whereas the DTW computes the
minimum cumulative distance, our function computes the
maximum cumulative scorecorresponding to the DTW dis-
tance with ascore matrix. The score is determined by accu-
mulating the difference between the threshold and the dis-
tance between the elements in the score matrix. Thus, we
can recognize a dissimilar subsequence pair since the score
has a negative value if the subsequence pair does not satisfy
the first condition of Problem 1.

The scoring function selects the cell with the maximum
cumulative score from the neighboring cells, and if the score
is negative, the function initializes the score to zero and then
restarts the computation from the cell. This operation allows
us to discard unqualifying, non-optimal subsequence pairs.

Definition 3 (Score matrix [65]) Given two sequences,
X = (x1, . . . , xi, . . . , xn) andY = (y1, . . . , yj , . . . , ym),
and the width of the warping scopew, scoreV (X[is :
ie], Y [js : je]) of X[is : ie] andY [js : je] is defined as:

V (X[is : ie], Y [js : je]) = v(ie, je)

v(i, j) = max























0

εbv − ||xi − yj || + v(i, j − 1)

εbh − ||xi − yj || + v(i − 1, j)

εbd − ||xi − yj || + v(i − 1, j − 1)

v(0, 0) = v(i, 0) = v(0, j) = 0

(i = 1, ..., n; j = 1, ...,m;

n − w ≤ i ≤ n; m − w ≤ j ≤ m; ).

(5)

The scoring function operation is reversible with respect
to the DTW distance. That is, the score of the qualifying sub-
sequence pair with a positive value is easily transformed into
the DTW distance. Symbolsbv, bh, andbd in Equation (5)
indicate a weight function for each direction, which makes
transformation between the score and the DTW distance
possible. These values are determined as a function of the
subsequence length. For example, forL(lx, ly)=(lx+ly)/2,
the currentL value increases by1/2 if the score of a vertical
or horizontal cell is chosen, and it increases by1 if the score
of a diagonal cell is chosen. Thus, we obtainbv = bh = 1/2

andbd = 1, respectively, for these directions1. The scoring

1 ForL(lx, ly)=max(lx, ly), each weight is set as follows.
bd =bh =1 andbv =0 if lx >ly .
bd =bv =1 andbh =0 if lx <ly .
bd =1 andbv =bh =0 if lx = ly .
Formally, each weight is defined as follows.
bv =L(lx, ly) − L(lx, ly−1).
bh =L(lx, ly) − L(Lx−1, ly).
bd =L(lx, ly) − L(lx−1, ly−1).
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(a) Score matrix

(b) Position matrix

Fig. 5 Example of cross-similarity detection. The light cells signify
cross-similarity, and the dark cell in each matrix shows the best match.

function is designed so that the sum of the weights on the
warping path (i.e.,bv, bh, andbd) is equal to subsequence
lengthL. Therefore, it guarantees reversibility between the
DTW distance and the score, and finds the qualifying sub-
sequence pairs without any omissions. The DTW distance
of a subsequence pair is computed from the score and the
subsequence length as follows:

D(X[is : ie],Y [js :je])=εL(lx,ly)−V (X[is : ie],Y [js :je])

s.t. V (X[is : ie]),Y [js :je]) > 0.

(6)

Equation (6) holds for the time warping and the score ma-
trices, which have the same starting position(is, js). The
details are provided in Section 4.3.

Example 1Assume that we have two sequences ofX =

(5, 12, 6, 10, 3, 18), Y = (11, 9, 4, 2, 9, 13), and ε = 14,
lmin = 2, andw = 3. Fig. 5 (a) shows the score matrix. The
dark cell, which has the highest score, shows the optimal
subsequence pair and indicates that the score isεbd−||x5−

y4||+v(4, 3) = 49 and the end position is(ie, je) = (5, 4).
The light cells show qualifying subsequence pairs. The cells
that contain zero identify dissimilar subsequence pairs.

4.2.2 Position matrix

The scoring function tells us (a) where the subsequence
match ends and (b) what the resulting score is. However, we

lose the information about the starting position of the sub-
sequence. This is the motivation behind our second idea, a
position matrix: we store the starting position to keep track
of the qualifying subsequence pair in a streaming fashion.

Definition 4 (Position matrix [65]) The position matrix
stores the starting position of each subsequence pair. The
starting positions(i, j) corresponding to scorev(i, j) is
computed as follows:

s(i, j)=



















































s(i, j−1) (v(i,j−1) 6=0 ∧ v(i,j)

=εbv−||xi−yj ||+v(i,j−1))

s(i−1, j) (v(i−1,j) 6=0 ∧ v(i,j)

=εbh−||xi−yj ||+v(i−1,j))

s(i−1, j−1) (v(i−1,j−1) 6=0 ∧ v(i,j)

=εbd−||xi−yj ||+v(i−1,j−1))

(i, j) (otherwise).

(7)

The starting position is described as a coordinate value;
s(ie, je) indicates the starting position(is, js) of the subse-
quence pairX[is : ie] andY [js : je]. We update the starting
position in the position matrix as well as the score in the
score matrix. We can identify the optimal subsequence that
gives the maximum score during stream processing since
exactly the same warping path is maintained in the score
and position matrices. Moreover, the starting position of the
shared cell is maintained through the subsequent alignments
because we repeat the operation, which maintains the start-
ing position of the selected previous cell. Thus, we know the
overlapping subsequence pairs from the fact that the starting
positions match.

Example 2Fig. 5 (b) shows the position matrix correspond-
ing to the score matrix in Fig. 5 (a). In cell(5, 4), the start-
ing position(2, 1) is maintained because the scoring func-
tion selects the score of cell(4, 3) in the score matrix. By
combining both matrices, we can identify the position of the
optimal subsequence pairX[2 : 5] and Y [1 : 4]. On the
other hand, there are many overlapping subsequence pairs
that have the same starting position(2, 1). Of these, we se-
lect the subsequence pair with the highest score as the opti-
mal pair because we can determine the overlapping subse-
quence pairs from the position matrix.

Next, we show how subsequence pairs are pruned. The
pruned subsequence pairs fall into one of the following two
categories: (1) subsequence pairs that are absolutely not re-
flected in two matrices (i.e., the score and the position ma-
trices), and (2) subsequence pairs that are pruned during the
computation process. In any case, our method is designed so
that we can evaluate the cross-similarity between sequences
from the score value, and guarantees that the pruned sub-
sequence pairs are not optimal by using the fact that the
overlapping subsequence pairs in cell(i, j) have the same
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warping paths in the subsequent alignments (we will pro-
vide detailed proofs in Section 4.3).

Example 3An example of case (1) corresponds to the sub-
sequence pairs starting at(3, 2) in Fig. 5. In cell(3, 2), our
method has to select one pair from neighboring cells since
all neighboring cells include positive scores, and it prunes
the subsequence pairs that have the starting position(3, 2).
An example of case (2) corresponds to the subsequence pairs
starting at(1, 3). In cell (4, 5), our method chooses the sub-
sequence pair starting at(2, 1) because the pair has the max-
imum value. That is, the subsequence pair that has the start-
ing position(1, 3) is pruned although the score indicates a
positive value.

4.2.3 Streaming algorithm

We now have all the pieces needed to answer the question:
how do we find the optimal subsequence pairs? Every time
xn is received at time-tickn, our algorithm, CrossMatch, in-
crementally updates the scoreC ′

v = v(n, j) and starting po-
sition C ′

s = s(n, j) and retains the end positionC ′
e =(n, j).

We use candidate arrayS to find the optimal subsequence
pair and store the best pairC (i.e., scoreCv, starting position
Cs, and end positionCe) in a set of overlapping subsequence
pairs. CrossMatch reports the optimal subsequence pair after
confirming that it cannot be replaced by the upcoming sub-
sequence pairs (i.e., there are no overlapping subsequence
pairs). The upcoming candidate subsequence pairs do not
overlap the captured optimal subsequence pair if the starting
positions in the position matrix satisfy the following condi-
tion.

(∀i, s(i,m) 6= Cs) ∧ (∀j , s(n, j) 6= Cs).

CrossMatch reports the similarity of the subsequence pair as
the DTW distance. The DTW distance is obtained from the
score and the subsequence length, as shown in Equation (6).

The above procedure provides the foundation of our ef-
ficient detection of similar pairs. Algorithm 1 shows the de-
tails. We keep only two columns (i.e., the current and pre-
vious columns) for eachX andY in the two matrices. In
this algorithm, we focus on computing the scores and the
starting positions when we receivexn at time-tickn. Note
that the scores and the starting positions of incomingym at
time-tickm are also computed similarly by this algorithm.

CrossMatch requires three parameters,lmin, w, andε.
The subsequence lengthlmin and the parameterε are set
based on the pattern the user wants to search. It is desirable
to set the values according to the applications. The warping
scopew determines the computation range in each matrix.
At the same time, it asks the user how far back into the past
the algorithm needs to go. If the user wants to search for
subsequence pairs during the present time-tick and a time-
tick in the relatively distant past, it is better to set a large

Algorithm 1 CrossMatch
Input: new valuexn at time-tickn
Output: optimal subsequence pairs and DTW distances
1: // Detect optimal subsequence pairs.
2: for j := m − w to m do
3: C′

v := v(n, j); // Score value derived by Equation (5)
4: C′

s := s(n, j); // Starting position derived by Equation (7)
5: C′

e := (n, j); // End position
6: if C′

v ≥ εlmin then
7: // Add the subsequence pair as a new candidate.
8: if C′

s /∈ S then
9: addC′

v , C′
s, andC′

e to S;
10: else
11: for each candidateC ∈ S do
12: // Overwrite the maximum score.
13: if C′

s = Cs ∧ C′
v ≥ Cv then

14: Cv := C′
v ;

15: Ce := C′
e;

16: end if
17: end for
18: end if
19: end if
20: end for
21: // Report the optimal subsequence pairs.
22: for each candidateC ∈ S do
23: if (∀i, s(i, m) 6= Cs) ∧ (∀j , s(n, j) 6= Cs) then
24: dmin = εL(lx, ly) − Cv ;
25: Reportdmin, Cs andCe;
26: RemoveC from S;
27: end if
28: end for

w. In our experiments, we simply use reasonable values for
every dataset, and we show that this way of setting param-
eters is sufficient for CrossMatch to verify the detection of
the optimal subsequence pairs.

Example 4Again assume two sequences ofX =

(5, 12, 6, 10, 3, 18), Y = (11, 9, 4, 2, 9, 13), and ε = 14,
lmin = 2, andw = 3 in Fig 5. To simplify the example of
our algorithm with no loss of generality, we assume thatxi

andyj arrive in alternately. At each time-tick, the algorithm
updates the scores and the starting positions. Ati = 4, we
update the cells from(4, 1) to (4, 3) and identify a candi-
date subsequence,X[2 : 4] andY [1 : 3], starting at(2, 1),
whose scorev(4, 3) = 36 is greater thanεlmin. At j = 4,
we update the cells from(1, 4) to (4, 4). Although no sub-
sequences satisfying the condition are detected, we do not
report the subsequence ofX[2 : 4] andY [1 : 3] since it is
possible that this pair could be replaced by upcoming sub-
sequences. We then capture the optimal subsequence pair of
X[2 : 5] andY [1 : 4] at i = 5. We finally report the sub-
sequence as the optimal subsequence atj = 6 since we can
confirm that none of the upcoming subsequences can be op-
timal. Fig. 6 shows time warping matrix starting at(2, 1) in
the naive solution, which includes the optimal subsequence
pair in Fig. 5. In the score and the position matrices, the
subsequence pairs that have the starting position(2, 1) cor-
respond to the pairs on the time warping matrix in Fig. 6.
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Fig. 6 Time warping matrix starting at (2,1) in the naive solution.
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Fig. 7 Discovery of foremost subsequence pairs usingHumidity. The
subsequence pairs in the middle of alignments are detected, unlike the
optimal subsequence pairs in Fig. 1.

From Equation (6), we haveεL(4, 4)−V (X[2 : 5], Y [1 :
4]) = 14 · 4−49 = 7 = D(X[2 :5], Y [1 :4]).

In this paper, we focus on finding only the optimal sub-
sequence pairs. We provide one alternative with regard to
the output of similar subsequence pairs. In a stream setting,
it is desirable to report similar subsequence pairs as soon as
possible. To report the similar subsequence pairs without de-
lay, we firstly report the foremost subsequence pair, i.e., the
first pair satisfying the threshold among the set of overlap-
ping pairs, and thereafter update the pair with the optimal
subsequence pair. For example, Fig. 7 shows the foremost
subsequence pairs for theHumidity dataset in Fig. 1. We
show the detailed comparison of their positions in Table 2.
Note that(is, js) is the starting position and(ie, je) is the
end position. Unlike Fig. 1, it is obvious to shorten the re-
porting time. Thus, we can provide a solution that is more
suitable for a streaming scenario.

4.3 Theoretical Analysis

We introduce a brief theoretical analysis that confirms the
accuracy and complexity of CrossMatch.

4.3.1 Accuracy

Lemma 1 Given two sequencesX and Y , Problem 1 is
equivalent to the following conditions.

1. V (X[is : ie], Y [js :je]) ≥ εlmin

2. V (X[is : ie], Y [js :je])− εlmin is the maximum value in
each group of subsequence pairs that the warping path
crosses.

Proof See appendix A. ✷

Lemma 2 CrossMatch guarantees the output of the optimal
subsequence pairs.

Proof See appendix B. ✷

4.3.2 Complexity

Let X andY be evolving sequences of lengthsn andm,
respectively.

Lemma 3 The naive solution requiresO(nw2 +mw2) time
(per update) and space to discover cross-similarity.

Proof See appendix C. ✷

Lemma 4 CrossMatch requiresO(w) (i.e., constant) time
(per update) and space to discover cross-similarity.

Proof See appendix D. ✷

5 Sampling approach

As mentioned above, CrossMatch detects cross-similarity in
constant time and space. The next question is what we can
do in the highly likely case that the users need more efficient
solutions given that, in practice, they require high accuracy,
not a theoretical guarantee. This is our motivation for intro-
ducing an approximation for CrossMatch.

What approximate techniques are suitable for Cross-
Match? An efficient idea involves the data reduction of a se-
quence. Optimal alignments of DTW correspond to match-
ing the elements in time. To find optimal subsequence pairs
by approximation, we choose to keep the sequence, which
is transformed by data reduction operated in the time do-
main. As an extended version of CrossMatch, we propose
compressing the matrices using asampling approach. As we
show later, this decision significantly improves both space
cost and response time, with negligible effect on the mining
results.

As the first step, we consider the following theorem.

Theorem 1 (Sampling theorem)If a continuous function
contains no frequencies higher thanfhigh, it is completely
determined by its value at a series of points less than
1/2fhigh apart.
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Table 2 Comparison with positions of optimal and foremost subsequence pairs.

Subseq. #1 Subseq. #2
is ie js je is ie js je

Optimal subsequence pairs 1 15000 6 22629 21008 24505 31146 38013
Foremost subsequence pairs1 11250 6 16938 21008 24188 31146 36949

Proof See [39]. ✷

In the theorem, the minimum sampling frequency,
fNq = 2fhigh, is called the Nyquist frequency. We utilize
this theorem for sampling the sequences. That is, we use
coarse sequences yielded by sampling based on the theorem,
and detect the cross-similarity. Since the original sequence
is sampled once for eachfNq value, i.e.,T = 1/fNq, we
greatly reduce in the size of the matrix.

5.1 Scoring function

How do we compute the score between sampled sequences?
Intuitively, the key idea is that when we select one of the
neighboring cells for score computation, we interpolate the
distance values that were dropped by sampling. In the score
computation between sampled sequences, there areT − 1

hidden cells that represent the missing values between the
current cell (i.e., the cell that we should compute now) and
its neighboring cells. We approximate the distance values,
which should be provided by the hidden cells, by using the
distance value in the current cell. Since the sampled se-
quences are obtained based on the sampling theorem, this
is a suitable approximation.

Let X and Y be two sequences of lengthsn and m
with sampling periodsTx andTy, respectively. Also letX
=(x1, ..., xi, ..., x⌊n/Tx⌋) andY=(y1, ..., yj , ..., y⌊m/Ty⌋) be
sampled sequences ofX andY , respectively. We obtain the
scores of the subsequences ofX andY as follows.

V (X [is : ie],Y[js : je]) = v(ie, je)

v(i, j) = max























0

εbv − Ty ·||xi−yj || + v(i, j−1)

εbh − Tx ·||xi−yj || + v(i−1, j)

εbd − max(Tx, Ty)·||xi−yj || + v(i−1, j−1)

v(0, 0) = v(i, 0) = v(0, j) = 0

(i = 1, ..., ⌊n/Tx⌋; j = 1, ..., ⌊m/Ty⌋;

⌊(n−w)/Tx⌋≤ i≤⌊n/Tx⌋; ⌊(m−w)/Ty⌋≤j≤⌊m/Ty⌋; )

(8)

We interpolateTy values if we select the score of the
vertical cell. Similarly, we interpolateTx values in the hor-
izontal direction, and max(Tx, Ty) values in the diagonal
direction. Furthermore, we modify the weight function for

the sampling approach. ForL(lx, ly) = (lx+ly)/2, the cur-
rentL value increases byTy/2 if the score of a vertical cell
is chosen, byTx/2 if the score of a horizontal cell is chosen,
and by(Tx + Ty)/2 if the score of a diagonal cell is chosen.
Thus, we obtainbv =Ty/2, bh =Tx/2 andbd =(Tx +Ty)/2

for these directions.

5.2 Position matrix

The position matrix for the sampling approach is similar to
Equation (7). We keep the starting position of the previous
cell if any of the three neighboring cells is selected. In other
cases, we appropriately set the starting position in concert
with the sampling periodsTx andTy. More specifically, the
starting positions(i, j) is computed as follows.

s(i, j)=































































(i · Tx, j · Ty) (v(i,j)≤0)

s(i, j−1) (v(i,j−1) 6=0 ∧ v(i,j)

=εbv−Ty·||xi−yj ||+v(i,j−1)

s(i−1, j) (v(i−1,j) 6=0 ∧ v(i,j)

=εbh−Tx·||xi−yj ||+v(i−1,j)

s(i−1, j−1) (v(i−1,j−1) 6=0 ∧ v(i,j)=εbd

−max(Tx,Ty)·||xi−yj ||+v(i−1,j−1)

((i−1) · Tx+1, (j−1) · Ty+1) (otherwise).

(9)

5.3 Streaming algorithm

Algorithm 2 shows a detailed description of our sampling
approach. The algorithm reflects the information about the
skipped elements in the next computation and approxi-
mately computes the score and the position of the subse-
quence pair. The basic procedure is the same as that of the
original version of CrossMatch (i.e., Algorithm 1), however,
we can greatly reduce the space requirement and the com-
putation cost by the sampling, which faithfully reconstructs
the original sequence.

Lemma 5 LetT be the sampling period. With the sampling
approach, CrossMatch requiresO(w/T ) time (per update)
and space.

Proof See appendix E. ✷
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Algorithm 2 CrossMatch (sampling)
Input: new valuexn at time-tickn
Output: (approximate) optimal subsequence pairs and DTW dis-

tances
1: if n mod Tx = 0 then
2: // Detect optimal subsequence pairs.
3: for j := ⌊(m − w)/Ty⌋ to ⌊m/Ty⌋ do
4: C′

v := v(n/Tx, j); // Score value derived by Eq. (8)
5: C′

s := s(n/Tx, j); // Starting position derived by Eq. (9)
6: C′

e := (n, j ∗ Ty); // End position
7: if C′

v ≥ εlmin then
8: // Add the subsequence pair as a new candidate.
9: if C′

s /∈ S then
10: addC′

v , C′
s, andC′

e to S;
11: else
12: for each candidateC ∈ S do
13: // Overwrite the maximum score.
14: if C′

s = Cs ∧ C′
v ≥ Cv then

15: Cv := C′
v ;

16: Ce := C′
e;

17: end if
18: end for
19: end if
20: end if
21: end for
22: // Report the optimal subsequence pairs.
23: for each candidateC ∈ S do
24: if (∀i, s(i, ⌊m/Ty⌋) 6= Cs) ∧ (∀j , s(n/Tx, j) 6= Cs)

then
25: dmin = εL(lx, ly) − Cv ;
26: Reportdmin, Cs andCe;
27: RemoveC from S;
28: end if
29: end for
30: end if

5.4 Adaptive sampling approach

We discussed how to compute the score assuming that the
fixed sampling period of each sequence is given. Next, we
focus our attention on handling the variation in the sampling
period. Assuming that we cannot know the elements of a
data stream in advance, the power rate between high and low
frequencies might vary over time. This means that the fre-
quency range varies locally in the time domain. We want to
incorporate this frequency range variation into CrossMatch.
Thus, CrossMatch updates the sampling period in stream
processing. We call this method theadaptive sampling ap-
proachas opposed to the sampling approach.

Let X = (x1, ..., xi, ..., xn′), be the sampled sequences
of X, andTx =(tx1

, ..., txi
, ..., txn′ ) be the sampling period

of X in each time-tick. In the adaptive sampling approach,
the number of hidden cells varies according to the sampling
period in each time-tick. We compute the appropriate sam-
pling period in each cell and approximate the distance values
of the hidden cells accordingly. On the other hand, we de-
termine the weights of each direction dynamically since the
currentL value is determined by the sampling period in each
time-tick. ForL = (lx + ly)/2, the weight of the horizontal

direction in cell(i, j) is bh = txi
/2 and the others are sim-

ilarly set by the sampling periods. In the adaptive sampling
approach, we constantly use the sampling period, which re-
flects the sequence of recent time-ticks. Thus, this approach
would be more powerful when the sequence consists of high
and low frequencies.

Incremental algorithms have been proposed for comput-
ing the frequency in the stream sense (e.g., [29,49]). Cross-
Match can utilize any and all of these solutions to compute
the frequency efficiently. However, this research topic is be-
yond the scope of this paper.

Two sampling approaches do not guarantee their error-
bound theoretically because the alignment of DTW depends
on the data sequence and changes if the data sequence is
sampled with a different sampling period. However, we
show that their errors are very small in Section 7.3.

6 Discovery of group-similarity

So far, we have assumed the problem of cross-similarity be-
tween two data streams. For more generality, we would like
to make CrossMatch more flexible. We now tackle a more
challenging problem: how do we efficiently identify com-
mon local patterns among multiple data streams? A useful
feature of CrossMatch is that it can be effectively extended
to this case.

Given multiple data streams (more than two sequences),
we want to find ‘group-similarity’, which means the cross-
similarity among them. The work in [62] has addressed the
problem of similarity group-by that supports grouping based
on tuples in a database. On the other hand, group-similarity
provides grouping based on similar patterns. For example, in
sensor networks, measurement values arriving from many
different sensors have to be examined dynamically. Cross-
Match makes it possible to reduce a large number of streams
to just a handful of common patterns that compactly de-
scribe the key features. More importantly, the time and space
requirements are constant per update.

We formally define group-similarity below. To simplify
our presentation, we focus on three sequencesX, Y , andZ.
We first present the DTW distance for the three sequences.

Consider three sequences,X = (x1, x2, ..., xn1
), Y =

(y1, y2, ..., yn2
), andZ = (z1, z2, ..., zn3

). Their DTW dis-
tanceD(X,Y,Z) is defined as2

2 The other settings for DTW are as follows.d(0, 0, 0) = 0.
d(i, 0, 0) = d(0, j, 0) = d(0, 0, k) = ∞.
d(i, j, 0) = d(0, j, k) = d(i, 0, k) = ∞.
i = 1, ..., n1, j = 1, ..., n2, k = 1, ..., n3.
(n1−w ≤ i ≤ n1) ∧ (n2−w ≤ j ≤ n2) ∧ (n3−w ≤ k ≤ n3).
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D(X,Y,Z) = d(n1, n2, n3)

d(i, j, k) = ||xi − yj || + ||yj − zk|| + ||zk − xi||

+ min



















































d(i, j − 1, k)

d(i − 1, j, k)

d(i − 1, j − 1, k)
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(10)

The time warping matrix for the three sequences con-
sists ofn1 ∗ n2 ∗ n3 cells3. In cell (i, j, k), we choose one
cell, which has the minimum distance, from the seven neigh-
boring cells and add the value to the distance value between
three elements (xi, yj , andzk). The DTW distance is ob-
tained by accumulating these distances.

Definition 5 (Group-similarity) Given three sequencesX,
Y , Z, and thresholdsε and lmin, the subsequencesX[is :

ie], Y [js : je], andZ[ks : ke] have the property of group-
similarity if they satisfy the following condition.

D(X[is : ie],Y [js :je],Z[ks :ke]) ≤ ε(L(lx,ly,lz)−lmin).

(11)

We compute the DTW distance among three sequences and
detect the subsequences whose lengths are greater thanlmin.
As with cross-similarity, we face the overlap problem. The
number of overlapping subsequences increases significantly
with the number of sequences. We detect the best match of
group-similarity as follows.

Problem 2 Given three sequencesX, Y , andZ, and thresh-
olds ε and lmin, we want to find subsequencesX[is : ie],
Y [js : je], andZ[ks : ke] that satisfy the following condi-
tions.

1. X[is : ie], Y [js : je], andZ[ks : ke] have the property of
group-similarity.

2. D(X[is : ie], Y [js : je], Z[ks : ke])− ε(L(lx, ly, lz)−
lmin) is the minimum value from a set of overlapping
subsequences that satisfies the first condition.

Let di,j,k(p, q, r) be the distance in cell(p, q, r) in the
time warping matrix for three sequences that starts fromi on
thex-axis,j on they-axis, andk on thez-axis. The distance
between the subsequences ofX, Y , andZ can be obtained
as follows4.

3 Here we focus on a third-order tensor for time warping, namely
the time warping tensor for three sequences. However, for simplicity,
we shall use the term “time warping matrix” in this paper.

4 The other settings are as follows.di,j,k(0, 0, 0) = 0,
di,j,k(p, 0.0) = di,j,k(0, q, 0) = di,j,k(0, 0, r) = ∞.

D(X[is : ie], Y [js : je], Z[ks : ke]) = dis,js,ks
(lx, ly, lz)

di,j,k(p, q, r)= ||xi+p−1−yj+q−1|| + ||yj+q−1−zk+r−1||

+ ||zk+r−1−xi+p−1|| + dmin

(12)

Note thatdmin is the minimum distance between the seven
neighboring cells.

Lemma 6 The naive solution requiresO(n1w
3 +n2w

3 +

n3w
3) time (per update) and space to discover the group-

similarity for three sequences.

Proof See appendix F. ✷

How do we detect group-similarity with CrossMatch?
We need only two matrices for computation (i.e., the score
and position matrices). Each matrix has only two planes
(i.e., previous and current planes) for each sequenceX, Y ,
andZ. For each incoming data point, we calculateO(w2)

score values and updateO(w2) starting positions. Specifi-
cally, given three sequencesX, Y , andZ and warping scope
w, the scoreV (X[is :!ie], Y [js : je], Z[ks :ke]) of X[is : ie],
Y [js :je] andZ[ks :ke] is computed as follows5.

V (X[is : ie], Y [js : je], Z[ks : ke]) = v(ie, je, ke)

v(i, j, k) = max(0, vbest)
(13)

For cell (i, j, k), we choose one of seven neighboring cells
and determine the score if the scorevbest is not a negative
value. For example, if the score of a diagonal cell(i−1, j−

1, k−1) is chosen, we have

vbest = εbd − dcell + v(i−1, j−1, k−1)

dcell = ||xi − yj || + ||yj − zk|| + ||zk − xi||

wheredcell is the distance between the cells of the three se-
quences. While computing the score values, we update the
starting position in the position matrix. If we choose one of
the seven neighboring cells, we keep the same starting posi-
tion. If not, we choose the current cell(i, j, k) as the starting
position. Thus, we can deal with the score computation and
the updating of the starting position very effectively.

Lemma 7 Given three sequencesX, Y , andZ, Problem 2
is equivalent to the following conditions.

1. V (X[is : ie], Y [js :je], Z[ks :ke]) ≥ εlmin

di,j,k(p, q, 0) = di,j,k(0, q, r) = di,j,k(p, 0, r) = ∞.
i = 1, ..., n1, p = 1, ..., n1−i+1, j = 1, ..., n2, q = 1, ..., n2−j+1,
k = 1, ..., n3, r = 1, ..., n3−k+1.
(n1−w ≤ i+p ≤ n1)∧(n2−w ≤ j+q ≤ n2)∧(n3−w ≤ k+r ≤ n3).

5 The other settings for the scoring function are as follows.
v(0, 0, 0) = v(i, 0, 0) = v(0, j, 0) = v(0, 0, k) = 0.
v(i, j, 0) = v(0, j, k) = v(i, 0, k) = 0.
(n1−w ≤ i ≤ n1) ∧ (n2−w ≤ j ≤ n2) ∧ (n3−w ≤ k ≤ n3).
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2. V (X[is : ie], Y [js : je], Z[ks : ke]) − εlmin is the maxi-
mum value in each group of subsequences that the warp-
ing path crosses.

Proof See appendix G. ✷

From Lemma 7, Equation (11) holds for any reported
subsequences. As with Lemma 2, it is obvious that Cross-
Match reports the optimal subsequences from the set of
overlapping subsequences. Thus, CrossMatch guarantees
the correctness of the result for group-similarity.

Lemma 8 CrossMatch requiresO(w2) time (per update)
andO(w2) space to discover the group-similarity for three
sequences.

Proof See appendix H. ✷

Although the complexity of group-similarity is still
quadratic with respect to the number of sequences, Cross-
Match is much faster in practice than the naive solution
and enables the examination of very large collections of se-
quences.

7 Experimental Evaluation

We performed experiments to evaluate the effectiveness
of CrossMatch. Our experiments were conducted on a
2.4-GHz Intel Core 2 machine with 4 GB of memory,
running Linux. The experiments were designed to answer
the following questions.

1. How well does CrossMatch provide the optimal subse-
quences without redundant information?

2. How successful is CrossMatch in capturing cross-
similarity?

3. How effective is the sampling approach in capturing
cross-similarity?

4. How well does CrossMatch scale with the sequence
length in terms of computation time and memory space?

5. How well does CrossMatch work in high-dimensional
data streams?

6. How well does CrossMatch identify group-similarity?

We used real and synthetic datasets for the experiments.
These datasets (except high-dimensional sequences) are
available for downloading from the web page6. The details
of each dataset are provided in the following subsections.

6 http://www.kecl.ntt.co.jp/icl/ls/members/machiko/time-series.zip

7.1 Filtering redundant information

We compared CrossMatch with the previous algorithm [66]
to investigate its effectiveness in filtering redundant infor-
mation7. We used a synthetic dataset,Sines, which consists
of discontinuous sine waves with white noise (see Fig. 8 (a)),
and for our previous algorithm and CrossMatch we setlmin

at 15% of the sequence length,ε at 1.0e-2, andw at 50% of
the sequence length.

Fig. 8 (b) plots the sequence length vs. the number of
detected subsequence pairs for the two algorithms. In the
previous algorithm, increases in sequence length trigger a
large increase in the number of detected subsequence pairs.
CrossMatch, on the other hand, detects fewer subsequence
pairs than the previous algorithm.

Fig. 8 (c) shows how CrossMatch captures subsequence
pairs. For visualization purposes, we find the optimal warp-
ing path by backtracking the selected cells from the end po-
sition, and plot the cells from(ie, je) to (is, js) for the sub-
sequence pairX[is : ie] andY [js : je]. Unlike the previ-
ous algorithm, CrossMatch provides only the optimal sub-
sequence pairs in a streaming fashion. Therefore, by elimi-
nating the overlapping subsequence pairs, the periodicityof
cross-similarity is revealed and users can obtain ‘real’ re-
sults without receiving redundant information.

7.2 Detecting cross-similarity between two sequences

We present case studies of real and synthetic datasets to
demonstrate the effectiveness of our approach in discover-
ing optimal subsequence pairs. We setlmin at 500 forRan-
domSinesand at 1000 forSpikesin each synthetic dataset.
We setlmin at 15% of the sequence length for real datasets
(i.e.,Humid, Automobile traffic, Web, Sunspots, andTemper-
ature). The warping scopew was set at 50% of the sequence
length for all datasets. The details of each dataset and the set-
tings for the experiments are given in Table 3. In Fig. 10, the
left and center figures represent the datasets and the right fig-
ures represent the optimal warping paths of cross-similarity
detected from these datasets.

7.2.1 RandomSines

We used a synthetic dataset,RandomSines, which consists
of discontinuous sine waves with white noise (see Fig. 9
(a)). This dataset includes different-length intervals between
the sine waves, which were generated using a random walk
function. We varied the period of each sine wave and the
intervals between these sine waves in the sequence.

7 The previous algorithm does not introduce the warping scopew.
To ensure the validity of the experiment, we modified the algorithm
and introduced the warping scope.
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Fig. 8 Effect of filtering redundant information. CrossMatch correctly outputs the best match of cross-similarity without redundant information.
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Fig. 9 Discovery of cross-similarity usingRandom SinesandSpikes. The left and center figures represent data sequences and the right figures
represent the optimal warping paths of cross-similarity.

As shown in the right figure of Fig. 9 (a), CrossMatch
perfectly identifies all the sine waves and their time-varying
periodicities. In this figure, the difference in the period of
each sine wave appears as a difference in the slope.

7.2.2 Spikes

This is the synthetic dataset shown in Fig. 9 (b), which con-
sists of large and small spikes. The data for different-length
intervals between spikes were generated using a random
walk function. The period of each spike is also different. As
seen in the right figure of Fig. 9 (b), we confirm that Cross-

Match detects both large and small spikes. The difference
in the period of each spike appears as a difference in plot
length; wide spikes indicate long plot lengths and narrow
spikes indicate short plot lengths.

7.2.3 Humidity

Fig. 1 shows the detected subsequence pairs for the humid-
ity dataset. CrossMatch captures common patterns except
for the dissimilar sections. Our method is designed to find
the similar subsequence pairs. However, by applying it to



16 Machiko Toyoda et al.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  4000  8000  12000  16000

V
al

ue

Time (Traffic #1)

 0

 500

 1000

 1500

 2000

 2500

 0  4000  8000  12000  16000

V
al

ue

Time (Traffic #2)

 0

 4000

 8000

 12000

 16000

 0  4000  8000  12000  16000

T
im

e 
(T

ra
ffi

c 
#2

)

Time (Traffic #1)

(a)Automobile traffic

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  8000  16000  24000  32000

V
al

ue

Time (Mail site)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  8000  16000  24000  32000

V
al

ue

Time (Blog site)

 0

 8000

 16000

 24000

 32000

 0  8000  16000  24000  32000

T
im

e 
(B

lo
g 

si
te

)

Time (Mail site)

(b) Web

 0

 50

 100

 150

 200

 250

 300

 350

 0  3000  6000  9000  12000  15000  18000

V
al

ue

Time (Sunspots #1)

 0

 50

 100

 150

 200

 250

 300

 350

 0  3000  6000  9000  12000  15000  18000

V
al

ue

Time (Sunspots #2)

 0

 3000

 6000

 9000

 12000

 15000

 18000

 0  3000  6000  9000  12000 15000 18000

T
im

e 
(S

un
sp

ot
s 

#2
)

Time (Sunspots #1)

(c) Sunspots

 14

 18

 22

 26

 30

 34

 0  6000  12000  18000  24000

V
al

ue

Time (Temperature #1)

 14

 18

 22

 26

 30

 34

 0  6000  12000  18000  24000

V
al

ue

Time (Temperature #2)

 0

 6000

 12000

 18000

 24000

 0  6000  12000  18000  24000

T
im

e 
(T

em
pe

ra
tu

re
 #

2)

Time (Temperature #1)

(d) Temperature

Fig. 10 Discovery of cross-similarity usingAutomobile traffic, Web, Sunspots, andTemperature.

sequences that are roughly similar, it can utilize the discov-
ery of dissimilar sections.

7.2.4 Automobile traffic

Fig. 10 (a) shows time-series data of automobile traffic,
which has a daily period. Each day contains other distinct
patterns for the morning and afternoon rush hours. Hourly
traffic is bursty data, and we can regard it as white noise.

CrossMatch is successful in accurately detecting the
daily period without being deceived by the high-frequency
hourly traffic. Consecutive lines and their regular intervals

indicate periodicity. Moreover, the intervals between the
consecutive lines correspond to the daily period, and we can
confirm that the characteristics of the data are revealed by
the cross-similarity thus detected.

7.2.5 Web

Fig. 10 (b) shows access counts for mail and blog sites ob-
tained every 10 seconds. We observe the daily periodicity
of sequences, which increases from morning to night and
reaches a peak.
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Table 3 Details of datasets and parameter settings.

Datasets
Sequence length

ε
Seq. #1 Seq. #2

RandomSines 25000 25000 1.0e-4
Spikes 28000 28000 5.0e-6

Humidity 26779 40831 8.0e-1
Automobile traffic 16000 16000 8.5e+4

Web 32000 32000 4.0e+4
Sunspots 18000 18000 3.0e+2

Temperature 28000 24000 2.0e-1

The right figure in Fig. 10 (b) confirms that CrossMatch
identified the periodicity. The figure shows winding lines,
unlike Automobile. This indicates that CrossMatch aligned
the elements of sequences that were stretched along the time
axis. Cross-similarity is detected by the time-scaling prop-
erty of CrossMatch.

7.2.6 Sunspots

Fig. 10 (c) is sunspots dataset recorded on a daily basis.
This is a well-known dataset whose time-varying periodic-
ity is related to sun activity. The average number of visi-
ble sunspots increases when the sun is active and decreases
when the sun is inactive. This change occurs with a regular
period of about 11 years.

CrossMatch distinguishes the increase and decrease in
the average number and captures similar periods.

7.2.7 Temperature

We use the temperature measurements (degrees Celsius)
from the Critter dataset, which are obtained with small sen-
sors (see Fig. 10 (d)). The sensors give one reading approx-
imately every minute. This dataset has many missing values
and the lengths of the two sequences are different. These se-
quences consist of similar changes with a temperature fluc-
tuation of18 to 32 ◦C.

Despite the missing measurement values and the differ-
ence in the period, CrossMatch successfully detected the
pattern.

7.3 Effect of sampling approach

In this section, we show the results we obtained with the
sampling and adaptive sampling approaches. We used four
real datasets for the experiment. To determine the sampling
period for each dataset in the sampling approach, we com-
puted a power spectrum from the normalized sequences.
Real datasets often include high frequencies with very low
energy. The Nyquist frequencies for such datasets could be

extremely high. Since the frequency limit is widely under-
stood in various fields (e.g., audio processing and network
analysis), in settings regarding Nyquist frequency, we disre-
gard the high frequency components, whose power is very
small. We set the power value threshold at 5.0e-4 in this ex-
periment. The main energy ofTraffic #1is distributed in the
0 ≤ f ≤ 1478 frequency range and the Nyquist frequency
is fNq

= 2596/n. Similarly, the main energy ofTraffic #2
is distributed in the0 ≤ f ≤ 1438 frequency range and the
Nyquist frequency isfNq

= 2876/m. Thus, the sampling
periods areTx = 5 andTy = 6 8 . With the adaptive sam-
pling approach, the sampling rate varies depending on the
frequency range.

Fig. 11 presents the cross-similarity with the sampling
approach. We omit the results we obtained with the adap-
tive sampling approach because they are almost the same as
those of the sampling approach. The optimal subsequence
pairs as well as those estimated in Fig. 10 provide an ac-
curate assessment of the similarity between sequences. The
original and sampling approaches offer very similar cross-
similarity and are equally useful.

Next, we show the correctness of the results obtained
with the two sampling approaches. We used the Diarization
Error Rate (DER) [26] to evaluate the accuracy. DER is a
primary metric for speech recognition and presents the ratio
of incorrect speech time against the total amount of exact
speech time. In our evaluation, DER is represented by the
ratio of the mismatch length to the exact subsequence length
and is defined as follows.

DERx =
|is − i′s| + |ie − i′e|

ie − is + 1

DERy =
|js − j′s| + |je − j′e|

je − js + 1

Note that(is, js) is the exact starting position for the origi-
nal CrossMatch and(i′s, j

′
s) is the approximate starting po-

sition for the two sampling approaches. The end positions
are also the same. We calculate the DER for every detected
subsequence pair and show their average values.

Table 4 gives the DER results. Although there are
variabilities in each dataset, the two sampling approaches
closely identify the positions of optimal subsequence pairs.
In particular, the DERs of the two approaches are different
for Temperature. As compared with other datasets, which
consist of high frequency,Temperaturecontains both of high
and low frequencies. Therefore, it is considered that the al-
gorithm approximates the score in response to the varia-
tion of the sampling period. As we expected, the adaptive

8 The frequency componentsf and the sampling periodsT of the
other datasets are as follows.
Mail: 0≤f ≤63, Tx =254. Blog: 0≤f ≤80, Ty =200.
Sunspots #1: 0≤f ≤1431, Tx =6. #2: 0≤f ≤1497, Ty =6.
Temperature #1: 0≤f ≤201, Tx =70. #2: 0≤f ≤137, Ty =88.
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Fig. 11 Discovery of cross-similarity with the sampling approach. The sampling approach correctly identifies the patterns as effectively as the
original approach.

Table 4 Diarization error rate in two sampling approaches.

sampling approach adaptive sampling
DERx DERy DERx DERy

Automobile traffic 0.066 0.094 0.074 0.095
Web 0.039 0.042 0.039 0.036

Sunspots 0.105 0.121 0.093 0.106
Temperature 0.068 0.084 0.002 0.015

sampling approach has an advantage as regards datasets that
consist of high and low frequencies.

7.4 Performance

We compared two CrossMatch approaches (i.e., the origi-
nal and sampling approaches9) with the naive solution and
an existing method, SPRING, in terms of computation time
and memory space. SPRING detects high-similarity subse-
quences that are similar to a fixed-length query sequence
under the DTW distance [58]. SPRING is not intended to
be used for finding cross-similarity, but we can apply this
method to evaluate the efficiency and to verify the complex-
ity of CrossMatch. SPRING requiresO(n + m) matrices,
thus an algorithm with SPRING for finding cross-similarity
requiresO(nw+mw) time (per update) and space. We used
Temperaturefor this experiment.

Fig. 12 shows the experimental results with regard to
computation time. This is the average processing time per

9 We show only the result for the sampling approach since the aver-
age sampling periods were almost the same between two approaches.

time-tick for each sequence length. As we expected, Cross-
Match identifies the optimal subsequence pairs much faster
than the naive and SPRING implementations. The trend
shown in this figure agrees with our theoretical discussion
in Section 4.3.2. In particular, the sampling approach signif-
icantly reduces the computation time.

Fig. 13 compares Naive, SPRING, and the two Cross-
Match approaches in terms of memory space. The x-axis
represents data stream length. The space requirement of
CrossMatch is clearly lower than those of the Naive and
SPRING implementations, and the sampling approach can
greatly reduce the space requirement. The results also agree
with our theoretical discussion in Section 4.3.2.

7.5 Extension to high-dimensional data streams

We applied CrossMatch to high-dimensional data streams.
One interesting problem is how to apply CrossMatch to mo-
tion capture data (see tables in Fig. 14).Mocap is a real
dataset created by recording motion information from a hu-
man actor while the actor performed different actions (e.g.,
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CrossMatch detects cross-similarity with a constant memory space.

walking, running, and kicking). Special markers are placed
on the actor’s joints (e.g., knees and elbows), and their x-,y-
and z-velocities are recorded at about 120 Hz.

X andY are multi-dimensional time sequences, and our
goal is to find matching subsequences betweenX andY .
Intuitively, if X andY include the same motions, we want
to find these motions.

We used sequences obtained from the CMU motion cap-
ture database10. We selected the data for limbs from the
original data and used them as 8-dimensional data. Each mo-
tion is listed in the tables in Fig. 14. The dataset has two mo-
tions in common (i.e., walking and jumping upward), and
the length of each motion is different. We setlmin at 240,
which corresponds to about two seconds,ε at 10, andw at
50% of the sequence length.

The result shown in Fig. 14 reveals that CrossMatch can
accurately capture the two motions. We can confirm that the
walking motion yields high cross-similarity. There are many
shifted sequences, because walking is a repetitive behavior
in which the limbs move back and forth. CrossMatch works
for high-dimensional datasets and detects the repetitive mo-
tion as cross-similarity.

10 http://mocap.cs.cmu.edu/

Time-tick Motions

1 - 762 walking
763 - 1766 kicking
1767 - 2087 jumping upward
2088 - 2945 walking
2946 - 3444 running
3445 - 4144 jumping forward
4145 - 5007 walking

Time-tick Motions

1 - 813 walking
814 - 1278 jumping upward
1279 - 2091 punching
2092 - 3093 walking
3094 - 3660 twist dancing
3661 - 5042 golf swing
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Fig. 14 Discovery of cross-similarity inMocap. CrossMatch success-
fully detects the same motions (i.e., walking and jumping upward) in
multi-dimensional sequences.

7.6 Detecting group-similarity

We performed an experiment to discover group-similarity.
We used theSensordataset for this experiment (see Fig. 15).
Sensorconsists of three streams that represent temperature
readings from sensors within several buildings. Each sen-
sor provides a reading every 4 minutes. Overall, the dataset
fluctuates greatly at different time-ticks but the three sensors
exhibit a similar fluctuation pattern.

We show the experimental result in the right figure of
Fig. 15. The optimal warping path is plotted as a line in
3-dimensional space. CrossMatch discovers the fluctuation
pattern in spite of the difference in the periodicity. In mul-
tiple sequences, providing a concise summary of key trends
is a significant challenge. CrossMatch summarizes the three
sequences into a manageable synoptic pattern and captures
the characteristics shared by the sequences.

8 Conclusions

We described the problem of finding common local patterns
based on DTW over data streams and presented a practi-
cal solution. CrossMatch is a one-pass algorithm based on
DTW, which detects local common patterns in constant time
(per update) and space without sacrificing accuracy. A the-
oretical analysis and experiments demonstrated that Cross-
Match works as expected. Furthermore, we have provided an
enhancement, a sampling approach, to greatly compress the
size of the matrices. We showed that the sampling approach
further improves the efficiency of CrossMatch in terms of
time and space requirements.
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Fig. 15 Discovery of group-similarity usingSensor. CrossMatch captures fluctuation pattern correctly.

CrossMatch has the following characteristics.

– In contrast to the naive solution, CrossMatch greatly
improves performance and can be processed at a high
speed.

– CrossMatch requires constant space (per update) to de-
tect cross-similarity or group-similarity, and it consumes
only a small quantity of resources.

– Despite the high-speed processing, CrossMatch guaran-
tees correct results.

– CrossMatch works efficiently for high-dimensional data
streams.

As a result, our detailed study provides many insights
into the applicability and use of CrossMatch. In particular,
CrossMatch proved crucial in producing significantly more
concise and informative patterns, without any prior knowl-
edge about the data.

References

1. Abadi, D.J., Carney, D., Cetintemel, U., Cherniack, M., Convey,
C., Lee, S., Stonebraker, M., Tatbul, N., Zdonik, S.B.: Aurora: a
new model and architecture for data stream management. VLDB
J.12(2), 120–139 (2003)

2. Agrawal, R., Faloutsos, C., Swami, A.N.: Efficient similarity
search in sequence databases. In: FODO, pp. 69–84 (1993)

3. Arasu, A., Babcock, B., Babu, S., McAlister, J., Widom, J.: Char-
acterizing memory requirements for queries over continuous data
streams. In: PODS, pp. 221–232 (2002)

4. Assent, I., Wichterich, M., Krieger, R., Kremer, H., Seidl, T.:
Anticipatory dtw for efficient similarity search in time series
databases. PVLDB2(1), 826–837 (2009)

5. Athitsos, V., Papapetrou, P., Potamias, M., Kollios, G., Gunopulos,
D.: Approximate embedding-based subsequence matching of time
series. In: SIGMOD Conference, pp. 365–378 (2008)

6. Babcock, B., Babu, S., Datar, M., Motwani, R.: Chain : Operator
scheduling for memory minimization in data stream systems. In:
SIGMOD Conference, pp. 253–264. San Diego, California (2003)

7. Babcock, B., Datar, M., Motwani, R.: Sampling from a moving
window over streaming data. In: SODA, pp. 633–634. San Fran-
cisco, CA (2002)

8. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The r*-
tree: An efficient and robust access method for points and rectan-
gles. In: SIGMOD Conference (1990)

9. Berndt, D.J., Clifford, J.: Finding patterns in time series: A dy-
namic programming approach. In: Advances in Knowledge Dis-
covery and Data Mining, pp. 229–248 (1996)

10. Cao, H., Wolfson, O., Trajcevski, G.: Spatio-temporal datareduc-
tion with deterministic error bounds. VLDB J.15(3), 211–228
(2006)

11. Carney, D., Cetintemel, U., Rasin, A., Zdonik, S.B., Cherniack,
M., Stonebraker, M.: Operator scheduling in a data stream man-
ager. In: VLDB, pp. 838–849. Berlin, Germany (2003)

12. Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin,M.J.,
Hellerstein, J.M., Hong, W., Krishnamurthy, S., Madden, S., Ra-
man, V., Reiss, F., Shah, M.A.: Telegraphcq: Continuous dataflow
processing for an uncertain world. In: CIDR. Asilomar (2003)

13. Chandrasekaran, S., Franklin, M.J.: Remembrance of streams
past: Overload-sensitive management of archived streams. In:
VLDB, pp. 348–359 (2004)

14. Chen, L., Ng, R.T.: On the marriage of lp-norms and edit distance.
In: VLDB, pp. 792–803 (2004)

15. Chen, L., Özsu, M.T., Oria, V.: Robust and fast similarity search
for moving object trajectories. In: SIGMOD Conference, pp. 491–
502 (2005)

16. Chen, Y., Nascimento, M.A., Ooi, B.C., Tung, A.K.H.: Spade: On
shape-based pattern detection in streaming time series. In: ICDE,
pp. 786–795 (2007)

17. Cormode, G., Datar, M., Indyk, P., Muthukrishnan, S.: Comparing
data streams using hamming norms (how to zero in). In: VLDB,
pp. 335–345. Hong Kong, China (2002)

18. Cormode, G., Korn, F., Tirthapura, S.: Time-decaying aggregates
in out-of-order streams. In: PODS, pp. 89–98 (2008)

19. Cranor, C.D., Johnson, T., Spatscheck, O., Shkapenyuk, V.:Gigas-
cope: A stream database for network applications. In: SIGMOD
Conference, pp. 647–651. San Diego, California (2003)

20. Das, A., Gehrke, J., Riedewald, M.: Approximate join process-
ing over data streams. In: SIGMOD Conference, pp. 40–51. San
Diego, California (2003)

21. Datar, M., Gionis, A., Indyk, P., Motwani, R.: Maintaining stream
statistics over sliding windows. In: SODA, pp. 635–644. San Fran-
cisco, CA (2002)

22. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.J.:
Querying and mining of time series data: experimental compari-
son of representations and distance measures. PVLDB1(2), 1542–
1552 (2008)

23. Dobra, A., Garofalakis, M.N., Gehrke, J., Rastogi, R.: Processing
complex aggregate queries over data streams. In: SIGMOD Con-
ference, pp. 61–72. Madison, Wisconsin (2002)

24. Eckmann, J.P., Kamphorst, S.O., Ruelle, D.: Recurrence plots of
dynamical systems. Europhysics Letters (epl)4, 973–977 (1987)

25. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subse-
quence matching in time-series databases. In: SIGMOD Confer-
ence, pp. 419–429 (1994)

26. Fiscus, J.G., Ajot, J., Garofolo, J.S.: The rich transcription2007
meeting recognition evaluation. In: Multimodal Technologies
for Perception of Humans, International Evaluation Workshops
CLEAR 2007 and RT 2007,Lecture Notes in Computer Science,
vol. 4625, pp. 373–389. Springer (2008)



Pattern Discovery in Data Streams under the Time Warping Distance 21

27. Ganguly, S., Garofalakis, M.N., Rastogi, R.: Processing set ex-
pressions over continuous update streams. In: SIGMOD Confer-
ence, pp. 265–276. San Diego, California (2003)

28. Gehrke, J.E., Korn, F., Srivastava, D.: On computing correlated
aggregates over continual data streams. In: SIGMOD Conference.
Santa Barbara, California (2001)

29. Gilbert, A.C., Guha, S., Indyk, P., Muthukrishnan, S., Strauss,
M.: Near-optimal sparse fourier representations via sampling. In:
STOC, pp. 152–161 (2002)

30. Gilbert, A.C., Kotidis, Y., Muthukrishnan, S., Strauss, M.:Surfing
wavelets on streams: One-pass summaries for approximate aggre-
gate queries. In: VLDB, pp. 79–88. Rome, Italy (2001)

31. Han, W.S., Lee, J., Moon, Y.S., Jiang, H.: Ranked subsequence
matching in time-series databases. In: VLDB, pp. 423–434 (2007)

32. Jang, J.S.R., Lee, H.R.: Hierarchical filtering method for content-
based music retrieval via acoustic input. In: ACM Multimedia, pp.
401–410 (2001)

33. Kanth, K.V.R., Agrawal, D., Singh, A.K.: Dimensionality reduc-
tion for similarity searching in dynamic databases. In: SIGMOD
Conference, pp. 166–176 (1998)

34. Kawasaki, H., Yatabe, T., Ikeuchi, K., Sakauchi, M.: Automatic
modeling of a 3d city map from real-world video. In: ACM Mul-
timedia, vol. 1, pp. 11–18 (1999)

35. Keogh, E.J.: Exact indexing of dynamic time warping. In: VLDB,
pp. 406–417 (2002)

36. Keogh, E.J., Chakrabarti, K., Mehrotra, S., Pazzani, M.J.: Locally
adaptive dimensionality reduction for indexing large time series
databases. In: SIGMOD Conference, pp. 151–162 (2001)

37. Korn, F., Muthukrishnan, S., Wu, Y.: Modeling skew in data
streams. In: SIGMOD Conference, pp. 181–192 (2006)

38. Lange, R., Farrell, T., Dürr, F., Rothermel, K.: Remote real-time
trajectory simplification. In: PerCom, pp. 1–10 (2009)

39. Lathi, B.P.: Signal Processing and Linear Systems. Oxford Uni-
versity Press (1998)

40. Li, L., McCann, J., Pollard, N.S., Faloutsos, C.: Dynammo: min-
ing and summarization of coevolving sequences with missing val-
ues. In: KDD, pp. 507–516 (2009)

41. Madden, S., Shah, M.A., Hellerstein, J.M., Raman, V.: Contin-
uously adaptive continuous queries over streams. In: SIGMOD
Conference, pp. 49–60. Madison, Wisconsin (2002)

42. Matsubara, Y., Sakurai, Y., Faloutsos, C., Iwata, T., Yoshikawa,
M.: Fast mining and forecasting of complex time-stamped events.
In: KDD, pp. 271–279 (2012)

43. Mokbel, M.F., Aref, W.G.: SOLE: scalable on-line execution of
continuous queries on spatio-temporal data streams. VLDB J.
17(5), 971–995 (2008)

44. Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar,
M., Manku, G.S., Olston, C., Rosenstein, J., Varma, R.: Query
processing, approximation, and resource management in a data
stream management system. In: CIDR. Asilomar (2003)

45. Mount, D.W.: Bioinformatics: Sequence and Genome Analysis.
Cold Spring Harbor Laboratory (2000)

46. Mueen, A., Keogh, E.J.: Online discovery and maintenance of
time series motifs. In: KDD, pp. 1089–1098 (2010)

47. Mueen, A., Nath, S., Liu, J.: Fast approximate correlation for
massive time-series data. In: SIGMOD Conference, pp. 171–182
(2010)

48. Nasraoui, O., Rojas, C., Cardona, C.: A framework for mining
evolving trends in web data streams using dynamic learning and
retrospective validation. Computer Networks50(10), 1488–1512
(2006)

49. Ogras, Ü.Y., Ferhatosmanogl, H.: Online summarization of dy-
namic time series data. VLDB J. (2006)

50. Papadimitriou, S., Brockwell, A., Faloutsos, C.: Adaptive, hands-
off stream mining. In: VLDB, pp. 560–571 (2003)

51. Papadimitriou, S., Sun, J., Faloutsos, C.: Streaming patterndis-
covery in multiple time-series. In: VLDB, pp. 697–708 (2005)

52. Papadimitriou, S., Yu, P.S.: Optimal multi-scale patterns in time
series streams. In: SIGMOD Conference, pp. 647–658 (2006)

53. Popivanov, I., Miller, R.J.: Similarity search over time-series data
using wavelets. In: ICDE, pp. 212–224 (2002)

54. Rabiner, L., Juang, B.H.: Fundamentals of Speech Recognition.
Prentice Hall, Englewood Cliffs, NJ (1993)

55. Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., West-
over, B., Zhu, Q., Zakaria, J., Keogh, E.: Searching and mining
trillions of time series subsequences under dynamic time warping.
In: KDD, pp. 262–270 (2012)

56. Reeves, G., Liu, J., Nath, S., Zhao, F.: Managing massive time
series streams with multi-scale compressed trickles. PVLDB2(1),
97–108 (2009)

57. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimiza-
tion for spoken word recognition. IEEE Transactions on Acous-
tics, Speech and Signal Processing26(1), 43–49 (1978)

58. Sakurai, Y., Faloutsos, C., Yamamuro, M.: Stream monitoring un-
der the time warping distance. In: ICDE, pp. 1046–1055 (2007)

59. Sakurai, Y., Li, L., Matsubara, Y., Faloutsos, C.: WindMine: Fast
and effective mining of web-click sequences. In: SDM, pp. 759–
770 (2011)

60. Sakurai, Y., Papadimitriou, S., Faloutsos, C.: BRAID: stream min-
ing through group lag correlations. In: SIGMOD Conference, pp.
599–610 (2005)

61. Sakurai, Y., Yoshikawa, M., Faloutsos, C.: FTW: fast similarity
search under the time warping distance. In: PODS, pp. 326–337
(2005)

62. Silva, Y.N., Aref, W.G., Ali, M.H.: Similarity group-by.In: ICDE,
pp. 904–915 (2009)

63. Smith, T.F., Waterman, M.S.: Identification of common molecular
subsequences. Journal of molecular biology147, 195–197 (1981)

64. Tatbul, N., Cetintemel, U., Zdonik, S.B., Cherniack, M.,Stone-
braker, M.: Load shedding in a data stream manager. In: VLDB,
pp. 309–320. Berlin, Germany (2003)

65. Toyoda, M., Sakurai, Y.: Discovery of cross-similarity in data
streams. In: ICDE, pp. 101–104 (2010)

66. Toyoda, M., Sakurai, Y., Ichikawa, T.: Identifying similar subse-
quences in data streams. In: DEXA,Lecture Notes in Computer
Science, vol. 5181, pp. 210–224 (2008)

67. Vlachos, M., Gunopulos, D., Kollios, G.: Discovering similar mul-
tidimensional trajectories. In: ICDE, pp. 673–684 (2002)

68. Wu, H., Salzberg, B., Zhang, D.: Online event-driven subsequence
matching over financial data streams. In: SIGMOD Conference,
pp. 23–34 (2004)

69. Yankov, D., Keogh, E., Lonardi, S., Fu, A.W.C.: Dot plotsfor time
series analysis. In: ICTAI, pp. 159–168 (2005)

70. Yi, B.K., Faloutsos, C.: Fast time sequence indexing for arbitrary
lp norms. In: VLDB, pp. 385–394 (2000)

71. Yi, B.K., Jagadish, H.V., Faloutsos, C.: Efficient retrievalof sim-
ilar time sequences under time warping. In: ICDE, pp. 201–208
(1998)

72. Zhou, M., Wong, M.H.: Efficient online subsequence searching in
data streams under dynamic time warping distance. In: ICDE, pp.
686–695 (2008)

73. Zhu, Y., Shasha, D.: Statstream: Statistical monitoring of thou-
sands of data streams in real time. In: VLDB, pp. 358–369 (2002)

74. Zhu, Y., Shasha, D.: Efficient elastic burst detection in data
streams. In: KDD, pp. 336–345 (2003)

75. Zhu, Y., Shasha, D.: Warping indexes with envelope transforms
for query by humming. In: SIGMOD Conference, pp. 181–192
(2003)



22 Machiko Toyoda et al.

Appendix

A Proof of Lemma 1

We assume that the warping path from cells(is, js) through(ie, je)
includes cell(ie, je − 1) in the time warping matrix starting from
(is, js) and the score matrix. From Equation (4), we have

||xie
− yje

|| = dis,js
(lx, ly) − dis,js

(lx, ly − 1).

Frombv = L(lx, ly) − L(lx, ly − 1) in Equation (5), we have

||xie
− yje

|| = εL(lx, ly) − v(ie, je)

−εL(lx, ly − 1) + v(ie, je − 1).

Similarly, if the warping path includes cell(ie−1, je) or (ie−1, je−
1), we have

||xie
− yje

|| = dis,js
(lx, ly) − dis,js

(lx − 1, ly)

= εL(lx, ly) − v(ie, je)

−εL(lx − 1, ly) + v(ie − 1, je).

||xie
− yje

|| = dis,js
(lx, ly) − dis,js

(lx − 1, ly − 1)

= εL(lx, ly) − v(ie, je)

−εL(lx − 1, ly − 1) + v(ie − 1, je − 1).

From

||xis
− yjs

|| = dis,js
(1, 1) = ε − v(is, js),

the time warping and the score matrices, which have the same starting
position(is, js), share the same warping path since||xi−yj || is equal
in all corresponding cells. The sum of the weights on the warpingpath
is equal to the subsequence lengthL(lx, ly) as described in Section
4.2.1. LetP be the set of cells in the warping path. From Equation (4),
we have

v(ie, je) = εL(lx, ly) −
X

(i,j)∈P

||xi − yj ||

= εL(lx, ly) − dis,js
(lx, ly).

As a result, we obtain the following equation for transforming the score
into the DTW distance as regards the subsequence pair,

dis,js
(lx, ly) = εL(lx, ly) − v(ie, je)

s.t. v(ie, je) > 0.
(14)

On the other hand, from Equations (3) and (14), we have

dis,js
(lx, ly) ≤ ε(L(lx, ly) − lmin)

εL(lx, ly) − v(ie, je) ≤ ε(L(lx, ly) − lmin)

v(ie, je) ≥ εlmin. (15)

From the second condition of Problem 1, it is clear that the optimal
warping path from cells(is, js) through(ie, je) in the time warping
matrix starting from(is, js) gives the minimum distance. From Equa-
tions (5) and (14), we also choose the same warping path from(is, js)
in the score and position matrices. Thus, we obtain the conditionsof
Lemma 1, which are equivalent to those of Problem 1. ✷

B Proof of Lemma 2

To demonstrate the correctness of CrossMatch, the following three
properties should be satisfied.

1. Any reported subsequence pairs must satisfy the property of cross-
similarity (i.e., Definition 1).

2. Each reported subsequence pair must be the optimal pair among
the set of overlapping subsequence pairs.

3. If a subsequence pair that satisfies the property of cross-similarity
is not reported, another overlapping subsequence pair is reported
whereD(X[is : ie], Y [js : je])− ε(L(lx, ly)− lmin) is the
minimum value.

Property 1:
CrossMatch reports a pair whereV (X[is : ie], Y [js : je])−εlmin

is the maximum value among the overlapping subsequence pairs sat-
isfying V (X[is : ie], Y [js : je]) ≥ εlmin. From Lemma 1, the pair
obviously satisfies the property of cross-similarity. ✷

Property 2:
From Lemma 1, the subsequence pair that minimizesD(X[is :
ie], Y [js : je])− ε(L(lx, ly)− lmin) is equivalent to the pair that
maximizesV (X[is : ie], Y [js : je])−εlmin. We assume that two
overlapping subsequence pairs that have different starting positions
(is, js) or (i′s, j′s) share cell(i, j). D(X[is : i], Y [js : j]) is the
minimum distance in the alignment from(is, js) to (i, j) of the time
warping matrix starting at(is, js). Similarly, D(X[i′s : i], Y [j′s : j])
is also the minimum distance in the time warping matrix starting at
(i′s, j′s). Two pairs share a common warping path in the subsequent
alignment from(i, j) to (ie, je) because DTW computes the cumu-
lative minimum distance. Thus, the subsequence pair that minimizes
D(X[is : i], Y [js :j])−ε(L(i−is+1, j−js+1)−lmin) is equivalent
to the pair that maximizesV (X[is : i], Y [js :j])−εlmin. CrossMatch
selects the pair with the maximum score in each cell. Therefore, the
matrices that CrossMatch prunes, i.e., time warping matrices thatare
absolutely not reflected in the score and the position matrices and that
are pruned during the computation process, do not include the optimal
pair. As a result, CrossMatch constantly reports the optimal pairfrom
the overlapping pairs. ✷

Property 3:
From property 2, the overlapping subsequence pairs share the same
starting position through the operation of CrossMatch. When thesub-
sequence pair satisfying Equation (15) is detected, CrossMatch checks
the pair with the same starting position in the candidate array. If the
score of the detected pair is greater than that of the pair in the can-
didate array, CrossMatch updates the candidate pair by using the pair
with the maximum score. This process is performed for every pair with
a different starting position. Thus, if a subsequence pair that satisfies
the property of cross-similarity is not reported, there is another better
candidate pair. ✷

C Proof of Lemma 3

The naive solution has to maintainO(nw + mw) time warping ma-
trices. It updates theO(w) values betweenxi and the corresponding
elements ofY (i.e., the elements fromyi−w to yi) in O(nw) matrices
if we receivexi at time-ticki. Similarly, it updates theO(w) values in
O(mw) matrices if we receiveyj at time-tickj. Therefore, it requires
O(nw2 + mw2) time per time-tick. Since the naive solution main-
tains two arrays ofw numbers for each matrix, it requires, in total,
O(nw2 + mw2) space. ✷

D Proof of Lemma 4

CrossMatch maintains two matrices (i.e., score and position matrices).
It updates theO(w) values if we receivexi or yj . Each matrix main-
tains two arrays ofw numbers. Thus, it requiresO(w) time (per up-
date) and space. ✷
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E Proof of Lemma 5

The sampled sequences compress the original sequences to the size
of 1/T . CrossMatch updates theO(w/T ) values, which requires
O(w/T ) time (per update) and space. ✷

F Proof of Lemma 6

Given three sequencesX, Y , andZ whose lengths aren1, n2, andn3,
the naive solution has to maintainO(n1w+n2w+n3w) time warping
matrices and updates theO(w2) values for each matrix. Therefore, it
requiresO(n1w3+n2w3+n3w3) time per update. Since the naive so-
lution maintains two planes ofw2 numbers for each matrix, it requires
O(n1w3+n2w3+n3w3) space. ✷

G Proof of Lemma 7

We assume that the warping path from cells(is, js, ks) through
(ie, je, ke) includes cell(ie−1, je−1, ke−1) in each time warping
and score matrix. From Equation (12) andbd = L(lx, ly) − L(lx−
1, ly−1, lz−1) in Equation (13), we have

||xie
− yje

|| + ||yje
−zke

|| + ||zke
−xie

||

= dis,js,ks
(lx, ly, lz) − dis,js,kx

(lx − 1, ly − 1, lz − 1)

= εL(lx, ly, lz) − v(ie, je, ke)

−εL(lx−1, ly−1, lz−1) + v(ie−1, je−1, ke−1).

In the other six neighboring cells, similar equations hold regarding the
distance value between three elements. From

||xis
−yjs

|| + ||yjs
−zks

|| + ||zks
−xis

||

= dis,js,ks
(1, 1, 1) = ε − v(is, js, ks),

the time warping and the score matrices, which have the starting posi-
tion (is, js, ks), share the same warping path. The sum of the weights
on the warping path is equal to the subsequence lengthL(lx, ly, lz).
From Equation (12), we have

v (ie, je, ke)

= εL(lx, ly, lz)−
X

(i,j,k)∈P

||xi−yj ||+||yj−zk||+||zk−xi||

= εL(lx, ly, lz) − dis,js,ks
(lx, ly, lz).

Note thatP represents the set of cells in the warping path. Therefore,
we obtain the following equation,

dis,js,ks
(lx, ly, lz) = εL(lx, ly, lz) − v(ie, je, ke). (16)

Moreover, from Equations (11) and (16), we have

v(ie, je, ke) ≥ εlmin. (17)

From Equation (16), the subsequences that have the maximum score
are equal to the subsequences that have the minimum DTW distance.
We choose the same warping path from cells(is, js, ks) through
(ie, je, ke) in the time warping and the score matrices. Thus, we ob-
tain the condition of Lemma 7. ✷

H Proof of Lemma 8

CrossMatch maintains2w2 arrays (i.e., previous and current planes,
which havew ∗ w arrays per plane) for sequencesX, Y , andZ in the
score and position matrices. It updatesO(w2) numbers to identify the
optimal subsequences if we receivexi at time-ticki, yj at time-tick
j, or zk at time-tickk. Therefore, it requiresO(w2) time (per update)
andO(w2) space. ✷


