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Abstract Subsequence matching is a basic problem in thd Introduction

field of data stream mining. In recent years, there has been

significant research effort spent on efficiently finding sub-Data streams are becoming increasingly important in sev-
sequences similar to a query sequence. Another challengirgal domains including financial data analysis [68], sensor
issue in relation to subsequence matching is how we identifjietwork monitoring [74], moving object trajectories [15,
common local patterns when both sequences are evolvingg], web click-stream analysis [42,48,59], and network tra
This problem arises in trend detection, clustering, and outfic analysis [37]. Many applications require time-serietada
lier detection. Dynamic time warping (DTW) is often used streams to be continuously monitored in real time, and the
for subsequence matching and is a powerful similarity meaprocessing and mining of data streams are attracting in-
sure. However, the straightforward method using DTW in-creasing interest. In addition to providing SQL-like sugpo
curs a high computation cost for this problem. In this paperfor data stream management systems (DSMS), it is crucial
we propose a one-pass algorithm, CrossMatch, that achieves detect hidden patterns that may exist in data streams,
the above goal. CrossMatch addresses two important chadnd subsequence matching is one of the key techniques for
lenges: (1) how can we identify common local patterns effi-achieving this goal.

ciently without any omission? (2) how can we find common  puch of the previous work on subsequence matching
local patterns in data stream processing? To tackle thesger data streams has focused on finding subsequences sim-
challenges, CrossMatch incorporates three ideas: (1)ra Scqizr tg a query sequence [16,58,72]. In this setting, one is a
ing function, which computes the DTW distance indirectly fixed sequence and the other is an evolving sequence. This
to reduce the computation cost, (2) a position matrix, whichypproach works well if we have already determined the pat-
stores starting positions to keep track of common local paierns we want to find. However, we consider co-evolving
terns in a streaming fashion, and (3) a streaming algorithn”:_;,equences and focus on the problem of identifying common
which identifies common local patterns efficiently and out-g¢g] patterns between them. That is, our goal is to auto-
puts them on the fly. We provide a theoretical analysis anghatically detect all common local patterns over data steeam

prove that our algorithm does not sacrifice accuracy. Ouyithout a query sequence. The problem we want to solve is
experimental evaluation and case studies show that Crosgs follows.

Match can incrementally discover common local patterns in

data streams within constant time (per update) and space. GIVeén two data streams, determine common local patterns
and their periodicities taking account of time scaling.

This problem is defined in detail in Section 3, in Fig. 1 we
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55 Subseqtt s 55 Subseq L patterns essentially correspond to groups of common lo-
o . cal patterns.
3 - 3 - U — Motion capture: The recognition of human motion has
T W T been attracting intense interest in relation to computer
» » animation, sports, and medical care. Motion data se-
15 oo 1000 15000 20000 Zo000 15 a0 Teom0 24000 32000 40000 guences are sampled many times per second and are data
Time (Humidity #1) Time (Humidity #2)

streams of high dimensionality. Humans never repeat ex-
actly the same action patterns, and the actions tend to
j=m Subseail differ in terms of their duration. This appears as variabil-
____________________ / ity in the speed of human motion. For example, an actor
may walk quickly or slowly. Such variability can mani-
Y - Subseq#l7 fest itself as time scaling, namely a stretching or shrink-
(Humidity #2) P ing of time-series data. Our approach aids trend detec-
: tion, which can be used to identify particular movement
j=1 ' — styles for game creators, and outlier detection, which

i=1 i=n
can be used by coaches to analyze athletes’ performance
by identifying time-varying common motions (i.e., com-
mon local patterns).

X (Humidity #1) — Sensor network: In sensor networks, sensors send their
(b) Detected common local patters readings frequently. Each sensor produces a stream of
Fig. 1 lllustration of problem. Two humidity sequences have two com- data, and those streams need to be monitored and com-
mon local patterns. Our proposed method identifies their positod bined to detect interesting changes in the environment. It
similarities in a streaming fashion. - . .
is likely that users are interested in one or more sensors
within a particular spatial region. These interests are ex-
pressed as trends and similar patterns, i.e., common local
the two patterns are shown in Fig. 1 (b). The lines represent patterns.
the matches between the elementsXofand Y and corre-

(a) Data sequences

. . What similarity measures are suitable for detecting com-
spond to a diagonal if the two subsequences match perfectl%on local patterns? There are a large number of similar-

We |_dent|fy their S|m|_lgr|t|es and matching p0|_nts, et _ity measures for time-series analysis[22]. Unlike the tra-
starting and end positions of each sequence, in a streamingl. : ; .
ional setting, data streams arrive continuously. Subse

fashion, and report each match as early as possible. .
guence matching should focus on asynchronous data be-

This problem motivates us to develop the following im- cayse streams frequently have different sampling rates. Th
portant techniques: (1) trend detection, which is the abilimechanism should be robust against noise and provide scal-
ity to detect the most frequently occurring patterns in datang of the time axis. We use dynamic time warping (DTW)
streams, (2) clustering, which is the ability to find sequsnc 9 54] to solve this problem. DTW is a robust and widely
that look similar and to group them, and (3) outlier detecyseqd measure in several domains [32,34,45]. It is also suit-
tion, which is the ability to discover anomalous pattemsapje for subsequence matching since it provides time scal-

by comparing common patterns. These exciting techniquggg (such as the stretching or shrinking of a portion of a
could also provide interpretations of clusters and anaensali sequence along the time axis) [4,35,61,71,75].

by annotating them in an online fashion. What are the significant challenges in terms of detect-
In addition to the above techniques, we also consider thing common local patterns over data streams? Typically,
following interesting applications. DTW is applied to limited situations in an offline manner.

To identify common local patterns with DTW, we have to

— Web analysis: Web access patterns are very dynamic beivide data streams into all possible subsequences and com-
cause of both the dynamics of web site content and strug@ute the similarities between them because we have no ad-
ture, and the changes in the users’ interests. A continvance knowledge about the patterns we are seeking. Since
uous monitoring of web access will reveal interestingdata streams arrive online at high bit rates and are poten-
usage patterns or profiles and provide users with moréally unbounded in size, the computation time and memory
suitable, customized services in real time. Webmasterspace increase greatly. Ideally, we need a solution that can
may cluster users into groups based on their commoreturn correct results without any omissions, even at high
characteristics for user behavioral analysis. Web site despeeds.
signers can use typical browsing patterns to personalize Recently, the work in [65,66] addressed the problem of
the user’s experience on the website. These groups arithding common local patterns in data streams. Problem def-
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inition and its solution using DTW are introduced in [66], Time-series analysis and similarity search. Time-
but the work does not provide any theoretical guaranteeseries analysis has been studied for many years. Most of the
with respect to answer accuracy and it output overlappingroposed methods focus on similarity queries with a query
results. In [65] we modified the problem definition and de-sequence. There are several distance measures for similar-
vised two ideas, a scoring function (Section 4.2.1) and a paity queries on time-series data, e.g., euclidean dista2igle [
sition matrix (Section 4.2.2). In this paper, while we sharedynamic time warping (DTW) [9, 54], distance based on the
the same goals, we present a new streaming algorithm (Selongest common subsequence (LCSS) [67], edit distance
tion 4.2.3), which incorporates these ideas and at the sanvéth real penalty (EDP) [14], and edit distance on real se-
time provides strict guarantees for our results (Secti@h 4. quence (EDR) [15]. These distance measures are selected
By introducing a global constraint for DTW, which is suit- depending on the difference of the matching strategy in ap-
able for stream settings, our algorithm improves the tinte anplication domains.
space requirements. Moreover, we propose enhanced solu- To efficiently perform the similarity search efficiently,
tions for different environments (Sections 5 and 6) and makeata sequences are transformed to lower dimensional points
our algorithm more robust. with a dimensionality reduction technique. Agrawal et2]. |

Our contributions in this paper are as follows. and Faloutsos et al. [25] have utilized discrete Fouriarsra

— We present CrossMatch, which can efficiently detecformation (DFT), and have inserted each point into an R-
common local patterns in data streams. CrossMatch $€€ [8]. Other reduction technigques include discrete \edve
a one-pass algorithm, which is strictly based on pTwitransform (DWT) [53], singular value decomposition (SVD)
and guarantees correct results. [33], piecewise aggregate approximation (PAA) [70], and

— In our theoretical analysis, we prove that CrossMatcrpdaptive piecewise constant approximation (APCA) [36].
does not sacrifice accuracy and detects the optimél:ao et al. [10] have proposed a data reduction technique for
subsequences. Moreover, we discuss the complexitPatio-temporal data.
in terms of computation time and memory space and Sequence matching has attracted a lot of research
show that CrossMatch significantly reduces the requirednterest, and very successful methods have been devel-
amounts of these resources and achieves constant tiraged for time-series data [4,35,61]. MDMWP [31] is a
(per update) and space. fast ranked subsequence matching solution. Ranked subse-

— For more effectiveness, we propose a sampling approadiience matching finds the top-k similar subsequences to a
that introduces an approximation for CrossMatch. Ourlquery sequence from data sequences. It introduces two tight
solution works properly for sampled sequences andower bounds and prunes unnecessary subsequence access
achieves a significant reduction in resources. requests at the index level. EBSM [5] is a method for ap-

— As regards the accuracy and complexity for detectingoroximate subsequence matching under DTW. The key idea
common local patterns, we empirically show its useful-is to convert subsequence matching to vector matching. For
ness on several real and synthetic datasets. the conversion, EBSM uses precomputed alignments be-

— We address a more challenging problem of finding comtween database sequences and query sequences. Rakthan-
mon local patterns in multiple data streams, and shownanon et al. [55] have focused on one trillion length time-

that CrossMatch can be effectively applied to this probseries and several different many tens of billions timéeser
lem. data and have proposed a method for searching exactly un-
. . . . der DTW. By introducing the four optimizations based on
The remainder of this paper is organized as follows :
. : : . the early stop of the computation and lower bounds, they
Section 2 discusses related work and Section 3 prowdehs ) .
ave shown that their method is much faster than the recent

the _problem definition. In _Sectlon .4 we desc_rlbe the_ Idea§earch method for DTW. The above methods focus mainly
behind CrossMatch and its algorithm, and in Section
on stored sequences.

we introduce a sampling approach for CrossMatch. Sec- ) .
tion 6 presents an enhanced algorithm for multiple streams. S égards subsequence matching based on DTW in data

Section 7 reviews our experimental results, which clearl)_rc'treams’ Zhou et al. [72] presented an efficient batch filter-

demonstrate the effectiveness of CrossMatch. Section-8 praqg.met.hod. They obse.rve a special propert.y of data streams,
vides our conclusion. which is that successive subsequences in a stream often

overlap to some extent, and improve the performance by uti-
lizing such overlapping information as filters for lower and
2 Related Work upper bounds. Sakurai et al. [58] presented SPRING, which
efficiently monitors multiple numerical streams. They in-
Related work falls broadly into three categories: timeeser troduce two new ideas; star-padding and subsequence time
similarity search, stream management and stream miningvarping matrix. These methods can accurately detect simi-
We review each category. lar subsequences in a constant time without fixing the win-
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dow size. On the other hand, Chen et al.[16] proposed afb0] is one of the first streaming algorithms for forecasting
original distance function that supports shifting andiscal and it is used to discover arbitrary periodicities in a time
in both the time and amplitude dimensions and used it as sequence. Zhu et al.[73] focused on monitoring multiple
similarity measure for the efficient and continuous detecti streams in real time and proposed StatStream, which com-
of patterns in a streaming time sequence. The above methogates pairwise correlations among all streams. The SPIRIT
are powerful for dealing with problems where fixed lengthmethod [51] is used to address the problem of capturing
query sequences are given. However, they scale poorly ammbrrelations and finding hidden variables corresponding to
so are ineffective with respect to our target problem. trends in collections of co-evolving data streams. BRAID

Regarding the detection of common local patterns ove[60] detects lag correlations between data streams by using
data streams, the most relevant work is [66], which proposegeometric probing and smoothing to approximate the exact
an algorithm for finding similar subsequences. From an aleorrelation. Papadimitriou et al. [52] proposed an aldonit
gorithmic perspective, a highly relevant work is [65], winic for discovering optimal local patterns, which concisely de
presents an algorithm based on DTW. However, the algoscribe the main trends in data streams. DynaMMo [40] sum-
rithm in [66] does not guarantee the correctness of result®arizes and compresses multiple sequences and finds latent
and outputs subsequences with redundant information. Bottariables among them.
algorithms are linear with regard to time and space. This On the other hand, there are effective methods that ad-
paper not only overcomes the issues of accuracy and comdress massive time-series streams as applications for data
plexity, but is also more efficient in detecting common localcenter management. Reeves et al. [56] addressed the prob-
patterns. lem of the space-efficient archiving of time-series streams

In the field of bioinformatics, search techniques forand the fast processing of several statistical and datangnini
biological sequences have been studied and the Smitiqueries regarding that archived data. They focused on the
Waterman algorithm is used to find local similarities [63]. problem that traditional database systems have addressed
The studies in this area focus on symbol sequencespace-efficient archiving and query processing separately
Whereas, our problem focuses on numerical sequences. Oaind proposed Cypress, which preprocesses and decomposes
method differs in that it computes the DTW distance pre-€ach data stream into a small number of substreams, and an-
cisely and guarantees the detection of subsequences with tawers common queries directly from a set of them rather
minimum distance. than reconstructing the original stream. Mueen et al.[47]

Continuous queries and data stream management. considered the problem of computing all-pair correlations
Broadly related work includes data stream management sy#! @ warehouse containing a large number of time-series. A
tems (DSMSs). Their common goal is to provide a generalhigh 1/0 and CPU overhead make the fast computation of
purpose infrastructure for the efficient management of datgorrelations a challenging issue. They proposed a caching
streams. Sample systems inclublerora [1], Stream[44],  @lgorithm to optimize overall I/O cost and two approxima-
Telegraph12], Gigascopd19], andOSCAR13]. Algorith-  tion algorithms to reduce CPU costs.
mic work includes query processing [41], scheduling [6,11]  These techniques focus on trend detection, correlation,
and load shedding [20,64]. As regards continuous querieshotif discovery, and prediction, and so are not solutioms fo
Arasu et al.[3] studied the memory requirements of conour goal, which is to find common local patterns based on
tinuous queries oveelational data streams. SOLE [43] is DTW.
a scalable algorithm for continuous spatio-temporal eseri In our experiment on CrossMatch, we used scatter plots
in data streams. To address multiple streams and queries it show its outputs, which were the optimal subsequence
provides a framework with caching of uncertainty regionspairs. Recurrence plot [24] and dot plot [69] have been pro-
and a shared operator on a shared buffer. posed for visual sequence analysis and mining of time-serie

Approximation and adaptivity are also key features fordata; they focus on the visualization of the similar parts
DSMSs, such as sampling [7], sketches [17,23,27], stegisti Of sequences on a scatter plot. Our objective is to identify
[21, 28], and wavelets [30]. The main goal of these method¥hich of the subsequences &fandY” are similar by apply-
is to estimate a global aggregate (e.g., sum, count, averagéd the DTW approach in an online manner, and so differs
over a fixed window on the recent data. from their objective and approach.

The emphasis in the above works is to support traditional
SQL queries on streams. None of them try to find patterns.

Stream mining. Many other previous studies have at- 3 Problem definition
tempted pattern discovery in a streaming scenario. Mueen et
al. [46] presented the first online motif discovery algamth In this section, we introduce dynamic time warping (DTW)
to accurately monitor and maintain motifs, which represenf9, 54], and then define the problem that forms our objective.
repeated subsequences in time-series, in real time. AWSONMhe main symbols used in this paper are shown in Table 1.
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Table 1 Definitions of main symbols

X={x;, %5, o0, Xj, ..

T ym
[ Symbols | Definitions _.']. w
X Data sequence/stream of length _.'.
Y Data sequence/stream of length y _.'
T; i-th element ofX’ “.'
yj j-th element ofy” L
Xlis 1 ie] | Subsequences of andY’, including elements bl =
Yjs : je] | inpositionsis, js throughic, je X X *n
€ Distance threshold for finding qualifying subsequences Y=¢ » ; [\/V\/\
Imin Threshold of subsequence length V1o Yoy veor Vs woes Vim
o Length of X [is : ie
ly Length of Y [js : je Fig. 2 Illustration of DTW. The left figure indicates the alignment of

L(l.,l,) | Function for length betweeN [i; : i.] andY [js : je]
w Width of warping scope

measurements. The right figure indicates the optimal warpingipath
warping scope.

d(i,7) Distance of(¢, j) in time warping matrix

v(t,7) Score 0f(z, 7) in score matrix

s(,7) Starting position ofz, j) in position matrix ) . . .

+ Sampled data sequenceaX well-known glqbal F:onstralnt that restricts the warpinghpa

Y Sampled data sequenceXof to the range ofi — j| < w.

Xi «-th element ofY DTW requiresO(nm) time since the time warping ma-
e g-th element oby trix consists ofnm cells. Note that the space complex-
fNg Nyquist frequency o0 . . P P

T, Fixed sampling period ok ity is O(m) (or O(n)) since the algorithm needs only two
Ty Fixed sampling period of columns (i.e., the current and previous columns) of the

time warping matrix to compute the DTW distance. By us-
ing the warping scope, the time complexity is reduced to
O(nw + mw). The space complexity i©(w) because we

. . need only2w cells.
DTW is a transformation that allows sequences to be y2w

stretched along the time axis to minimize the distance be-
tween them (see Fig.2). The DTW distance of two sequences,, Cross-similarity
is the sum of the tick-to-tick distances after the two se-

quences have been optimally warped to maich each othghaia streani is a discrete, semi-infinite sequence of num-
To align two sequences, we constructiane warping Ma-  persy. 2. ... 2., ..., wherez, is the most recent value.

trix’. The warping path is a set of grid cells in the time warp- Note thatn increases with every new time-tick. L&t[i, :

ing matrix, which represents the alignment between the sq-e] be the subsequence &f that starts from time-tick,
quences. Consider two sequenc&s= (z1,22,...2n) Of  anq ends at., and letY[js : j.] be the subsequence of
lengthn andY” = (y1, 42, ..., ym) Of lengthm. Their DTW v th4t starts from time-tick, and ends aj.. The lengths
distanceD (X, Y) is defined as of X[is : i.] andY[j, : j.| arel, = i, — i, + 1 and

ly = je—Jjs+1, respectively. Our goal is to find the common
local patterns of sequences by data stream processing based
on DTW. That is, we want to detect subsequence pairs that

3.1 Preliminaries

D(X,Y) =d(n,m)

d(i,j—1) tisfy
- . . . satis
d(i, j) = ||z — ;]| + min ¢ d(i — 1, 7) 1)

d(l -1,5— 1) D(X[Zs : ie]7Y[jS : je]) < EL(lmaly)a (2)
d(0,0)=0,  d(i,0) =d(0,j) = o0 where D(X[i, : i.],Y[js : j.]) is the DTW distance be-
(i=1,.,n j=1,.,m). tweenX|is : i.] andY[js : j|, € is a distance threshold,

andL is a function that sets the length of the subsequence. In
Note that||z; — y;|| = (z; — y;)? is the distance be- this paper, the algorithm uségl,,l,) = (I, +1,)/2, which

tween two numerical values in céll, j) of the time warp- is the average length of the two subsequences, but the user
ing matrix. Note that other choices (say, absolute diffeeen can employ any other choice (e.@(l.,l,) = maz(l;,1,)

[lz; — y;|| = |x; — y;|) can also be used; our algorithm is or L(l,,l,) = min(l,,l,)). The DTW distance increases as
completely independent of the choice made. To avoid dethe subsequence length increases since it is the sum of the
generated matching, where a relatively small section of ondistances between elements. Therefore, the distancéthres
sequence maps onto a relatively large section of anotheer, ttold should be proportional to the subsequence length. Ac-
warping path is limited by global constraints. The warpingcordingly, we set it atL(l,,1,).

scopew is the area that the warping path is allowed to visit  Equation (2) allows us to detect subsequence pairs with-
in the time warping matrix. The Sakoe-Chiba band [57] is aout regard to the subsequence length. In practice, however,
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we might detect shorter and meaningless matching pairs dyg7]. More specifically, for each sequenéé and Y, we
to the influence of noise. We introduce the concept of subseeompute the cells from the recent element (exg.or y,,.)
quence match length to enable us to discard such meanintp an element of the warping scopeago. If m = n, the
less pairs and to detect the optimal pairs that satisfy‘realwarping scope is exactly equal to the Sakoe-Chiba band.
user requirements. We formally define tloeo'ss-similarity

betweenX andY’, which indicates common local patterns.

Definition 1 (Cross-similarity [65]) Given two sequences 4 Proposed method

X andY, a distance threshold, and a threshold of sub-
sequence length,,;,, X[is : i.] andY[js : j.] have the
property of cross-similarity if this sequence pair satsfle
following condition.

D(X[is 2 ic], Y[js t jel) < e(L(lo,ly) = lnin)- 3) , _
4.1 Naive solution

The minimum lengtH,,,;,, of subsequence matches should

be given by the users. The subsequences that satisfy thitie most straightforward solution to this problem is to con-

equation are guaranteed to have lengths exceégdingWe  sider all possible subsequencesdf. :i.] (1<is <i. <n),

also agree that the user should select the length fundtion and all possible subsequencesdf, : j.] (1 <js <j.<m)

as well ad,,,;,, to obtain desirable results. in the warping scope and apply the standard DTW dynamic
We should also mention the following point: wheneverprogramming algorithm. We call this methdhive

a subsequence pair matches, there will be several other Let d, ;(p,q) be the distance of cellp, ¢) in the time

matches that strongly overlap the ‘local minimum’ bestwarping matrix that starts fromon thez-axis andj on the

match. Specifically, an overlap is simply the relation thaty-axis, and letw be the width of the warping scope. The

two subsequence pairs have a common alignment, which iistance of the subsequence matching betwéamdy” can

defined as follows: be obtained as follows.

In this section, we describe a straightforward solutionrtd fi
the best match of cross-similarity in data streams and also
present our one-pass algorithm, CrossMatch.

Definition 2 (Overlap) Given two warping paths for sub- p(x¥i, :i.], Y[j, : j]) = d; (e, 1)
sequence pairs ok andY’, their overlap is defined as the o

condition where the paths share at least one element. dij(p,q—1)
] ] ) o dii(p, @) =||Titp—1—Yj+g—1||+ming d 1
Overlaps provide the user with redundant information, o (P )=l a1l d”Ep 1 @) 3
i j\P—1,4d—

and would slow down the algorithm since all useless ‘solu-
tions’ are tracked and reported. Our solution is to detest thd; ;(0,0) =0, d; ;(p,0) =d; ;(0,q) = 00
local best subsequences from the set of overlapping subsg-—1,... n; p=1,...,n—i+1;

quences. Thus, our goal is to find the best match of crossj. —lm g =1, m—j 1

similarity.
n—w<itp<nm-w<j+q<m)
Problem 1 Given two sequenceX andY’, thresholds, (4)
and l,,;», report all subsequence pairX[is : i.] and
Y[js : jeJ, that satisfy the following conditions. The naive solution creates a new matrix at every new time-

tick and updates the distance arrays of incomingt time-

tick ¢ and that of incomingy; at time-tickj in each exist-

ing time warping matrix. It then determines the subsequence

C%alr for whichD(X[is : i), Y[js : Je]) —€(L(ls, ly) = Linin)

IS the minimum value among the set of overlapping subse-

guence pairs.

Hereafter we use ‘qualifying’ subsequence pairs to refer to  Fig. 3 shows an example of a naive solution to the prob-

pairs that satisfy the first condition, and we use ‘optimal’lem of subsequence matching. Letbe the width of the

subsequence pairs to refer to pairs that satisfy both condwarping scope (the gray cell in the figure). The naive so-

tions. lution updatesD(w) distance values per time-tick on each
Typically, new elements in data streams, i.e., those thanatrix when an element of the sequence arrives. The naive

have occurred recently, are usually more significant thasolution require® (nw?+mw?) time (per update) and space

those in the distant past [18]. To limit the cell in the ma-because it has to handle a total@frnw+mw) matrices to

trix and focus on recent elements, we utilize a concept o€ompute the DTW distance. In practice, it is not feasible to

global constraint for DTW, namely the Sacoe-Chiba band¢tompute the distance in a streaming setting.

1. X[is : i.] andY[js : j.] have the property of cross-
similarity.

2. D(X[is:te), Y[js: je)) —e(Lls, ly) —lmin) is the min-
imum value among the set of overlapping subsequen
pairs that satisfies the first condition.
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acteristics: (a) it provides a non-negative cumulativeresco
and (b) its operation is reversible with respect to the DTW
distance.

The scoring function is essentially based on the dynamic
programming approach. Whereas the DTW computes the
minimum cumulative distance, our function computes the
maximum cumulative scomrresponding to the DTW dis-
tance with ascore matrix The score is determined by accu-
mulating the difference between the threshold and the dis-
tance between the elements in the score matrix. Thus, we
Fig. 3 lllustration of subsequence matching using the naive solutioncan recognize a dissimilar subsequence pair since the score
The naive solution maintains matrices starting from every tiicle-t has a negative value if the subsequence pair does not satisfy

the first condition of Problem 1.
A The scoring function selects the cell with the maximum
cumulative score from the neighboring cells, and if the scor
is negative, the function initializes the score to zero deht
restarts the computation from the cell. This operationved|o

j:m = T

Y us to discard unqualifying, non-optimal subsequence pairs
| Definition 3 (Score matrix [65]) Given two sequences,
ji=1 B - X = (21, Ty yzp) @AY = (Y1, -, Y55, Ym),
i=1 = and the width of the warping scope, scoreV (X|i,
ie), Y[Js : Je]) Of X[is : i.] andY[js : j] is defined as:
X
V(X[ZS : Zp]vy[]s : .7(’]) = v(ieaje)
Fig. 4 lllustration of CrossMatch. The black cells indicate the wagpi 0
paths of the optimal subsequence pairs and the gray cells fadioa b [ 406, — 1)
warping scope. v(i, §) = max Eby Ti —Yj v 117] .
by — ||z — ;| +v(i —1,7)
ebg — ||z; —yj|| +v(i—1,7—1) ©)
4.2 CrossMatch d Y '

v(0,0) = v(4,0) = v(0,5) =0
As mentioned in the previous section, the naive solutioncre;; _ 1
ates too many matrices because it computes the distance val- 7
ues between all possible subsequences. The distance-thresh

old is proportional to the subsequence length (cf. Defini-  The scoring function operation is reversible with respect
tion 1). The naive solution attempts to find the subsequencg the DTW distance. That is, the score of the qualifying sub-
pairs semipermanently in each matrix. If we prune dissimsequence pair with a positive value is easily transformtx in
ilar subsequence pairs and reduce the number of matricege DTW distance. Symbols,, by, andb, in Equation (5)
the distance computations become much more efficient. Otfdicate a weight function for each direction, which makes
method is motivated by this idea. transformation between the score and the DTW distance
Our method, CrossMatch, computes the similarity scorgyossible. These values are determined as a function of the
that corresponds to the DTW distance and identifies dissybsequence length. For example Kok, 1) = (1. +1,)/2,
similar subsequences. We find ‘good’” matches in a singléhe current. value increases by/2 if the score of a vertical
matrix efficiently by pruning the subsequences (see Figer horizontal cell is chosen, and it increasesl lifthe score
4). Our method, which realizes these concepts, consists f a diagonal cell is chosen. Thus, we obtain=b;, = 1/2

three ideas: a new scoring function, a position matrix, and ands, = 1, respectively, for these directiodsThe scoring
streaming algorithm that uses them.

Ln; g=1,...,m;
—w<i<n;m-—w<j<m).

! For L(ly,ly) =max(l,,1,), each weight is set as follows.
bg=by=1andb, =0if I, >ly.
4.2.1 Scoring function ba=b,=1andb, =0if I, <l,.
bg=1andb, =b, =0if I, —l
To identify the dissimilar subsequences early, we proposgorma”y’ ea‘;h WE'(%’ht ;S (ielf')”ed as follows.
computing the DTW distance indirectly by usingeoring bh—L(l.py ) — L(LI;_UU).

function The scoring function has the following two char- by =L(i..,1,) — L(lo—1,1,—1).
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6 |13 201 0 | 0| 0 lose the information about the starting position of the sub-

5|9 16 |22 |25 |2 | 0 sequence. This is the motivation behind our second idea, a

4 2]12| o0 | 0|27 - 0 position matrix we store the starting position to keep track

34|13 0] 036 ]|4]|o0 of the qualifying subsequence pair in a streaming fashion.

2 9 0 11 26 24 0

Tl o T ol Definition 4 (Position matrix [65]) The position matrix

Tl s (206 |3 | stores the starting position of each subsequence pair. The
1

starting positions(i, j) corresponding to score(, j) is
computed as follows:

2 3 4 5 6

(a) Score matrix

s(i,§=1)  (v(i,5-1)#0 A v(ij)
6 | 13 (1,3) | 4,6 | (5,6) | (6,6) N
5 |9 13) | (13) ] 21) | 21) | 65) . . =eby—llzi—ysll+v(ii—1)
4| 2 3|4 34 (2,1)-(6,4) s(i—1,7)  (v(1.)#0 A v(ij)
3 | 4 @3]y ]ea ey eyl e s(i,7)= =eby—||zi—y;||+v(i—1,5) (7)
2 (9 |(1L2)|RY|11)](@1)]|(52) s(i—1,7—1) (v(i-1,j1)%0 A v(i,5)
-~ e en el an —eba—|lai—y; |l +0(i-1,5-1)
125l s |12 10 6 | 3| 18 o
: (Z,j) (otherwise).

i 1 2 3 4 5 6
(b) Position matrix The starting position is described as a coordinate value;

Fig. 5 Example of cross-similarity detection. The light cells signify 5(ie, Je) indicates the starting positicfd;., js) of the subse-

cross-similarity, and the dark cell in each matrix shows the bestmatc 4U€NCe pairX[iS : ieJ .andY[jS.: Je]. We update the star_ting
position in the position matrix as well as the score in the

score matrix. We can identify the optimal subsequence that

L . . ives the maximum score during stream processing since
function is designed so that the sum of the weights on thd . 9 am proce 9

exactly the same warping path is maintained in the score

warpin h (i.e. n i | n .. : . .
arping path (i.e b”’. bn, andb) is equa .t(? .subseque ce and position matrices. Moreover, the starting positiorhef t
length L. Therefore, it guarantees reversibility between the . L .
. . o shared cell is maintained through the subsequent aligrament
DTW distance and the score, and finds the qualifying sub: ; . L
) . . : because we repeat the operation, which maintains the start-
sequence pairs without any omissions. The DTW distance

of a subsequence pair is computed from the score and {ng position of the selected previous cell. Thus, we know the

subsequence length as follows: overlgpplng subsequence pairs from the fact that the starti
positions match.

DXis:ie],Yjs: je]) =eLlla ly) =V X [is el Y [s  ge]) Example 2Fig. 5 (b) shows the position matrix correspond-
s.t. V(XTistie]),Y[js 1 je]) > 0. ing to the score matrix in Fig. 5 (a). In cb, 4), the start-
(6) ing position(2,1) is maintained because the scoring func-

. ) . tion selects the score of cgl, 3) in the score matrix. By
Equation (6) holds for the time warping and the score Magompining both matrices, we can identify the position of the

trices, which have the same starting positi@g, j;). The optimal subsequence pak[2 : 5] andY'[1 : 4]. On the
details are provided in Section 4.3. other hand, there are many overlapping subsequence pairs
that have the same starting positi 1). Of these, we se-

lect the subsequence pair with the highest score as the opti-

l(57 12L6élo’:;’ 183’ SYF': é11,9,ﬁ, 2, 9’,{%3)’ ande :t '14',I'h mal pair because we can determine the overlapping subse-
min = 2, andw = 3. Fig. 5 (a) shows the score matrix. The ciuence pairs from the position matrix.

dark cell, which has the highest score, shows the optima
subsequence pair and indicates that the scarkyis ||z5 — Next, we show how subsequence pairs are pruned. The
ya||+v(4,3) = 49 and the end position i§., j.) = (5,4).  pruned subsequence pairs fall into one of the following two
The light cells show qualifying subsequence pairs. Thescellcategories: (1) subsequence pairs that are absolutelgnot r
that contain zero identify dissimilar subsequence pairs.  flected in two matrices (i.e., the score and the position ma-
trices), and (2) subsequence pairs that are pruned dueng th
computation process. In any case, our method is designed so
4.2.2 Position matrix that we can evaluate the cross-similarity between seqsence
from the score value, and guarantees that the pruned sub-
The scoring function tells us (a) where the subsequencgequence pairs are not optimal by using the fact that the
match ends and (b) what the resulting score is. However, weverlapping subsequence pairs in dgllj) have the same

Example 1Assume that we have two sequencesXof=
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warping paths in the subsequent alignments (we will proAlgorithm 1 CrossMatch

vide detailed proofs in Section 4.3). Input: new valuez,, at time-tickn
Output: optimal subsequence pairs and DTW distances
Example 3An example of case (1) corresponds to the sub-1: / Detect optimal subsequence pairs.

sequence pairs starting @, 2) in Fig. 5. In cell(3,2), our ~ 2: for j := m — wtom do

method has to select one pair from neighboring cells since®  Cy :=v(n.j); // Score value derived by Equation (5)
Il neighboring cells include positive scores, and it paune & &g = s J); /I Starting position derived by Equation (7)
a g g p ! P 5. Cl :=(n,j); Il End position

the subsequence pairs that have the starting po<isial). 6: if C! > elpmin then
An example of case (2) corresponds to the subsequence paiis /I Add the subsequence pair as a new candidate.
. . 1 ’
starting at(1, 3). In cell (4, 5), our method chooses the sub- 8 if C; ¢ Sthen
- - . : addC!, C.,andC/ to S,
sequence pair starting @, 1) because the pair has the max- ;. else
imum value. That is, the subsequence pair that has the stattz: for each candidate’ € S do
ing position(1, 3) is pruned although the score indicates al2: /I Overwrite the maximum score.
g . T A ’
pOS|t|Ve Value 13: if Cs = Cs A Cv > CU then
14: Cy :=Cl;
) ) 15: Ce:=0CL;
4.2.3 Streaming algorithm 16: end if
17: end for
We now have all the pieces needed to answer the questloih8 end if
how do we find the optimal subsequence pairs? Every timg - enS?grlf

zn, Is received at time-tick, our algorithm, CrossMatch, in- 51. / Report the optimal subsequence pairs.
crementally updates the scaf® = v(n, j) and starting po- 22 for each candidate’ € S do

sition C?, = s(n, j) and retains the end positi@i{ = (n,j). 23 if (Vi,s(i,m) # Cs) A (v, 5(n,5) # Cs) then
We use candidate array to find the optimal subsequence gg ?{Z"{,@ EL(lg y;nac

pair and store the best pdif(i.e., score’,,, starting position 5 Reﬁ]ovgf?(;m S

C, and end positiog’,) in a set of overlapping subsequence27:  end if

pairs. CrossMatch reports the optimal subsequence pair aft28: end for

confirming that it cannot be replaced by the upcoming sub-
sequence pairs (i.e., there are no overlapping subsequence
pairs). The upcoming candidate subsequence pairs do not
overlap the captured optimal subsequence pair if the starti
positions in the position matrix satisfy the following cand

tion.
. . Example 4Again assume two sequences of =
(Vi s(5,m) # Cs) A (Y5, 5(n,7) # C). (5,12,6,10,3,18), Y = (11,9,4,2,9,13), ande = 14,
CrossMatch reports the similarity of the subsequence pair d,,,;, = 2, andw = 3 in Fig 5. To simplify the example of
the DTW distance. The DTW distance is obtained from theour algorithm with no loss of generality, we assume that
score and the subsequence length, as shown in Equation (nhdy; arrive in alternately. At each time-tick, the algorithm
The above procedure provides the foundation of our efupdates the scores and the starting positions. At4, we
ficient detection of similar pairs. Algorithm 1 shows the de-update the cells fronf4, 1) to (4,3) and identify a candi-
tails. We keep only two columns (i.e., the current and predate subsequenc&;[2 : 4] andY'[1 : 3], starting at(2,1),
vious columns) for eaclX andY in the two matrices. In whose score(4,3) = 36 is greater thaml,,,;,,. At j = 4,
this algorithm, we focus on computing the scores and theve update the cells frorl, 4) to (4,4). Although no sub-
starting positions when we receiwg, at time-tickn. Note  sequences satisfying the condition are detected, we do not
that the scores and the starting positions of incomingat  report the subsequence &f[2 : 4] andY[1 : 3] since it is
time-tick m are also computed similarly by this algorithm. possible that this pair could be replaced by upcoming sub-
CrossMatch requires three parametérs,,, w, ande.  sequences. We then capture the optimal subsequence pair of
The subsequence length,;, and the parameter are set X[2 : 5] andY[1 : 4] ati = 5. We finally report the sub-
based on the pattern the user wants to search. It is desiraldequence as the optimal subsequenge=ats since we can
to set the values according to the applications. The warpingonfirm that none of the upcoming subsequences can be op-
scopew determines the computation range in each matrixtimal. Fig. 6 shows time warping matrix starting(@t 1) in
At the same time, it asks the user how far back into the paghe naive solution, which includes the optimal subsequence
the algorithm needs to go. If the user wants to search fopair in Fig. 5. In the score and the position matrices, the
subsequence pairs during the present time-tick and a timsubsequence pairs that have the starting posftioh) cor-
tick in the relatively distant past, it is better to set a éarg respond to the pairs on the time warping matrix in Fig. 6.

In our experiments, we simply use reasonable values for
every dataset, and we show that this way of setting param-
eters is sufficient for CrossMatch to verify the detection of
the optimal subsequence pairs.
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6 | 13 112 | 80 | 131 | 69 4.3.1 Accuracy
5 9 183 | 103 31 43 88
4 | 2 174 | 102 | 22 - 263 Lemma 1 Given two sequence¥ and Y, Problem 1 is
3| 4 74 | 38| 6 | 7 | 203 equivalent to the following conditions.
Ll 02 |14 1 V(X[is:ie), Yis:Jel) = €lmin
tju 112 |27 2. V(Xis:ie), Y[js: Je]) — €lmin is the maximum value in
jpg s 12106 | 3|18 each group of subsequence pairs that the warping path
i r )2 ]3] 4156 crosses.
Fig. 6 Time warping matrix starting at (2,1) in the naive solution. Proof See appendix A. 0O

Lemma 2 CrossMatch guarantees the output of the optimal

%5 ISubseq 1 ubseq 2 %5 ISubseq 1 ubseq #

50 50 subsequence pairs.
45 45
40 40 H
EI 2 o Proof See appendix B. O
z 30 z 30
25 25 .
20 20 4.3.2 CompIeX|ty
1 0 5000 10000 15000 20000 25000 1 0 8000 16000 24000 32000 40000
Time (Humidty 1) Time (Famiy 72) Let X andY be evolving sequences of lengthsand m,
respectively.
40000
J 7 Lemma 3 The naive solution require®(nw? +mw?) time
2 2em (per update) and space to discover cross-similarity.
15
i 16000 -
2 Proof See appendix C. O
= 8000
Lemma 4 CrossMatch require®)(w) (i.e., constant) time

0 0 5000 10000 15000 20000 25000 . . . .

Time (Humidiy #1) (per update) and space to discover cross-similarity.
Fig. 7 Discovery of foremost subsequence pairs usthugnidity. The
subsequence pairs in the middle of alignments are detecteke thé
optimal subsequence pairs in Fig. 1.

Proof See appendix D. O

5 Sampling approach

From Equation (6), we haveL(4,4) - V(X[2 : 5],Y]1 :

As mentioned above, CrossMatch detects cross-similarity i
4)) =14-4—-49 =7 = D(X[2:5],Y[1:4)).

constant time and space. The next question is what we can
In this paper, we focus on finding only the optimal sub-do in the highly likely case that the users need more efficient

sequence pairs. We provide one alternative with regard teolutions given that, in practice, they require high accyra

the output of similar subsequence pairs. In a stream settingot a theoretical guarantee. This is our motivation fordatr

it is desirable to report similar subsequence pairs as spon ducing an approximation for CrossMatch.

possible. To report the similar subsequence pairs witheutd ~ What approximate techniques are suitable for Cross-

lay, we firstly report the foremost subsequence pair, he., t Match? An efficient idea involves the data reduction of a se-

first pair satisfying the threshold among the set of overlapguence. Optimal alignments of DTW correspond to match-

ping pairs, and thereafter update the pair with the optimaing the elements in time. To find optimal subsequence pairs

subsequence pair. For example, Fig. 7 shows the foremoby approximation, we choose to keep the sequence, which

subsequence pairs for tiiéumidity dataset in Fig. 1. We is transformed by data reduction operated in the time do-

show the detailed comparison of their positions in Table 2main. As an extended version of CrossMatch, we propose

Note that(is, js) is the starting position anfi., j.) is the =~ compressing the matrices usingampling approachAs we

end position. Unlike Fig. 1, it is obvious to shorten the re-show later, this decision significantly improves both space

porting time. Thus, we can provide a solution that is morecost and response time, with negligible effect on the mining

suitable for a streaming scenario. results.

As the first step, we consider the following theorem.

4.3 Theoretical Analysis Theorem 1 (Sampling theorem)If a continuous function

contains no frequencies higher theh; s, it is completely
We introduce a brief theoretical analysis that confirms thaletermined by its value at a series of points less than
accuracy and complexity of CrossMatch. 1/2 fnign apart.
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Table 2 Comparison with positions of optimal and foremost subsequence pairs.

Subseq. #1 Subseq. #2
iS [ ie [ jS [ j€ iS [ ie [ jS [ je
Optimal subsequence pairs 1 | 15000 | 6 | 22629 | 21008 | 24505 | 31146 | 38013
Foremost subsequence pairsl | 11250 | 6 | 16938 | 21008 | 24188 | 31146 | 36949

Proof See [39]. O  the sampling approach. Faéx(l,,l,) = (I, +1,)/2, the cur-
rent L value increases by, /2 if the score of a vertical cell
In the theorem, the minimum sampling frequency,is chosen, byf, /2 if the score of a horizontal cell is chosen,
Ing = 2fnign, is called the Nyquist frequency. We utilize and by(T,, + T},)/2 if the score of a diagonal cell is chosen.

this theorem for sampling the sequences. That is, we USghys, we obtair, =T, /2, b, =T, /2 andby = (T, + T})/2
coarse sequences yielded by sampling based on the theoregg) these directions.

and detect the cross-similarity. Since the original seqaen
is sampled once for eacfi, value, i.e..T' = 1/fng4, We
greatly reduce in the size of the matrix. 5.2 Position matrix

The position matrix for the sampling approach is similar to
5.1 Scoring function Equation (7). We keep the starting position of the previous

cell if any of the three neighboring cells is selected. Ineoth
How do we compute the score between sampled sequenceasises, we appropriately set the starting position in concer
Intuitively, the key idea is that when we select one of thewith the sampling periodg, andT,. More specifically, the
neighboring cells for score computation, we interpolate th starting positiors(4, j) is computed as follows.
distance values that were dropped by sampling. In the score
computation between sampled sequences, therd aré

hidden cells that represent the missing values between the (i-Te,j - Ty) (v(3,5)<0)

current cell (i.e., the cell that we should compute now) and s(i,j—1) (0(i,3-1)#0 A v(i.j)

its neighboring cells. We approximate the distance values, =eby — Ty xi—y; || +v(i,5-1)
which should be provided by the hidden cells, by using the s(i—1,7) (W(.)£0 A v(i.j)

distance value in the current cell. Since the sampled sei;j) =

quences are obtained based on the sampling theorem, this =ebn—Tallxisli+v(id.4)

is a suitable approximation. s(E=1,j=1) (01,5120 A v(irj)=eba

Let X andY be two sequences of lengthsand m —maz(Ty, Ty W xi~y;|[+o(e1,5-1)
with sampling periodd’, and7}, respectively. Also letY ((i—1) - Tp+1,(j—1) - Ty+1) (otherwise).
:(le ey Xy eeny Xl_n/TT,j) andy:(Ylv o Yis "'7y|_m/TyJ) be (9)

sampled sequences &fandY’, respectively. We obtain the
scores of the subsequencestoind) as follows.
5.3 Streaming algorithm
V(Xlis :ie], V]is © Je|) = vlie, Je)
0 Algorithm 2 shows a detailed description of our sampling
approach. The algorithm reflects the information about the

eby — Ty[lxi =yl + (i, 5 1) skipped elements in the next computation and approxi-

v(i,7) = mazx

ebp — Ty |[xi =yl +v(i—1,7) mately computes the score and the position of the subse-
ebg — max(Ty, Ty)-||x; —y;l|| + v(i—1, j—1)quence pair. The basic procedure is the same as that of the
0(0,0) = v(i,0) = v(0,5) = 0 original version of CrossMatch (i.e., Algorithm 1), howeve

1 Tl i1 Tl we can greatly reduce the space requirement and the com-
(=1, [n/Te); g =1,... [m/Ty]; putation cost by the sampling, which faithfully reconstsuc
[(n—w)/T;] <i<|n/Tz|; [((m—w)/T,]<j<|m/Ty];) the original sequence.

8
® Lemma5 LetT be the sampling period. With the sampling
We interpolateT, values if we select the score of the approach, CrossMatch require3(w/7T') time (per update)
vertical cell. Similarly, we interpolaté; values in the hor- and space.
izontal direction, and maf{;, T;) values in the diagonal
direction. Furthermore, we modify the weight function for Proof See appendix E. O
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Algorithm 2 CrossMatch (sampling) direction in cell(4, j) is by, = t,/2 and the others are sim-
Input: new valuer,, at time-tickn ilarly set by the sampling periods. In the adaptive sampling
Output: (approximate) optimal subsequence pairs and DTW dis'approach, we constantly use the sampling period, which re-

1: it??fﬁid T. — 0 then flects the sequence of recent time-ticks. Thus, this approac
2: I/ Detect optimal subsequence pairs. would be more powerful when the sequence consists of high
3. forj:=[(m—w)/Ty] to |m/Ty] do and low frequencies.
. A Y\ - o

g; g? Z ;)((Z//%’ ]J)) //,/ gg{;ﬁg;g grr]“;ee?isng& g. @ Incremental algorithms have been proposed for comput-
6: C! := (n,j = T,); I End position ing the frequency in the stream sense (e.g., [29,49]). €ross
7: if C! > elmin then Match can utilize any and all of these solutions to compute
8: /I Add the subsequence pair as a new candidate. the frequency efficiently. However, this research topicsis b
1%: if C;dgcf thcgln andC” 10.5: yond the scope of this paper.

11 else ’ Two sampling approaches do not guarantee their error-
12: for each candidate’ € S do bound theoretically because the alignment of DTW depends
ii; i/f/ gye:rwgtse/ihg/msxg utrl:esncore' on the data sequence and changes if the data sequence is
15: Co=Cli sampled with a different sampling period. However, we
16: Ce:=Cl; show that their errors are very small in Section 7.3.

17: end if

18: end for

19: end if
20: end if
21:  end for
22: /I Report the optimal subsequence pairs. 6 Discovery of group-similarity
23:  for each candidat€’ € S do
24 :Le(\;i’s(z’ [m/Tyl) # Co) A (Y5,5(/Tes5) # Cs) g4 far, we have assumed the problem of cross-similarity be-
25: dmin = eL(lz,ly) — Cy; tween two data streams. For more generality, we would like
26: Reportd,, in, Cs andCe; to make CrossMatch more flexible. We now tackle a more
2r. RemoveC from S challenging problem: how do we efficiently identify com-
;g; engrf]gr'f mon local patterns among multiple data streams? A useful
30: end if feature of CrossMatch is that it can be effectively extended

to this case.
Given multiple data streams (more than two sequences),

5.4 Adaptive sampling approach we want to find group-similarity, which means the cross-

similarity among them. The work in [62] has addressed the
We discussed how to compute the score assuming that tipgoblem of similarity group-by that supports grouping lzhse
fixed sampling period of each sequence is given. Next, wen tuples in a database. On the other hand, group-similarity
focus our attention on handling the variation in the sangplin provides grouping based on similar patterns. For example, i
period. Assuming that we cannot know the elements of &ensor networks, measurement values arriving from many
data stream in advance, the power rate between high and lafferent sensors have to be examined dynamically. Cross-
frequencies might vary over time. This means that the freMatch makes it possible to reduce a large number of streams
guency range varies locally in the time domain. We want tao just a handful of common patterns that compactly de-
incorporate this frequency range variation into CrossMatc scribe the key features. More importantly, the time andspac
Thus, CrossMatch updates the sampling period in streamequirements are constant per update.
processing. We call this method taeaptive sampling ap- We formally define group-similarity below. To simplify

proachas opposed to the sampling approach. our presentation, we focus on three sequer¢e¥, andZ.

Let X' = (x1,...,Xi,...,X,), be the sampled sequences\ye first present the DTW distance for the three sequences.
of X, and7, =(ty,, ..., lx,, -, Ix,, ) be the sampling period
of X in each time-tick. In the adaptive sampling approach y
the number of hidden cells varies according to the samplinéa
period in each time-tick. We compute the appropriate sam-
pling period in each cell and approximate the distance alue.
of the hidden cells accordingly. On the other hand, we de- * The other settings for DTW are as followk(0, 0, 0) = 0.
termine the weights of each direction dynamically since thé;g’?’g)) - j((g’j.’g)) = j((?’(?’:))_:;f'
currentZL value is determined by the sampling periodineach =7 " . 5 =1 no k=1,....ns.
time-tick. ForL = (I, +1,)/2, the weight of the horizontal (n1—w <i<ni)A(n2—w < j < n2) A (ns—w < k < na).

Consider three sequences, = (1, %2, ..., Zn, ), Y =
1, Y2, "'3y77-2)’ andZ = (217 22y ey Zns) Their DTW dis-
nceD(X,Y, Z) is defined a$
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D(X,Y,Z) = d(ni,n2,n3) D(X[is e, Yjs : Jels Zlks : ke]) = di jo k. (s 1y, 1)

d(i, 3, k) = llws — ysll + lly; — zll + (|26 — 2] di k(P @ 7) = |Titp—1 = Yjrq—1ll + [Yjrq-1—2k4r—1]|
d(i,j—1,k) + 2ktr—1=Tirpall + dimin
d(i—1,j—1,k) (10)  Note thatd,,;, is the minimum distance between the seven

+min q d(i, 7,k — 1) neighboring cells.
,— 1 1 . . .
d(% . dnk=1) Lemma 6 The naive solution require® (nyw? + nyw? +
d(i,j =1,k —1) nsw?3) time (per update) and space to discover the group-
dii—1,j—1,k-1). similarity for three sequences.
The time warping matrix for the three sequences conproof See appendix F. O

sists ofn; * ny * n3 cells®. In cell (4, 7, k), we choose one
cell, which has the minimum distance, from the seven neigh- How do we detect group-similarity with CrossMatch?
boring cells and add the value to the distance value betweéiVe need only two matrices for computation (i.e., the score
three elementsaf, y;, andz;). The DTW distance is ob- and position matrices). Each matrix has only two planes
tained by accumulating these distances. (i.e., previous and current planes) for each sequenck,

and Z. For each incoming data point, we calcul&éw?)
Definition 5 (Group-similarity) Giventhree sequences,  score values and updat(w?) starting positions. Specifi-

Y, Z, and thresholds and!,i,, the subsequenceS[is :  cally, given three sequencas Y, andZ and warping scope
iels Y[js : je], and Z[k : k] have the property of group-  the score/ (X[i, :lic|, Y [js : je], Z[ks : ke]) Of X[is :ic),
similarity if they satisfy the following condition. Y[js:je] and Z [k, : k] is computed as follow?.
D(X[is:ie],Y [js:je], Z1ks : ke]) < e(L(la,ly,l2) —lmin)- V(XTis :ie), Y[js t jel, Zlks : kel) = v(ic, jo, ke)

(11) (13)

U(ivja k) = maX(Oa Ubest)
We compute the DTW distance among three sequences alqd
or cell
detect the subsequences whose lengths are greatéythan
As with cross-similarity, we face the overlap problem. The
number of overlapping subsequences increases significant
with the number of sequences. We detect the best match of

(i, 7, k), we choose one of seven neighboring cells
and determine the score if the scang,, is not a negative
alue. For example, if the score of a diagonal ¢e# 1, j—
k—1) is chosen, we have

group-similarity as follows. Vpest = €bg — deeyy +v(i—1,j—1,k—1)

Problem 2 Given three sequencés, Y, andZ, and thresh-  deell = llzi = y5ll +1ly; — 2l + |21 — @il

oldse and/nin, we want to find subsequencesi; : ic],  whered..; is the distance between the cells of the three se-
Yjs : je], and Z[k : k.| that satisfy the following condi-  quences. While computing the score values, we update the
tions. starting position in the position matrix. If we choose one of

1. Xlis :ic], Y[js : jo, and Z[k, : k.] have the property of the seven neighboring cells, we keep the same starting posi-
group-similérity. tion. If not, we choose the current céll j, k) as the starting
2. D(XJis ¢ ic),Y]js ¢ el Zlks : ke]) — e(L(ly, 1y, 1) — position. Thus, we can deal with the score computation and

Lnin) IS the minimum value from a set of overlapping the updating of the starting position very effectively.

subsequences that satisfies the first condition. Lemma 7 Given three sequences, Y, and Z, Problem 2

Let d; ; x(p,q,7) be the distance in cellp,q,r) in the is equivalent to the following conditions.
time warping matrix for three sequences that starts from o o
'PINg _ d ) ) 1 V(X[is:iel, Yjs: Jel, Zks kel) > €lmin
thez-axis,j on they-axis, andk on thez-axis. The distance
between the subsequencesXdfY, andZ can be obtained d; ; x(p,q,0) = d; ;,x(0,q,7) = d; j,x(p,0,7) = 0.
as follows?. 1=1,..,n,p=1,...,n1—+1,5=1,...,n2,9 =1, ..., n0—j+1,
k=1,...,n3,r=1,...,n3—k+1.
3 Here we focus on a third-order tensor for time warping, namely(ni—w < i+p < n1)A(ne—w < jg < n2)A(nz—w < ktr < ns).
the time warping tensor for three sequences. However, for simyplici 5 The other settings for the scoring function are as follows.
we shall use the term “time warping matrix” in this paper. v(0,0,0) = v(4,0,0) = v(0,7,0) = v(0,0,k) = 0.
4 The other settings are as follows, ; 1 (0,0,0) = 0, v(4,7,0) = v(0,4,k) = v(3,0,k) = 0.
di ;6 (p,0.0) = d;,5,%(0,¢,0) = ds,5,%(0,0,7) = oo. (m—-—w<i<ni)Ane—w<j<n2)A(ns—w < k< nz).
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2. V(X[is:ie), Y[js : Je)s Zlks : ke]) — €limin is the maxi- 7.1 Filtering redundant information
mum value in each group of subsequences that the warp-

ing path crosses. We compared CrossMatch with the previous algorithm [66]
to investigate its effectiveness in filtering redundanbinf
Proof See appendix G. O mation’. We used a synthetic datasBtnes which consists

of discontinuous sine waves with white noise (see Fig. 8 (a))

From Lemma 7, Equation (11) holds for any reportedand for our previous algorithm and CrossMatch welsgt

subsequences. As with Lemma 2, it is obvious that Crost 15% of the sequence lengthat 1.0e-2, andy at 50% of

Match reports the optimal subsequences from the set 6pe sequence length.

overlapping subsequences. Thus, CrossMatch guarantees F9- 8 (b) plots the sequence length vs. the number of
the correctness of the result for group-similarity. detected subsequence pairs for the two algorithms. In the

previous algorithm, increases in sequence length trigger a

large increase in the number of detected subsequence pairs.
CrossMatch, on the other hand, detects fewer subsequence
pairs than the previous algorithm.

Fig. 8 (c) shows how CrossMatch captures subsequence
pairs. For visualization purposes, we find the optimal warp-
Proof See appendix H. U ing path by backtracking the selected cells from the end po-

sition, and plot the cells frori., j.) to (is, js) for the sub-
Although the complexity of group-similarity is still sequence paiX|i, : i.] andY[j, : j.]. Unlike the previ-
quadratic with respect to the number of sequences, Crosgus algorithm, CrossMatch provides only the optimal sub-
Match is much faster in practice than the naive solutiorsequence pairs in a streaming fashion. Therefore, by elimi-
and enables the examination of very large collections of senating the overlapping subsequence pairs, the periodi€ity
quences. cross-similarity is revealed and users can obtain ‘real’ re
sults without receiving redundant information.

Lemma 8 CrossMatch require)(w?) time (per update)
and O(w?) space to discover the group-similarity for three
sequences.

7 Experimental Evaluation 7.2 Detecting cross-similarity between two sequences

We performed experiments to evaluate the effectivenesge present case studies of real and synthetic datasets to

of CrossMatch. Our experiments were conducted on emonstrate the effectiveness of our approach in discover-

2.4-GHz Intel Core 2 machine with 4 GB of memory, jng optimal subsequence pairs. We kgt, at 500 forRan-

running Linux. The experiments were designed {0 answegomsinesnd at 1000 foSpikesin each synthetic dataset.

the following questions. We setl, ;. at 15% of the sequence length for real datasets
(i.e.,Humid, Automobile trafficWeh SunspotsandTemper-
ature). The warping scope was set at 50% of the sequence

1. How well does CrossMatch provide the optimal subsefength for all datasets. The details of each dataset an@the s

quences without redundant information? tings for the experiments are given in Table 3. In Fig. 10, the
2. How successful is CrossMatch in capturing Crossieft and center figures represent the datasets and the gght fi
similarity? ures represent the optimal warping paths of cross-sirylari

3. How effective is the sampling approach in capturingyetected from these datasets.
cross-similarity?

4. How well does CrossMatch scale with the sequence _
length in terms of computation time and memory space’?‘z'1 RandomSines

5. How well does CrossMatch work in high-dimensional
data streams?

6. How well does CrossMatch identify group-similarity?

We used a synthetic datas®andomSinesvhich consists

of discontinuous sine waves with white noise (see Fig. 9

(a)). This dataset includes different-length intervalsisen

We used real and synthetic datasets for the experiment{€ Sine waves, which were generated using a random walk
These datasets (except high-dimensional sequences) dr&iction. We varied the period of each sine wave and the

available for downloading from the web pafjeThe details  intervals between these sine waves in the sequence.

of each dataset are provided in the following subsections.

7 The previous algorithm does not introduce the warping seope
To ensure the validity of the experiment, we modified the algorit
6 http://www.kecl.ntt.co.jp/icl/ls/fmembers/machiko/time-sstzip and introduced the warping scope.
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Fig. 9 Discovery of cross-similarity usinfandom Sineand Spikes The left and center figures represent data sequences anglihéigures
represent the optimal warping paths of cross-similarity.

As shown in the right figure of Fig. 9 (a), CrossMatch Match detects both large and small spikes. The difference
perfectly identifies all the sine waves and their time-viagyi in the period of each spike appears as a difference in plot
periodicities. In this figure, the difference in the peridd o length; wide spikes indicate long plot lengths and narrow
each sine wave appears as a difference in the slope. spikes indicate short plot lengths.

7.2.2 Spikes

7.2.3 Humidity
This is the synthetic dataset shown in Fig. 9 (b), which con-
sists of large and small spikes. The data for differentdleng Fig. 1 shows the detected subsequence pairs for the humid-
intervals between spikes were generated using a randoity dataset. CrossMatch captures common patterns except
walk function. The period of each spike is also different. Asfor the dissimilar sections. Our method is designed to find
seen in the right figure of Fig. 9 (b), we confirm that Cross-the similar subsequence pairs. However, by applying it to
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Fig. 10 Discovery of cross-similarity usingutomobile trafficWeh SunspotsandTemperature

sequences that are roughly similar, it can utilize the disco indicate periodicity. Moreover, the intervals between the

ery of dissimilar sections. consecutive lines correspond to the daily period, and we can
confirm that the characteristics of the data are revealed by
7.2.4 Automobile traffic the cross-similarity thus detected.

Fig. 10 (a) shows time-series data of automobile traffic,

which has a daily period. Each day contains other distinc?.2.5 Web

patterns for the morning and afternoon rush hours. Hourly

traffic is bursty data, and we can regard it as white noise. Fig. 10 (b) shows access counts for mail and blog sites ob-
CrossMatch is successful in accurately detecting théained every 10 seconds. We observe the daily periodicity

daily period without being deceived by the high-frequencyof sequences, which increases from morning to night and

hourly traffic. Consecutive lines and their regular intésva reaches a peak.
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Table 3 Details of datasets and parameter settings. extremely high. Since the frequency limit is widely under-
Sequence length stood in various fields (e.g., audio processing and network
Datasets Seq. #1] Seq.#2| °© analysis), in settings regarding Nyquist frequency, weedis
RandomsSines | 25000 | 25000 | 1.0e-4 gard the high frequency components, whose power is very
Spikes 28000 | 28000 | 5.0e-6 small. We set the power value threshold at 5.0e-4 in this ex-
Humidity | 26779 | 40831 | 8.0e-1 periment. The main energy dfaffic #L1is distributed in the
Automabile traffic| 16000 | 16000 | 8.5e+4 0 < f < 1478 frequency range and the Nyquist frequency
Web 32000 | 32000 | 4.0e+4 ) - ) .
Sunspots 18000 | 18000 | 3.0e+2 is fn, = 2596/n. Similarly, the main energy ofraffic #2
Temperature 28000 | 24000 | 2.0e-1 is distributed in thed < f < 1438 frequency range and the

Nyquist frequency isfn, = 2876/m. Thus, the sampling
periods arel, = 5 andT,, = 6 & . With the adaptive sam-
pling approach, the sampling rate varies depending on the
frequency range.

Fig. 11 presents the cross-similarity with the sampling
rngproach. We omit the results we obtained with the adap-
tive sampling approach because they are almost the same as
those of the sampling approach. The optimal subsequence
pairs as well as those estimated in Fig. 10 provide an ac-
curate assessment of the similarity between sequences. The
7.2.6 Sunspots original and sampling approaches offer very similar cross-

similarity and are equally useful.
Fig. 10 (c) is sunspots dataset recorded on a daily basis. Next, we show the correctness of the results obtained
This is a well-known dataset whose time-varying periodiC+ith the two sampling approaches. We used the Diarization
ity is related to sun activity. The average number of Visi-gror Rate (DER) [26] to evaluate the accuracy. DER is a
ble sunspots increases when the sun is active and decrea@@%ary metric for speech recognition and presents the rati
when the sun is inactive. This change occurs with a regulass jncorrect speech time against the total amount of exact

The right figure in Fig. 10 (b) confirms that CrossMatch
identified the periodicity. The figure shows winding lines,
unlike Automobile This indicates that CrossMatch aligned
the elements of sequences that were stretched along the ti
axis. Cross-similarity is detected by the time-scalingppro
erty of CrossMatch.

period of about 11' years. _ speech time. In our evaluation, DER is represented by the
CrossMatch distinguishes the increase and decrease jtio of the mismatch length to the exact subsequence length
the average number and captures similar periods. and is defined as follows.
|is — dg| + lie — i
7.2.7 Temperature DER, = o — s+ 1

ljs — Jsl + lje — Jel
je _js + 1

We use the temperature measurements (degrees CelsidgF iz, =
from the Critter dataset, which are obtained with small sen-

sors (see Fig. 10 (d)). The sensors give one reading approklote that(is, js) is the exact starting position for the origi-
imately every minute. This dataset has many missing valuesal CrossMatch an¢i’,, ;) is the approximate starting po-
and the lengths of the two sequences are different. These sgtion for the two sampling approaches. The end positions
quences consist of similar changes with a temperature fluare also the same. We calculate the DER for every detected
tuation of18 to 32 °C. subsequence pair and show their average values.

Despite the missing measurement values and the differ- Table 4 gives the DER results. Although there are
ence in the period, CrossMatch successfully detected theariabilities in each dataset, the two sampling approaches
pattern. closely identify the positions of optimal subsequencegair

In particular, the DERs of the two approaches are different
for Temperature As compared with other datasets, which
7.3 Effect of sampling approach consist of high frequencfiemperatureontains both of high
and low frequencies. Therefore, it is considered that the al
In this section, we show the results we obtained with thegorithm approximates the score in response to the varia-
sampling and adaptive sampling approaches. We used fotipn of the sampling period. As we expected, the adaptive
real datasets for the experiment. To determine the sampling
period for each dataset in the sampling approach, we com-° The frequency componensand the sampling periods of the
. ther datasets are as follows.
puted a power spegtrum from the norma%hzed.sequence ail: 0< f <63, T, — 254. Blog 0< f <80, T, 200,
Real datasets often include high frequencies with very loWsynspots #10 < f <1431, T, =6. #2 0< f < 1497, T, =6.
energy. The Nyquist frequencies for such datasets could bemperature #10 < f <201, T, =70. #2: 0< f <137, T, = 88.
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Fig. 11 Discovery of cross-similarity with the sampling approach. The sargmipproach correctly identifies the patterns as effegtiaslthe
original approach.

Table 4 Diarization error rate in two sampling approaches.

sampling approachi adaptive sampling
DER, [ DER, | DER, [ DER,

Automobile traffic 0.066 0.094 0.074 0.095
Web 0.039 0.042 0.039 0.036
Sunspots 0.105 0.121 0.093 0.106
Temperature 0.068 0.084 0.002 0.015

sampling approach has an advantage as regards datasets thae-tick for each sequence length. As we expected, Cross-
consist of high and low frequencies. Match identifies the optimal subsequence pairs much faster
than the naive and SPRING implementations. The trend
shown in this figure agrees with our theoretical discussion
in Section 4.3.2. In particular, the sampling approachitign

. ._jcantly reduces the computation time.
We compared two CrossMatch approaches (i.e., the origi- Fig. 13 compares Naive, SPRING, and the two Cross-

nal and sampling approach®swith the naive solution and Match approaches in terms of memory space. The x-axis

an existing method, SPRING, in terms of computation time .
and memorv space. SPRING detects high-similarity subs represents data stream length. The space requirement of
y space. g Y rossMatch is clearly lower than those of the Naive and

guences that are similar to a fixed-length query sequen . . .
under the DTW distance [58]. SPRING is not intended tgngING implementations, and the sampling approach can

- T ._greatly reduce the space requirement. The results alse agre
be used for finding cross-similarity, but we can apply th|sg y b d g

. . with our theoretical discussion in Section 4.3.2.
method to evaluate the efficiency and to verify the complex-

ity of CrossMatch. SPRING requiré3(n + m) matrices,
thus an algorithm with SPRING for finding cross-similarity - 5 £ytansion to high-dimensional data streams
requiresO (nw +mw) time (per update) and space. We used

Temperaturdor this experiment. . We applied CrossMatch to high-dimensional data streams.
Fig. 12 shows the experimental results with regard tQne interesting problem is how to apply CrossMatch to mo-
computation time. This is the average processing time P&jon capture data (see tables in Fig. 1¥jocapis a real
9 We show only the result for the sampling approach since the aveidataset created by recording motion information from a hu-
age sampling periods were almost the same between two approacheman actor while the actor performed different actions (e.g.

7.4 Performance
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Fig. 14 Discovery of cross-similarity iMocap CrossMatch success-
fully detects the same motions (i.e., walking and jumping upyvard
multi-dimensional sequences.
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Fig. 13 Memory space consumption as a function of sequence length. ) o
CrossMatch detects cross-similarity with a constant memory space. 7.6 Detecting group-similarity

We performed an experiment to discover group-similarity.
We used thé&ensodataset for this experiment (see Fig. 15).
GSensorconsists of three streams that represent temperature
readings from sensors within several buildings. Each sen-
sor provides a reading every 4 minutes. Overall, the dataset
fluctuates greatly at different time-ticks but the threesses
X andY are multi-dimensional time sequences, and ouexhibit a similar fluctuation pattern.

goal is to find matching subsequences betw&eand Y. We show the experimental result in the right figure of
Intuitively, if X andY include the same motions, we want Fig. 15. The optimal warping path is plotted as a line in
to find these motions. 3-dimensional space. CrossMatch discovers the fluctuation

. . attern in spite of the difference in the periodicity. In mul
We used sequences obtained from the CMU motion cap{—? le se uer?ces roviding a concise su&mar ofyke trends
ture databasé®. We selected the data for limbs from the . P q ' P 9 y y

e . . is a significant challenge. CrossMatch summarizes the three
original data and used them as 8-dimensional data. Each mo- 9 9

tion is listed in the tables in Fig. 14. The dataset has two mogequences m_tola manageable synoptic pattern and captures
: . : . . . the characteristics shared by the sequences.
tions in common (i.e., walking and jumping upward), and

the length of each motion is different. We $gt;,, at 240,
which corresponds to about two secondsit 10, andw at

50% of the sequence length.

The result shown in Fig. 14 reveals that CrossMatch cay'€ described the problem of finding common local patterns
accurately capture the two motions. We can confirm that th@25€d on DTW over data streams and presented a practi-
walking motion yields high cross-similarity. There are man cal solution. CrossMatch is a one-pass algorithm based on

shifted sequences, because walking is a repetitive behavi TW: which detects local ‘?Ommon pa'ltlte.rns in constant time
in which the limbs move back and forth. CrossMatch works(Per update) and space without sacrificing accuracy. A the-

for high-dimensional datasets and detects the repetitive m oretical analysis and experiments demonstrated that €ross
tion as cross-similarity Match works as expected. Furthermore, we have provided an

enhancement, a sampling approach, to greatly compress the
size of the matrices. We showed that the sampling approach
further improves the efficiency of CrossMatch in terms of
time and space requirements.

walking, running, and kicking). Special markers are place
on the actor’s joints (e.g., knees and elbows), and their-x-,
and z-velocities are recorded at about 120 Hz.

8 Conclusions

10 http://mocap.cs.cmu.edu/
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Fig. 15 Discovery of group-similarity usin§ensor CrossMatch captures fluctuation pattern correctly.

CrossMatch has the following characteristics.
In contrast to the naive solution, CrossMatch greatly

improves performance and can be processed at a high.

speed.
CrossMatch requires constant space (per update) to de:
tect cross-similarity or group-similarity, and it conswsne
only a small quantity of resources.

Despite the high-speed processing, CrossMatch guaran-
tees correct results.

CrossMatch works efficiently for high-dimensional data
streams.

As a result, our detailed study provides many insights g

into the applicability and use of CrossMatch. In particular
CrossMatch proved crucial in producing significantly more

concise and informative patterns, without any prior knowl-

edge about the data.

17.
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Appendix

A Proof of Lemma 1

We assume that the warping path from célls, j) through(ie, je)
includes cell(i., je — 1) in the time warping matrix starting from
(is, 7s) and the score matrix. From Equation (4), we have

di,j,(layly — 1).

Fromb, = L(lz,ly) — L(lz,l, — 1) in Equation (5), we have

|z, —ysll = di, 5, (Lzs ly) —

l|lz:, — yj.ll = eL(lz,ly) — v(ie, Je)
—eL(lz,ly — 1) + v(ie,je — 1).

Similarly, if the warping path includes céll. — 1, j.) or (ic — 1, je —
1), we have

llzi, — Y5 |l = di, 5, (e, ly) — di, 5, (la = 1,1y)
= EL(lacvly) - U(iemje)
—eL(ly — 1,1y) +v(ie — 1, je).
i, = ys |l = di, 5, (e, ly) — di, 5, (la = 1,1y — 1)
=¢eL(lz,ly) — v(ie, Je)
—eL(ly — 1,1y — 1) + v(ie — 1,5 — 1).
From

llwi, —y5.ll = di, 5,(1,1) = & —v(is, js),

2. Each reported subsequence pair must be the optimal pair among
the set of overlapping subsequence pairs.

If a subsequence pair that satisfies the property of cross-similari

is not reported, another overlapping subsequence pair istegpo
where D(X[is : ie],Y[js : je]) —e(L(lz,ly) — lmin) is the
minimum value.

3.

Property 1:

CrossMatch reports a pair whebe(X [is : ie], Y [js : je]) —€lmin

is the maximum value among the overlapping subsequence pairs sat-
isfying V(X is : ie], Y[js : je]) > €lmin. From Lemma 1, the pair
obviously satisfies the property of cross-similarity. m]
Property 2:

From Lemma 1, the subsequence pair that minimizgsX [is

te], Y[js : Je]) —e(L(ls,ly) — lmin) is equivalent to the pair that
maximizesV (X [is : e], Y[js : je]) — €lmin. We assume that two
overlapping subsequence pairs that have different startisgiqus
(is,7s) Or (3%, 4%) share cell(i,5). D(X[is : i],Y[js : j]) is the
minimum distance in the alignment fro(as, js) to (3, j) of the time
warping matrix starting atis, js). Similarly, D(X 3/, : 4], Y'[5. : j])

is also the minimum distance in the time warping matrix starting at
(3%, 7%). Two pairs share a common warping path in the subsequent
alignment from(i, 5) to (., j.) because DTW computes the cumu-
lative minimum distance. Thus, the subsequence pair that minimizes
D(X[is:4),Y[js:4])—e(L(i—ts+1, j—js+1)—lmin) is equivalent

to the pair that maximize® (X [is : 4], Y[js : j])—€lmin. CrossMatch
selects the pair with the maximum score in each cell. Therefbee, t
matrices that CrossMatch prunes, i.e., time warping matricesatieat
absolutely not reflected in the score and the position matriog$he

the time warping and the score matrices, which have the same startinge pruned during the computation process, do not include ti@alp

position(is, js ), share the same warping path sifjeg —y; || is equal

in all corresponding cells. The sum of the weights on the warpath

is equal to the subsequence lengdtfi., [, ) as described in Section
4.2.1. LetP be the set of cells in the warping path. From Equation (4),
we have

vie,je) = eLllasly) = D |lzi =y
(i,)€P
—dij,(la;ly).
As aresult, we obtain the following equation for transformimng $core
into the DTW distance as regards the subsequence pair,

di,j, (e, ly) = eL(la, ly) — v(ic, je)

=eL(lz,ly)

o (14)
s.t.v(te,je) > 0.
On the other hand, from Equations (3) and (14), we have
di,j,(la,ly) < e(L(lasly) = lmin)
eL(lz;ly) — v(ie; je) < e(L(la;ly) — lmin)
U(ieaje) 2 glmi’nu (15)

From the second condition of Problem 1, it is clear that thénugdt
warping path from cell§is, js) through(ie, j.) in the time warping
matrix starting from(i, js) gives the minimum distance. From Equa-
tions (5) and (14), we also choose the same warping path ftom)

in the score and position matrices. Thus, we obtain the conditbns
Lemma 1, which are equivalent to those of Problem 1. m|

B Proof of Lemma 2

To demonstrate the correctness of CrossMatch, the followinge thre

properties should be satisfied.

pair. As a result, CrossMatch constantly reports the optimalfpain
the overlapping pairs. |

Property 3:

From property 2, the overlapping subsequence pairs share the same
starting position through the operation of CrossMatch. Wherstte
sequence pair satisfying Equation (15) is detected, CrossMhatatks
the pair with the same starting position in the candidate arfdiel
score of the detected pair is greater than that of the pairgncén-
didate array, CrossMatch updates the candidate pair by usengatin
with the maximum score. This process is performed for every pair wi
a different starting position. Thus, if a subsequence pair thasfisast
the property of cross-similarity is not reported, there is a@obetter
candidate pair. a

C Proof of Lemma 3

The naive solution has to maintaid(nw + mw) time warping ma-
trices. It updates th®(w) values between; and the corresponding
elements ot (i.e., the elements from; — ., to y;) in O(nw) matrices

if we receivex; at time-tick:. Similarly, it updates th© (w) values in
O(mw) matrices if we receivg; at time-tickj. Therefore, it requires
O(nw? 4+ mw?) time per time-tick. Since the naive solution main-
tains two arrays ofv numbers for each matrix, it requires, in total,
O(nw? + mw?) space. o

D Proof of Lemma 4

CrossMatch maintains two matrices (i.e., score and position raajric
It updates theD (w) values if we receive; or y;. Each matrix main-

1. Any reported subsequence pairs must satisfy the property of crostins two arrays ofv numbers. Thus, it require®(w) time (per up-

similarity (i.e., Definition 1).

date) and space. m]
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E Proof of Lemma 5

The sampled sequences compress the original sequences to the size
of 1/T. CrossMatch updates th@(w/T") values, which requires
O(w/T) time (per update) and space. a

F Proof of Lemma 6

Given three sequencé$, Y, andZ whose lengths are;, ns, andns,
the naive solution has to maintain(n; w+new+nsw) time warping
matrices and updates tii&(w?) values for each matrix. Therefore, it
requiresO (n1w3+n2w3+nszw?) time per update. Since the naive so-
lution maintains two planes af? numbers for each matrix, it requires
O(n1w3+n2w®+nzw?) space. O

G Proof of Lemma 7

We assume that the warping path from celfs, js, ks) through
(e, je, ke) includes cell(ie — 1, je —1, ke — 1) in each time warping
and score matrix. From Equation (12) abwg = L(ls,ly) — L(ls —
1,1y, —1,1.—1) in Equation (13), we have
llwi, — yill + llys. —zr N + |12k, =2l

=di g, k(e by, 1) —di gk, (le = 1,0y — 1,1. — 1)
EL(lzv lyv lz) - U(i67j67 ke)
—eL(lo—1,1y—1,1,—1) + v(ic—1,je—1, ke —1).
In the other six neighboring cells, similar equations hold reuay the
distance value between three elements. From

s, =ys | + llyz. — 2| + |lz6, =24, ]|

= diujs,kv,-(17 17 1) =€ U(isijv kS)?
the time warping and the score matrices, which have the startisig po
tion (is, js, ks ), share the same warping path. The sum of the weights
on the warping path is equal to the subsequence lehéth, [, 1.).
From Equation (12), we have

v (ie,Jes ke)

=eL(la,ly,l)— Y lei—ysll+lys—zkll+]l26 —il]
(i,5,k)EP

eL(layly,l2) — di, 5,5, (la, Ly, 12).

Note thatP represents the set of cells in the warping path. Therefore,
we obtain the following equation,

di, ik (z,ly,l2) =eL(lz, ly, 1) — v(ie, je, ke)- (16)
Moreover, from Equations (11) and (16), we have
'U('ieujmke) > elmin. (17)

From Equation (16), the subsequences that have the maximum score
are equal to the subsequences that have the minimum DTW distance.
We choose the same warping path from célls, j5, k) through

(ie, Je, ke) in the time warping and the score matrices. Thus, we ob-
tain the condition of Lemma 7. a

H Proof of Lemma 8

CrossMatch maintain8w? arrays (i.e., previous and current planes,
which havew * w arrays per plane) for sequencEs Y, andZ in the
score and position matrices. It upda®@éw?) numbers to identify the
optimal subsequences if we receivg at time-tickz, y; at time-tick

j, or z;, attime-tickk. Therefore, it require® (w?) time (per update)
andO(w?) space. ]



