
BRAID: Stream Mining through Group Lag Correlations

Yasushi Sakurai
∗

NTT Cyber Space Laboratories
sakurai.yasushi@lab.ntt.co.jp

Spiros Papadimitriou
†

Carnegie Mellon University
spapadim@cs.cmu.edu

Christos Faloutsos
†

Carnegie Mellon University
christos@cs.cmu.edu

ABSTRACT
The goal is to monitor multiple numerical streams, and
determine which pairs are correlated with lags, as well as
the value of each such lag. Lag correlations (and anti-
correlations) are frequent, and very interesting in practice:
For example, a decrease in interest rates typically precedes
an increase in house sales by a few months; higher amounts
of fluoride in the drinking water may lead to fewer den-
tal cavities, some years later. Additional settings include
network analysis, sensor monitoring, financial data analysis,
and moving object tracking. Such data streams are often
correlated (or anti-correlated), but with an unknown lag.

We propose BRAID, a method to detect lag correlations
between data streams. BRAID can handle data streams of
semi-infinite length, incrementally, quickly, and with small
resource consumption. We also provide a theoretical analy-
sis, which, based on Nyquist’s sampling theorem, shows that
BRAID can estimate lag correlations with little, and often
with no error at all. Our experiments on real and realis-
tic data show that BRAID detects the correct lag perfectly
most of the time (the largest relative error was about 1%);
while it is up to 40,000 times faster than the naive imple-
mentation.

1. INTRODUCTION
The processing and mining of data streams have attracted

on increasing amount of interest recently. Data streams ap-

∗This work was done while this author was visiting Carnegie
Mellon University.
†This material is based upon work supported by the
National Science Foundation under Grants No. IIS-
0083148, IIS-0113089, IIS-0209107 IIS-0205224 INT-
0318547 SENSOR-0329549 EF-0331657IIS-0326322 CNS-
0433540 by the Pennsylvania Infrastructure Technology Al-
liance (PITA) Grant No. 22-901-0001. Additional funding
was provided by Intel and Northrop-Grumman Corporation.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation, or other funding parties.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2005 June 14-16, 2005, Baltimore, Maryland, USA
Copyright 2005 ACM 1-59593-060-4/05/06 ...$5.00.

pear in a variety of settings, such as environmental, medical
and socioeconomic systems. Typical data-stream applica-
tions include network analysis, sensor monitoring, financial
data analysis, and moving object tracking. In all these situ-
ations, the data sources generate data with no end in sight,
making it impossible to store all the historical data. More-
over, we want fast response times, in ‘any time’ fashion.

There are many, fascinating research problems in such set-
tings, as we survey later, like clustering [20], summarization
[34], and forecasting [33, 30]. Here we focus on a less-studied
problem, namely on lag correlations. Our goal is to mon-
itor k numerical sequences, X1, . . ., Xk, and to determine
automatically all the pairs of sequences that have a lag cor-
relation. That is, we want to report all the pairs of sequences
Xi and Xj , for which sequence Xi follows sequence Xj , with
an unknown, arbitrary, lag l. We also want BRAID to report
the lag l for each such pair of sequences.

Let’s focus on two sequences first (k = 2), and then we
generalize for more. Without loss of generality, we can as-
sume that the two sequences have the same length n, by
zero-padding the shortest. Then, the sub-problem we want
to solve is as follows:

Problem 1 (Pair-wise Lag Correlation). Given two
co-evolving sequences of equal length n= 1, 2, . . ., determine,
at any point of time, two things: (a) whether there is a
lag correlation between them, and (b) if yes, what is the lag
length l.

The full problem we want to solve is as follows:

Problem 2 (Group Lag Correlation). Given k co-
evolving sequences of equal length n, determine, at any point
of time, which pairs have a lag correlation, and report all
such pairs, as well as the corresponding lags.

Intuitively, two sequences have a lag correlation of l if they
look very similar when one is delayed by l time-ticks. The
formal definition of the lag correlation is given in Definition 1
(Section 3.1). Figure 1 (a) illustrates two lag-correlated se-
quences X and Y , with lag l=1300 time-ticks. Figure 1 (b)
shows the correlation coefficient R(l) of X and Y as a func-
tion of the lag l (=0,1, . . .). The plot shown in Figure 1 (b)
is called the cross-correlation function (CCF) in time-series
literatures. We will give the exact definitions for all these
symbols and terms later.

We continue the discussion focusing on two streams, for
simplicity. If the sequences X and Y were static, the prob-
lem would be trivial: simply compute the CCF (for lag l=0,
1, 2, . . .) and report the lag l, for which the CCF is max-
imized. However, when X and Y continuously increase in

17

18
19

20
21

22

23
24

25
26

27

0 5000 10000 15000

V
al

ue

Time

16

18

20

22

24

26

28

0 5000 10000 15000

V
al

ue

Time

-0.2

0.0

0.2

0.4

 0 500 1000 1500 2000
C

or
re

la
tio

n
Lag

(a) (b)

Figure 1: Example of correlated sequences. (a) Two
sequences X and Y , with X lagging Y by 1300 time-
ticks. (b) Their cross correlation function (CCF),
peaking at l=1300.

length, the problem is challenging. We need a method which
will monitor X and Y , and whenever the user wants, the
method should determine whether there is a lag correlation,
and if yes, the value l of the lag. Specifically, we need a
method that has the following characteristics:

• ‘Any-time’ processing, and fast. The computation time
per time tick should be sub-linear (and, ideally, con-
stant) on the length n of the sequences.

• Nimble: The memory space requirement should also
be sub-linear on the length n.

• Accurate: Given that the exact results require too
much space and time, we need approximations. Such
approximation should introduce small error.

We propose BRAID, a lag capture method for two or more
data streams. To our knowledge, BRAID is the first to pos-
sess all the above characteristics. The idea is to use careful
approximations, exploiting the Nyquist sampling theorem.
The net effect is that BRAID has dramatically better per-
formance in terms of speed and memory, while it maintains
excellent accuracy. Our experiments on real and realistic
streams show that BRAID is up to 40,000 times faster than
the straightforward lag computation, while maintaining rel-
ative error of 1% or less.

The rest of the paper is organized as follows. Section 2
gives related work on data streams and stream mining. Sec-
tion 3 describes our method, BRAID. We show how lags of
data streams can be captured. Section 4 presents an en-
hanced algorithm for better accuracy. Section 5 gives our
theoretical analysis for BRAID. Section 6 reviews the results
of the experiments, which clearly show the effectiveness of
BRAID. Section 7 is a brief conclusion.

2. SURVEY
Time-series and sensor networks have been attracting much

interest recently. Although there are numerous publications
in these research topics, we have not seen any method for
that can automatically determine arbitrary lag correlations.
We provide a survey of the related literatures.

2.1 Indexing, compression, and DSMS
For indexing of time-series data, Agrawal et al. [2] pro-

posed to use the DFT (Discrete Fourier Transform) to ex-
tract features for indexing, with R*-trees as the underlying
spatial access method. Follow-up work examined several
related problems, including subsequence matching [13], the
Adaptive Piecewise Constant Approximation (APCA) [24],
indexing for Dynamic Time Warping (DTW) [23], similar-
ity query processing for multi-dimensional data streams [26].
Feature extraction, summarization and lossy compression
are closely related, with powerful tools like wavelets [18, 19]
and random projections [11, 15]. Remotely related is also
the work on data stream management systems (DSMSs).
Sample systems include Aurora [1], Stream [29], Telegraph
[7] and Gigascope [9] OSCAR [8]. Algorithmic work includes
query processing [28], scheduling [3, 6], load shedding [10,
31].

2.2 Pattern discovery - single sequence
Guha et al. [20] have proposed an algorithm that solves

the k-median problem for data streams in a single pass.
Domingos et al. [12] have presented an algorithm for con-
structing decision trees. The work in [22, 31] focuses on
streams with concept drifting. Zhu et al. [35] study burst
detection in streams. AWSOM [30] is one of the first stream-
ing methods for forecasting, in a single time sequence.

2.3 Pattern discovery - multiple sequences
Multiple streams have also attracted significant interest.

Ganti et al. [16] propose a generic framework for stream-
ing mining. Zhu et al. [34] focus on monitoring multiple
streams in real time. They use the “short window” Fourier
Transform to summarize streams, and then compute all the
pairwise correlations. However, the method will clearly miss
any lag correlation that is longer than the window w of the
short-window Fourier Transform. MUSCLES [33] applies
multi-variate linear regression on multiple co-evolving time
sequences; moreover, it expects the user to specify a con-
stant, upper limit m on the longest possible lag that it will
consider (the default is m=5).

In conclusion, none of the above methods satisfies the
specifications that we listed in the introduction.

3. PROPOSED METHOD

3.1 Preliminaries
A data stream X is a discrete sequence of numbers { x1,

. . ., xt, . . ., xn }, where xn is the most recent value. Notice
that n increases with every new time-tick.

The definition of the correlation coefficient R(0) between
two time sequences X and Y of equal length n and zero lag,
is a traditional one, known as Pearson’s ρ coefficient:

ρ = R(0) =

P
t((xt − x̄) ∗ (yt − ȳ))

σ(x) ∗ σ(y)
(1)

where x̄, ȳ denote the mean of X and Y , respectively. For
lag l (l ≥ 0), we consider only the common part of X and
the shifted Y ; that is, only n− l time ticks, and the equation

Symbol Definition

n Length of sequences
m Maximum lag (e.g., m = n/2)
h Level of BRAID (0, . . . , �log m�)
l Lag (0, . . . , m)
xt Value of a sequence X at time t = 1, . . . , n
yt Value of a sequence Y at time t = 1, . . . , n
Axh(t), Ayh(t) Disjoint window average of each sequence
R(l) Correlation of X and Y for the lag l
Rh(l) Correlation coefficient computed from

window averages Xh and Yh at the lag l
ˆR(l) Approximate correlation for the lag l

γ Threshold for correlation coefficients
k Number of sequences

Table 1: Symbols and definitions.

becomes

R(l) =

Pn
t=l+1(xt − x̄)(yt−l − ȳ)qPn

t=l+1(xt − x̄)2
qPn−l

t=1 (yt − ȳ)2
(2)

x̄ =
1

n − l

nX
t=l+1

xt, ȳ =
1

n − l

n−lX
t=1

yt

where R(l) denotes the correlation coefficient, when X is
delayed by l. Notice that we can easily handle the symmetric
case; that is, when Y is the one delayed.

We are interested in high absolute values of R(l). Thus,
we call score at lag l the absolute value of R(l), that is

score(l) = |R(l)| (3)

Definition 1 (Lag Correlation). Two sequences X
and Y have a lag correlation of l, and specifically, that X
lags Y by lag l, if

1. the score (=absolute value of the correlation coefficient
) between xt and yt−l is above a threshold γ, say γ =
0.4, and is actually a local maximum.

2. and this is the earliest such maximum, if more maxima
exist.

The first requirement is straightforward. For the second
requirement, the reasoning is more subtle: if the two se-
quences are periodic with the same period T , (which is often
the case with real sequences – say, daily, or yearly periodici-
ties), there will be many local maxima (l, l+T , l+2∗T , . . .).
Clearly, the earliest of these lags is the most important.

Another subtle point from time series analysis is that the
estimate R(l) for large values of the lag l ≈ n are undesir-
able, because the original and shifted time sequences will
have too few overlapping time-ticks. Thus, following rec-
ommendations from the time series analysis [4], we restrict
the maximum lag m to be n/2. Notice that even with this
restriction, the maximum considered lag m increases with
time, since we made it a function of the sequences’ length.
This changing nature of m creates subtle, but hard problems
for all the earlier methods that we mentioned in the survey.

3.2 Main ideas behind BRAID
As we mentioned earlier, if we had infinite space and time,

the problem would be trivial:
Naive Solution. At time n, we would access all the values

of X and Y , we would compute the CCF, that is, the R(l)

for all values of the lag l (=0,1, . . .), and we would choose
the earliest maximum score above γ, or report that there is
no lag correlation.

Our solution is based on the three major steps, each de-
scribed next.

Observation 1. The correlation coefficient R() is an al-
gebraic measure[21]. That is, it can be computed incremen-
tally.

More specifically, all we need is some sufficient statistics
(namely, sums, sum of squares, sum products); then, R can
be easily computed. Let Sx(1, n) be the sum of X of length
n (i.e., Sx(1, n) =

Pn
t=1 xt), and Sxx(1, n) be the sum of

the squares of X (i.e., Sxx(1, n) =
Pn

t=1 x2
t). Sxy(l) means

the inner-product for X and the shifted Y :

Sxy(l) =

nX
t=l+1

xtyt−l (4)

We shall refer to all these values collectively as sufficient
statistics . Given our sufficient statistics, the correlation
coefficient R(l) is obtained by:

R(l) =
C(l)p

V x(l + 1, n) · V y(1, n − l)
(5)

where C(l) is the covariance of X and Y :

C(l) = Sxy(l) − Sx(l + 1, n) · Sy(1, n − l)

n − l

and V x(l + 1, n) means the variance of the subsequence of
X, starting from t = l + 1:

V x(l + 1, n) = Sxx(l + 1, n) − (Sx(l + 1, n))2

n − l
(6)

The variance V y(1, n − l) of Y is computed similarly. In
conclusion, for the given value of lag l, we only need to keep
track of five numbers, the sufficient statistics, because they
are enough to help us estimate the correlation R(l), at any
point of time.

Although important, this observation is not enough to
have a streaming method: It still needs linear time to com-
pute the cross-correlation function (CCF) between the two
given sequences X and Y . To reduce the lag-estimation
time, we introduce an approximation:

Observation 2 (Geometric Probing). We compute
(probe) the CCF at values of the lag l that form a geomet-
ric progression. Thus, we need only O(log n) numbers to
estimate the CCF.

Specifically, instead of computing R(l) for every possible
value of the lag l, we propose to keep track of only a ge-
ometric progression of the lag values: l= 0,1, 2, 4, . . ., 2i,
. . .. The justification is that it achieves a dramatic reduction
in computation time, since we need only O(log n) numbers
to keep track of, instead of O(n) that the “Naive Solution”
requires. As we show later (see Theorem 4), this approxi-
mation introduces little error, and occasionally zero error.
The intuition is that our method will give good accuracy for
small l, exactly because for small l’s we have many points
to interpolate; it may give a larger error for large lag l, but
the relative error will probably be small.

There is only one remaining problem: The space required
grows linearly with the length n. The reason is subtle: in

(a-1) (b-1) (c-1)

(a-2) (b-2) (c-2)

Figure 2: Illustration of BRAID. (a-1) (a-2) The “Naive Solution” computes all values of the lag l = 0, . . .,
without smoothing. (b-1) (b-2) Using all versions of smoothed sequences allows a partial redundancy. (c-1)
(c-2) BRAID keeps track of only a geometric progression of lag values.

order to have the ability to compute the correlation coeffi-
cient R(l) at any time t (t = n, n + 1, . . .) we need to keep
a sliding window of size l. Since l grows geometrically up to
m = n/2, eventually we need O(n) space.

Observation 3. We use the smoothed version of sequences
to estimate the CCF. Thus, we achieve O(log n) space and
O(1) time by geometric probing and sequence smoothing.

We propose to solve the above problem with our third
and final idea, an approximation: Instead of operating on
the original time sequences, we also compute their smoothed
version, by computing the means of non-overlapping win-
dows. The window widths will be powers of g=2, although
any other number would also be acceptable. Let X be the
original time sequence, and Axh be its smoothed version
with windows (window average) of length 2h. That is, Ax0

is the original sequence; Ax1 consists of n/2 ticks, with the
pair means; Ax2 has n/4 ticks, with the quadruplet means,
and so on. At time n, we need O(log n) levels; for each level,
we compute the sufficient statistics. Axh and its sufficient
statistics need to be computed every 2h time ticks. On aver-
age, we require O(1) time to update the sufficient statistics

since
Plog m

h=0 1/2h ≈ 2.
Not only ‘smoothing’ saves space, but we can further prove

that it results into a small or even zero error, under certain

assumptions. Formally we approximate: R(l) ≈ R̂1(l/2),
and in general

R(l) ≈ R̂h(l/2h) (7)

where R̂h() is the correlation coefficient of the h-level smoothed

sequences, and R̂0() ≡ R(). Lemma 1 in Section 5.1.1 gives
a theoretical justification.

3.3 BRAID
As we mentioned, the correlation R(l) of Equation (5)

can be calculated incrementally. Moreover, we operate on
increasingly coarser (smoother) representations of the se-
quences, by using window averages, with increasing window
size. Figure 2 (b-1) shows an example of the window aver-
age. We compute the average of data points falling within

a window, and organize all the windows hierarchically. The
window size increases as the level of the hierarchy becomes
higher.

BRAID is a lag capture method for data streams. Fig-
ure 2 (c-1) illustrates how BRAID uses the window aver-
ages. The colored (shaded, in B/W) boxes in this figure
represent the window averages BRAID uses for computing
correlation coefficients and capturing lags. BRAID ignores
the white ones and does not calculate their window averages.
BRAID maintains one value for each level in the figure, with
one exception: the bottom level has double the number of
windows.

BRAID approximates the correlation coefficients R(l) (l =
1, 2, 4, 8, . . .) of the two sequences from their window aver-
ages. It incrementally computes window averages for every
level and correlation coefficients for several lags, as shown
in Figure 2 (c-2) (circles, squares, triangles etc). To obtain
a smoother curve to find the local maximum of the CCF,
we can use an off-the-shelf interpolation method. We chose
cubic splines [14], but the choice of interpolation method is
orthogonal to BRAID.

We give some examples to explain how BRAID approx-
imates the correlation coefficients and captures the lag for
which the sequences are correlated. Figure 2 (a) illustrates
the “naive” method: Figure 2 (a-1) denotes that we keep the
values for all the time ticks (shaded). Figure 2 (a-2) shows
an illustration of the CCF (cross correlation function) for
two fictitious sequences. We need to capture the lag with a
high correlation coefficient.

Figure 2 (b) illustrates a non-recommended method, which
is only useful for explanations. Figure 2 (b-2) illustrates the
correlation coefficients calculated from all window averages,
that is, all the shaded/colored rectangles in Figure 2 (b-1).
The window averages allow a partial redundancy.

Figure 2 (c) shows the proposed BRAID. Here, we elim-
inate the redundant points, favoring the smallest window,
which should give more accurate results. Figure 2 (c-2)
shows the correlation coefficients obtained from the selected
window averages shown in Figure 2 (c-1). In contrast with
the smaller lags, the larger lags are sparse because they

Algorithm BRAID
input: new values at t for k sequences X1, . . . , Xk
output: lag correlations for sequence pairs if any
for each sequence X do

// Update the sums and sum squares of X
SumKeeping(X);

for each pair of sequence X and Y do
// Update the products of X and Y
ProductKeeping(X, Y);
if output is required at t then

// Spot a lag correlation if any
LagDetecting(X, Y);
report a lag correlation if any;

endif
endfor

Algorithm LagDetecting(X, Y)
// Compute the correlation coefficient of X and Y
compute R0(0, t);
delete R0(0, t − 1);
// Compute the correlation coefficient for the level h
for h = 0 to �log m� do

if t mod 2h = 0 then
compute Rh(1, th);
delete Rh(1, th − 1);

else
break;

endif
endfor
// Fit splines on the graph Rh(l/2h) vs l
// The series of l is a geometric progression
// l = {0,1,2,4,. . . ,2h,. . . ,2�log m�}
R̂h := Spline(R0(0), R0(1/20),R1(2/21),. . . ,Rh(l/2h),. . .);

extract the optimal lag from R̂h (if any);

Figure 3: Algorithm for detecting lag correlations.

are computed from the window averages for higher levels.
Thus, we use a cubic spline to interpolate the missing cor-
relation coefficients between the approximated coefficients.
It effectively estimates that the correlation coefficients vary
between these lags. Finally, we can see the lag correlation
(if any) from the local maximum of the cubic spline curve
(solid line in Figure 2 (c-2)).

3.3.1 Algorithm
Before introducing our algorithm, we give some defini-

tions. Let Axh(t) be the window average at time tick t for
level h. Axh(t) is computed as:

Axh(t) =
Axh−1(2t − 1) + Axh−1(2t)

2
(8)

t = 1, . . . , n/2h

with Ax0(t) ≡ xt. We are now able to define the “sufficient
statistics” for the window averages. The sum of Axh and
the sum of the squares on Axh at t are obtained as:

Sxh(1, t) = Sxh(1, t − 1) + Axh(t)
Sxxh(1, t) = Sxxh(1, t − 1) + (Axh(t))2

(9)

The inner-product of Axh and Ayh for lag l at t is incre-
mentally updated every 2h time ticks.

Sxyh(l, t) = Sxyh(l, t − 1) + Axh(t) · Ayh(t − l) (10)

By using the obtained sufficient statistics, we can derive the
correlation coefficient Rh(l, t) as:

Rh(l, t) =
Ch(l, t)p

V xh(l + 1, t) · V yh(1, t − l)
(11)

Algorithm SumKeeping(X)
// Compute sum and sum square
compute Sx0(1, t), Sx0(2, t), Sxx0(1, t), Sxx0(2, t);
delete Sx0(1, t − 2), Sx0(2, t − 1), Sxx0(1, t − 2), Sxx0(2, t − 1);
for h = 1 to �log n� do

if t mod 2h = 0 then
// Compute window average for h
compute Axh(th);
delete Axh−1(th−1 − 3), Axh−1(th−1 − 2);
// Compute sums and sum squares for h
compute Sxh(1, th), Sxh(2, th),

Sxxh(1, th), Sxxh(2, th);
delete Sxh(1, th − 2), Sxh(2, th − 1),

Sxxh(1, th − 2), Sxxh(2, th − 1);
else

break;
endif

endfor

Algorithm ProductKeeping(X, Y)
// Compute inner-products
compute Sxy0(0, t), Sxy0(1, t);
delete Sxy0(0, t − 1), Sxy0(1, t − 1);
for h = 1 to �log n� do

if t mod 2h = 0 then
// Compute inner products for h
compute Sxyh(1, th);
delete Sxyh(1, th − 1);

else
break;

endif
endfor

Figure 4: Algorithm for updating window averages
and their sufficient statistics.

where

Ch(l, t) = Sxyh(l, t) − Sxh(l + 1, t) · Syh(1, t − l)

t − l

V xh(l + 1, t) = Sxxh(l + 1, t) − (Sxh(l + 1, t))2

t − l

The basic algorithm for incremental computations is shown
in Figures 3 and 4. In these figures, th denotes the time tick
for level h (i.e., th = t/2h).

For each incoming data point, we first incrementally up-
date the window averages and their sufficient statistics for
every level (See Figure 4). We then approximate the corre-
lation coefficient of the two sequences at l, R(l, t), from their
window averages (See Figure 3). By using multiple window
sizes, we can compute the correlation coefficients for only a
geometric progression of lags l:

l = {0, 1, 2, 4, 8, . . . , 2h, . . . , 2�log m�}
The missing correlation coefficients caused by the approxi-
mation are estimated by interpolation with a cubic spline.
After interpolation, we can use any known method to find
the local maxima - we chose Brent’s method [5]. If a high
enough local maximum exists, we report the corresponding
lag.

4. ENHANCED BRAID
In Figures 3 and 4, the number of window averages that

BRAID computes for each level, is 1. In fact, as described,
BRAID is extremely nimble: for example, for two sequences
of size ≈ 220 (1 million long each), it requires about 5 *

(a)

(b)

Figure 5: Illustration of the enhanced BRAID (b =
4). (a) The enhanced algorithm uses the colored
windows. (b) It computes four coefficients for each
level.

log 220=5*20 = 100 float numbers, which is about 800 bytes
- way less than 1KB!

The question is what can we do in the highly likely case
that larger memory is available. The proposed solution is to
enhance our probing scheme, so that we can probe in many
more places (= lags), while still using O(log n) space.

To make our probing denser, one idea would be to have
windows of powers of g, where g �= 2. A simpler idea, that we
propose and implemented, is the use a mix of arithmetic plus
geometric probing. So far, BRAID uses only one window at
each smoothing level (0, 1, . . . , h). We propose to use b > 1
such windows, say, b = 4 instead (See Figure 5).

The algorithm shown in Section 3.3.1 keeps one number
for each level, that is b = 1, with one exception, namely that
the bottom level has 2b coefficients. While computing the
correlation coefficients at l, we end up sampling the CCF in
a mixture of geometric and arithmetic progressions:

l = {0, 1, 2, . . . , 2b − 1; 2b, 2(b + 1), . . . , 2hi, . . .}
(1 ≤ i ≤ b; 0 ≤ h ≤ �log(m/b))

Figure 5 shows an example of the enhanced BRAID of b = 4.
We compute the correlation coefficients at l:

l = {0, 1, . . . , 7; 8, 10, 12, 14; 16, 20, 24, 28; 32, 40, . . .}
The enhanced algorithm for incremental computation is

shown in Figures 6 and 7. If b = 1, these figures are abso-
lutely equal to Figures 3 and 4 in Section 3.3.1.

5. THEORETICAL ANALYSIS
In this section we give a theoretical analysis to show the

accuracy and complexity of BRAID. Again, we focus on two
sequences X and Y . To simplify the discussion, and without
loss of generality, we assume that the given sequences X and
Y are normalized to zero mean and unit standard deviation
(i.e., x̄ = ȳ = 0 and σ(x) = σ(y) = 1).

5.1 Accuracy
Our upcoming experiments show that we can closely es-

timate lag correlations despite our two approximations, the
geometric probing and the smoothing. It turns out that this
can be explained. In fact, if X and Y are “smooth” enough,
then the errors introduced by smoothing and by probing
are small. In fact, the probing error can even be zero, if

Algorithm BRAID
input: new values at t for k sequences X1, . . . , Xk
output: lag correlations for sequence pairs if any
for each sequence X do

// Update the sums and sum squares of X
SumKeeping(X);

for each pair of sequence X and Y do
// Update the products of X and Y
ProductKeeping(X, Y);
if output is required at t then

// Spot a lag correlation if any
LagDetecting(X, Y);
report a lag correlation if any;

endif
endfor

Algorithm LagDetecting(X, Y)
// Compute the correlation coefficient of X and Y
for i = 0 to b − 1 do

compute R0(i, t);
delete R0(i, t − 1);

endfor
// Compute the correlation coefficient for the level h
for h = 0 to �log(m/b)� do

if t mod 2h = 0 then
for i = b to 2b − 1 do

compute Rh(i, th);
delete Rh(i, th − 1);

endfor
else

break;
endif

endfor
// Fit splines on the graph Rh(l/2h) vs l. The series of l is
// a mixture of geometric and arithmetic progressions.

R̂h := Spline(R0(0), R0(1/20),. . . ,Rh(l/2h),. . .);

extract the optimal lag from R̂h (if any);

Figure 6: Enhanced algorithm for detecting lag cor-
relations.

the input sequences each has a Nyquist frequency. Next we
elaborate on each type of error.

5.1.1 Smoothing
Informally, the intuition is the following:

Observation 4. For sequences with low frequencies, smooth-
ing introduces only small error.

Let xt be the values of the original sequence X at time t
(t = 1, . . . , n), and x̂th be the smooth version of xt (th =

t/2h�). Given the Haar wavelet coefficients of X, wi (i =
1, . . . , n), then the error in the approximation of Equation (11)
depends on the energy in the high frequencies.

nX
t=1

(xt − x̂th)2 =
X

i>n/2h

w2
i (12)

Since very few of the wavelet coefficients of real data sets are
often significant and a majority are small [18], Equation (12)
shows that the error is limited to a very small value for most
of practical data.

Theorem 1. Let R be the correlation coefficient between
sequences X and Y , then

R = 2h
X
th

x̂th ŷth + ΔC (13)

Algorithm SumKeeping(X)
// Compute sum and sum square
compute Sx0(1, t), Sxx0(1, t);
delete Sx0(1, t − 2b), Sxx0(1, t − 2b);
for i = 2 to 2b do

compute Sx0(i, t), Sxx0(i, t);
delete Sx0(i, t − 1), Sxx0(i, t − 1);

endfor
for h = 1 to �log n� do

if t mod 2h = 0 then
// Compute window average for h
compute Axh(th);
delete Axh−1(th−1 − 2b − 1), Axh−1(th−1 − 2b);
// Compute sums and sum squares for h
compute Sxh(1, th), Sxxh(1, th);
delete Sxh(1, th − 2b), Sxxh(1, th − 2b);
for i = b + 1 to 2b do

compute Sxh(i, th), Sxxh(i, th);
delete Sxh(i, th − 1), Sxxh(i, th − 1);

endfor
else

break;
endif

endfor

Algorithm ProductKeeping(X, Y)
// Compute inner-products
for i = 0 to 2b − 1 do

compute Sxy0(i, t);
delete Sxy0(i, t − 1);

endfor
for h = 1 to �log n� do

if t mod 2h = 0 then
// Compute inner products for h
for i = b to 2b − 1 do

compute Sxyh(i, th);
delete Sxyh(i, th − 1);

endfor
else

break;
endif

endfor

Figure 7: Enhanced algorithm for updating suffi-
cient statistics.

where

ΔC =
X

t

(Δxtŷth + Δytx̂th + ΔxtΔyt)

Δxt = xt − x̂th

Proof. Since xt = x̂th + Δxt, the covariance is

C =
X

t

(x̂th ŷth + Δxtŷth + Δytx̂th + ΔxtΔyt)

If X and Y are normalized, σ(x) = σ(y) = 1. Thus, we have

R =

P
t xtyt

σ(x) ∗ σ(y)
= 2h

X
th

x̂th ŷth + ΔC

Lemma 1. Let Rh be the correlation coefficient between x̂
and ŷ, and let σ̂2(x) =

P
th

x̂2
th

, then

R ≈ Rh =

P
th

x̂th ŷth

σ̂(x) ∗ σ̂(y)
(14)

Proof. By Equation (12), we can see xt >> Δxt, then
R >> ΔC, and σ2(x) ≈ 2hσ̂2(x). Therefore, we have R ≈
Rh.

5.1.2 Lag probing
The second source of error is the fact that BRAID probes

a small subset of the actual values of the lag l. It turns out
that, for smooth enough sequences, this introduces little, or
even no error.

Observation 5. Let fX and fY be the Nyquist frequen-
cies of X and Y , and let l be the lag length for X and
Y . Then BRAID will find the lag correlations perfectly, if
0 ≤ l < lR where

lR =
2b

fR
fR = min(fX , fY)

BRAID uses coarse sequences to find lag correlations ef-
ficiently. To avoid missing lag correlations, we also need a
reliable criterion upon which to check the accuracy. Before
showing the criterion, we need to describe some theorems.

Theorem 2 (Sampling Theorem). If a continuous func-
tion contains no frequencies higher than fhigh, it is com-
pletely determined by its value at a series of points less than
1/2fhigh apart.

Proof. See [27].

In the theorem, the minimum sampling frequency, fNq =
2fhigh, is called the Nyquist frequency.

We next show the relationship between CCF and the Fourier
transform, known as the cross-correlation theorem.

Theorem 3 (Cross-Correlation Theorem). Let F
be the Fourier transform, and R(l) be the CCF of X and Y ,
then we have

FR = FXF∗
Y (15)

where ‘*’ denotes the complex conjugate.

Proof. See [27].

Based on Theorems 2 and 3, we can derive the following
theorem.

Theorem 4. Let fX and fY be the Nyquist frequencies
of X and Y , and let fR = min(fX , fY). Then R(l) is per-
fectly reconstructed from its samples taken uniformly if the
sampling (i.e., ‘probing’) frequency is at least fR.

Proof. For X and Y , we have

FX(f) = 0 (f > fX/2)

FY (f) = 0 (f > fY /2)

then

FR(f) = 0 (f > fR/2, fR = min(fX , fY))

Therefore, fR is the Nyquist frequency of R(l), i.e., R(l)
can be reconstructed perfectly if the sampling frequency is
fR.

Since probing by BRAID is not uniform, we need a new
lemma. As always, we assume that the stream rate is one
measurement per time unit.

Lemma 2. Given b coefficients for each level, BRAID will
have no error in the estimation of a lag correlation of l if

2h ≤ 1

fR
(16)

where h is the level that covers the lag correlation of l:

h =

j
log2
l
b
� (l ≥ b)

0 (l < b)
(17)

Proof. Theorem 4 shows that no information is lost if a
signal is sampled at fR. Therefore, R(l) can be determined
if the interval, 2h, is less than or equal to 1/fR.

Lemma 3. BRAID spots lag correlations of 0 ≤ l < lR:

lR =
2b

fR
(18)

Proof. Lag correlations can be detected if the following
condition is satisfied:

l < 2b & 1 ≤ 1/fR,
or l < 4b & 2 ≤ 1/fR,

· · ·
or l < 2h+1b & 2h ≤ 1/fR.

R(l) can be determined if 0 ≤ l < 2h+1b ≤ 2b/fR.

5.2 Complexity
In this section, we discuss the complexity of BRAID and

show that BRAID can efficiently estimate lag correlations.
Let m be the maximum lag we want to capture. Suppose

that m is proportional to the sequence length n.

Lemma 4. For every pair of sequences, the “Naive Solu-
tion” requires space O(n) and time O(n).

Proof. When xn and yn arrive, it computes the correla-
tion coefficient R(l, n) for each lag l (l = 0, 1, . . . , m). To
compute R(l, n), it keeps yt (t=n−m,. . . ,n) and xn. Thus,
it needs to store 2m+3 values and update the m+1 values.
Since m is proportional to n, it requires space O(n) and time
O(n).

Lemma 5. For each pair of sequences, the proposed BRAID
requires O(log n) space.

Proof. BRAID needs to maintain the (log m+2) correla-
tion coefficients since the bottom level has double the num-
ber of coefficients. To compute the correlation coefficients,
BRAID keeps the log m + 1 values for X and (log m + 2)
values for Y . This requires space O(log n). While BRAID
needs to maintain sufficient statistics, they are the same
complexity. Therefore, the space complexity of BRAID is
O(log n).

Lemma 6. The proposed BRAID requires O(1) amortized
time per time-tick for updating sufficient statistics.

Proof. The window average needs to be computed ev-
ery 2h time ticks (h=1,. . . ,log m). On average, BRAID
computes one value for each incoming data point, becausePlog m

h=1 1/2h ≈ 1. Similarly, the sufficient statistics can be
updated in O(1) time. Therefore, the amortized time com-
plexity of BRAID is O(1).

When output is required, BRAID employs interpolation
to closely estimate lag correlations.

Lemma 7. The proposed BRAID requires O(log n) time
for interpolating.

Proof. The cubic spline for the geometric probing re-
quires O(log n) time. See [14].

BRAID can retain more than one correlation coefficient
for each level, that is b ≥ 1. Since b is a small constant (i.e.,
b � n), the space required is still O(log n), and the time
complexity is O(1).

6. EXPERIMENTS
To evaluate the effectiveness of BRAID, we performed ex-

periments on real and synthetic datasets. We compared
BRAID with the naive implementation. As mentioned in
Section 4, we can have “enhanced BRAID”, where b > 1.
That is, we keep more than one window-average for each
level. We performed our experiments with b = 16, on an
Intel Xeon 2.8GHz with 1GB of memory, running Linux.

The experiments were designed to answer the following
questions:

1. How well does BRAID estimate the correlation coeffi-
cients for periodic and/or bursty datasets?

2. How successful is it in spotting lag correlations?

3. How does it scale with the sequence lengths n in terms
of the computation time?

6.1 Datasets
We performed experiments on the following real and syn-

thetic data sets. For synthetic data sets, we used the follow-
ing:

• Sines: the data set consists of two sequences of length
n = 32, 768. Each sequence is a mixture of sine waves
of different frequencies. We chose this setting because
it resembles real data, such as network and automobile
traffic (daily, weekly, and yearly periodicities), product
sales (umbrellas, flu medicine - yearly periodicities),
etc.

• SpikeTrains: a pair of periodic pulse trains with white
noise. The period of these sequences is 6500, and the
length is 100,000. This data set is also realistic: for ex-
ample, disk access traffic is bursty [32], with daily pe-
riodicity; the famous sunspot dataset has spikes, with
a 9-11 year periodicity [30].

For Real data sets, we used the following:

• Humidity, Light, Temperature: humidity, illuminance,
and temperature readings, from 55 sensors within sev-
eral buildings. Each sensor gives a reading every 30
seconds. We chose two sequences for each of the data
sets, Humidity and Light, and used all sequences for
Temperature.

• Kursk: Seismic recordings from multiple sensors, show-
ing the explosion of the Russian submarine “Kursk”
[25]. Each sequence has a single burst. We extracted
two subsequences of length n=70,000.

• Sunspots: Number of sunspots per day. The dataset
has a period of approximately 11 years 1. We chose
two intervals from the dataset, each length n=25,900,
and treated them as if they were two different time
sequences.

6.2 Detecting lag correlations
Figures 8 and 9 show the estimation of BRAID for all data

sets. In these figures, “Naive” denotes the exact correlation
coefficients computed by the naive implementation. “Ap-
proximation” means the correlation coefficients computed
from the window averages. BRAID interpolates the missing
values between these correlation coefficients.

1http://csep10.phys.utk.edu/astr162/lect/sun/sscycle.html

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 10000 20000 30000

V
al

ue

Time

Sines #1 SpikeTrains #1 Humidity #1

-3

-2

-1

0

1

2

3

0 10000 20000 30000

V
al

ue

Time

Sines #2 SpikeTrains #2 Humidity #2

-0.2

0.0

0.2

0.4

0.60.6

0.8

1.0

0 1000 2000 3000 4000 5000

C
or

re
la

tio
n

Lag

Naive
BRAID

Approximation

-0.4

-0.2

0.0

0.2

0.4

0.60.6

0.8

1.0

0 5000 10000 15000

C
or

re
la

tio
n

Lag

Naive
BRAID

Approximation

-0.2

0.0

0.2

0.4

0.60.6

0.8

1.0

0 1000 2000 3000 4000 5000

C
or

re
la

tio
n

Lag

Naive
BRAID

Approximation

(a) Sines (b) SpikeTrains (c) Humidity

Figure 8: Estimation of the correlation coefficients (CCF) for Sines, SpikeTrains, and Humidity. The bottom
row shows the CCF; “Naive”, and BRAID, using dashed and solid lines, respectively.

Figure 8 (a) shows that BRAID perfectly approximates
the correlation coefficients of the sinusoidal wave. Figure 8
(b) also indicates that BRAID closely estimates the corre-
lation coefficients using interpolation and captures the lag
correlations of the spike. Similar trends are shown in Fig-
ure 9. While the data values fluctuate dramatically with
time ticks in real datasets, BRAID successfully captures the
periodic lag correlations.

Table 2 shows the estimation error of the captured lag
correlations. As shown in Definition 1, the most important
lag correlation is the earliest local maximum. The experi-
ments clearly demonstrate that BRAID detects the correct
lag perfectly, most of the time. The largest relative error
was about 1%.

6.3 Performance
We theoretically discussed the complexity of BRAID in

Section 5.2. However, BRAID needs not only the computa-
tion of correlation coefficients, but also overheads including
the ones for the interpolation and extraction of the lag corre-
lation from the spline curve. Therefore, we did an empirical
study of the computation time.

Figure 10 compares BRAID and the naive implementation
in terms of wall clock time under varying sequence lengths
n. We used Sines for this experiment. The wall clock time
is the average of the processing time to update sufficient
statistics for each time tick and detect the lag correlations.

For stream data, since the sequence length continues to

Lag correlation EstimationDatasets
Naive BRAID error (%)

Sines 716 716 0.000
SpikeTrains 2841 2830 0.387
Humidity 3842 3855 0.338

Light 567 570 0.529
Kursk 1463 1472 0.615

Sunspots 1156 1168 1.038

Table 2: Estimation error of lag correlations.

grow, the computation time also increases. Instead of the
O(n) that the naive implementation requires, BRAID can
achieve a dramatic reduction in computation time. This
trend shown in the figure corresponds to our theoretical
discussion in Section 5.2. Theoretically, BRAID requires
time O(1) for updating the sufficient statistics; the compu-
tation time does not depend on n. In this experiment, the
wall clock time increases slightly as n grows. This increase
is caused by interpolation, because we need to interpolate
through a larger, O(log n) number of points. Specifically,
BRAID is up to about 40,000 times faster than the naive
implementation.

6.4 Effect of probing
In Section 5.1.2 we provided that says when exactly BRAID

can estimate the lag without error. (see Lemma 3) In this

0

200
400

600
800

1000

1200
1400

1600
1800

2000

0 10000 20000 30000

V
al

ue

Time

0

50

100

150

200

250

300

350

0 5000 10000 15000 20000 25000

V
al

ue

Time

Light #1 Kursk #1 Sunspots #1

0

200
400

600
800

1000

1200
1400

1600
1800

2000

0 10000 20000 30000

V
al

ue

Time

0

50

100

150

200

250

300

350

400

0 5000 10000 15000 20000 25000

V
al

ue

Time

Light #2 Kursk #2 Sunspots #2

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 1000 2000 3000 4000 5000

C
or

re
la

tio
n

Lag

Naive
BRAID

Approximation

-0.4

-0.2

0.0

0.2

0.4

0.60.6

0.8

1.0

0 1000 2000 3000 4000 5000

C
or

re
la

tio
n

Lag

Naive
BRAID

Approximation

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.60.6

0.8

1.0

0 1000 2000 3000 4000 5000

C
or

re
la

tio
n

Lag

Naive
BRAID

Approximation

(a) Light (b) Kursk (c) Sunspots

Figure 9: Estimation of correlation coefficients (cross-correlation function CCF) for Light, Kursk, and Sunspots.
The bottom row shows the CCF; “Naive”, and BRAID, using dashed and solid lines, respectively.

0.0001

0.001

0.01

0.1

1

10

100

1e+04 1e+05 1e+06 1e+07

W
al

l c
lo

ck
 ti

m
e

(m
s)

Sequence length

Naive
BRAID

Figure 10: Wall clock time as a function of sequence
length. BRAID can be up to 40,000 times faster.

section, we will show examples of the criterion and discuss
the effect of probing by exploiting Lemma 3 to reinforce our
theoretical analysis.

Figure 11 (a) shows the power spectrum of Sines in the
frequency domain. Note that Sines #1 and #2 have the
same power spectrum. The power spectrum is computed
from the normalized sequences. That is,

PF2 = 1 and
F2(f0) = 0. Intuitively, f on the y-axis means the first f
Fourier coefficients. We can observe that in this figure, the
energy is distributed in the range of 0 ≤ f ≤ 32. Thus, the
Nyquist frequency is fR = 64/n. According to Lemma 3,

we have lR = 1024b. Figure 11 (b) presents an estimation
of BRAID for Sines. We used one coefficient (i.e., b = 1) for
each level in Figure 11 (b). We saw how BRAID can closely
estimate the lag correlation with b = 1, because the lag is
less than lR = 1024.

We next discuss the criterion for real data. Real data often
include high frequencies of very small energy. The Nyquist
frequency could be extremely high for such data. Since the
frequency limit is widely understood in various areas (e.g.,
audio processing, network analysis, and electrical engineer-
ing), we will focus on the frequency components that are
larger than a very small value, say ε. We set ε = 0.01 in this
experiment.

Figures 12 (a) and (b) present the power spectra of Light,
and Figure 12 (c) shows the estimation for b = 1. The power
of the frequency components larger than ε is distributed in
the frequency range of 0 ≤ f ≤ 52. Therefore, we have
lR ≈ 630. As shown in Figure 12 (c), we can spot the lag
correlation, because the local maximum is near lR.

In Lemma 3, we expect the frequency of each sequence to
obtain lR. Incremental algorithms have been proposed to
compute the frequency in the streaming sense (e.g., [17]).
BRAID can utilize any and all of these solutions to com-
pute the frequency efficiently. However, this research topic
is beyond the scope of this paper.

6.5 Detecting group lag correlations
We applied BRAID to detecting group lag correlations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0 10 20 30 40

P
ow

er

Frequency (1/n)

0.0

0.2

0.4

0.60.6

0.8

1.0

 0 500 1000 1500 2000

C
or

re
la

tio
n

Lag

Naive
BRAID

Approximation

(a) Power spectrum of Sines (b) Estimation of CCF

Figure 11: Estimation of CCF for b = 1 (Sines).

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 10 20 30 40 50 60

P
ow

er

Frequency (1/n)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 10 20 30 40 50 60

P
ow

er

Frequency (1/n)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 0 500 1000 1500 2000

C
or

re
la

tio
n

Lag

Naive
BRAID

Approximation

(a) Power spectrum of Light #1 (b) Power spectrum of Light #2 (c) Estimation of CCF

Figure 12: Estimation of CCF for b = 1 (Light).

for the 55 Temperature sequences. We chose two correlated
sequence pairs and show them in Figure 13. The bottom
row in the figure shows the CCF estimation by BRAID.
The negative lags refer to the symmetric case. For exam-
ples, in Figure 13 (e), Temperature #16 is delayed if the two
sequences are correlated with a positive lag; inversely, the
negative lags mean a case when Temperature #19 is delayed.

Each sensor is located in a different place. Figures 13
(e)(f) show that each pair has its lag. Similar to these fig-
ures, BRAID has successfully detected the lag correlations
for all other correlated sequence pairs.

7. CONCLUSIONS
We have introduced the problem of automatic lag corre-

lation detection on streaming data and proposed BRAID
to address this problem, using careful approximations and
smoothing. The resulting method has all the desired char-
acteristics:

1. It is ‘any-time’: it can give a response at any time,
pinpointing the lag if it exists, or declaring that there
is no lag correlation.

2. Low resource consumption: it needs O(log n) space,
and O(1) time to update the statistics.

3. High accuracy: it detects the correct lag within 1%
relative error or less

Our experiments on real and realistic data show that BRAID
works as expected, estimating the unknown lags with excel-
lent accuracy and high speed. Specifically, BRAID can be up
to 40,000 times faster than the naive implementation while
the largest relative error was 1%.

8. REFERENCES
[1] D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack,

C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and
S. B. Zdonik. Aurora: a new model and architecture

for data stream management. VLDB Journal,
12(2):120–139, 2003.

[2] R. Agrawal, C. Faloutsos, and A. Swami. Efficient
similarity search in sequence databases. FODO, pages
69–84, Oct. 1993.

[3] B. Babcock, S. Babu, M. Datar, and R. Motwani.
Chain : Operator scheduling for memory minimization
in data stream systems. ACM SIGMOD, pages
253–264, June 2003.

[4] G. E. Box, G. M. Jenkins, and G. C. Reinsel. Time
Series Analysis: Forecasting and Control. Prentice
Hall, Englewood Cliffs, NJ, 3rd edition, 1994.

[5] R. P. Brent. Algorithm for Minimization without
Derivatives. Dover Publications, 2002.

[6] D. Carney, U. Cetintemel, A. Rasin, S. B. Zdonik,
M. Cherniack, and M. Stonebraker. Operator
scheduling in a data stream manager. VLDB, pages
838–849, Sept. 2003.

[7] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong,
S. Krishnamurthy, S. Madden, V. Raman, F. Reiss,
and M. A. Shah. Telegraphcq: Continuous dataflow
processing for an uncertain world. CIDR, Jan. 2003.

[8] S. Chandrasekaran and M. J. Franklin. Remembrance
of streams past: Overload-sensitive management of
archived streams. VLDB, pages 348–359,
August-September 2004.

[9] C. D. Cranor, T. Johnson, O. Spatscheck, and
V. Shkapenyuk. Gigascope: A stream database for
network applications. ACM SIGMOD, pages 647–651,
June 2003.

[10] A. Das, J. Gehrke, and M. Riedewald. Approximate
join processing over data streams. ACM SIGMOD,
pages 40–51, June 2003.

[11] A. Dobra, M. N. Garofalakis, J. Gehrke, and

 0

 5

10

15

20

25

30

35

0 5000 10000 15000

V
al

ue

Time

16

18

20

22

24

26

28

30

0 5000 10000 15000

V
al

ue

Time

14

16

18

20

22

24

26

28

30

0 5000 10000 15000

V
al

ue

Time

14

16

18

20

22

24

26

28

0 5000 10000 15000

V
al

ue

Time

(a) Temperature #16 (b) Temperature #19 (c) Temperature #47 (d) Temperature #48

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-2000 -1000 0 1000 2000

C
or

re
la

tio
n

Lag

Naive
BRAID

Approximation

-0.5

0.0

0.5

1.0

-2000 -1000 0 1000 2000

C
or

re
la

tio
n

Lag

Naive
BRAID

Approximation

(e) Estimation of CCF of #16 and #19 (f) Estimation of CCF of #47 and #48

Figure 13: Example of group lag correlations.

R. Rastogi. Processing complex aggregate queries over
data streams. ACM SIGMOD, pages 61–72, June
2002.

[12] P. Domingos and G. Hulten. Mining high-speed data
streams. KDD, pages 71–80, 2000.

[13] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos.
Fast subsequence matching in time-series databases.
In Proc. ACM SIGMOD, pages 419–429, Minneapolis,
MN, May 25-27 1994.

[14] G. E. Forsythe. Computer Methods for Mathematical
Computations. Prentice-Hall, 1977.

[15] S. Ganguly, M. N. Garofalakis, and R. Rastogi.
Processing set expressions over continuous update
streams. ACM SIGMOD, pages 265–276, June 2003.

[16] V. Ganti, J. Gehrke, and R. Ramakrishnan. Mining
data streams under block evolution. SIGKDD
Explorations, 3(2):1–10, 2002.

[17] A. C. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan,
and M. Strauss. Near-optimal sparse fourier
representations via sampling. STOC, pages 152–161,
2002.

[18] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and
M. Strauss. Surfing wavelets on streams: One-pass
summaries for approximate aggregate queries. VLDB,
pages 79–88, Sept. 2001.

[19] S. Guha, C. Kim, and K. Shim. Xwave: Approximate
extended wavelets for streaming data. VLDB, pages
288–299, August-September 2004.

[20] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and
L. O’Callaghan. Clustering data streams: Theory and
practice. IEEE TKDE, 15(3):515–528, 2003.

[21] J. Han and M. Kamber. Data Mining: Concepts and
Techniques. Morgan Kaufmann, 2000.

[22] G. Hulten, L. Spencer, and P. Domingos. Mining
time-changing data streams. KDD, pages 97–106,
2001.

[23] E. J. Keogh. Exact indexing of dynamic time warping.
VLDB, pages 406–417, Aug. 2002.

[24] E. J. Keogh, K. Chakrabarti, S. Mehrotra, and M. J.
Pazzani. Locally adaptive dimensionality reduction for
indexing large time series databases. ACM SIGMOD,
pages 151–162, May 2001.

[25] K. Koper, T. Wallace, S. Taylor, and H. Hartse.
Forensic seismology and the sinking of the kursk. EOS
Trans., AGU, 82, pages 37,45–46, 2001.

[26] N. Koudas, B. C. Ooi, K.-L. Tan, and R. Zhang.
Approximate nn queries on streams with guaranteed
error/performance bounds. VLDB, pages 804–815,
August-September 2004.

[27] B. P. Lathi. Signal Processing and Linear Systems.
Oxford University Press, 1998.

[28] S. Madden, M. A. Shah, J. M. Hellerstein, and
V. Raman. Continuously adaptive continuous queries
over streams. ACM SIGMOD, pages 49–60, June 2002.

[29] R. Motwani, J. Widom, A. Arasu, B. Babcock,
S. Babu, M. Datar, G. S. Manku, C. Olston,
J. Rosenstein, and R. Varma. Query processing,
approximation, and resource management in a data
stream management system. CIDR, Jan. 2003.

[30] S. Papadimitriou, A. Brockwell, and C. Faloutsos.
Adaptive, hands-off stream mining. VLDB, pages
560–571, Sept. 2003.

[31] N. Tatbul, U. Cetintemel, S. B. Zdonik, M. Cherniack,
and M. Stonebraker. Load shedding in a data stream
manager. VLDB, pages 309–320, Sept. 2003.

[32] M. Wang, T. Madhyastha, N. H. Chang,
S. Papadimitriou, and C. Faloutsos. Data mining
meets performance evaluation: Fast algorithms for
modeling bursty traffic. ICDE, Feb. 2002.

[33] B.-K. Yi, N. Sidiropoulos, T. Johnson, H. Jagadish,
C. Faloutsos, and A. Biliris. Online data mining for
co-evolving time sequences. ICDE, pages 13–22, 2000.

[34] Y. Zhu and D. Shasha. Statistical monitoring of
thousands of data streams in real time. VLDB, pages
358–369, Aug. 2002.

[35] Y. Zhu and D. Shasha. Efficient elastic burst detection
in data streams. KDD, pages 336–345, 2003.

