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Abstract. In this paper we propose and implement a battery-shaped
sensor node that can monitor the use of an electrical device into which it
is inserted by sensing the electrical current passing through the device.
We live surrounded by large numbers of electrical devices and frequently
use them in our daily lives, and so we can estimate high-level daily activ-
ities by recognizing their use. Therefore, many ubiquitous and wearable
sensing studies have attempted to recognize the use of electrical devices
by attaching sensor nodes to the devices directly or by attaching multi-
ple sensors to a user. With our node, we can easily monitor the use of
an electrical device simply by inserting the node into the battery case of
the device. We also propose a method that automatically identifies into
which electrical device the sensor node is inserted and recognizes elec-
trical events related to the device by analyzing the current sensor data.
We evaluated our method by using sensor data obtained from three real
houses and achieved very high identification and recognition accuracies.
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1 Introduction

Daily activity recognition is one of the most important tasks in pervasive com-
puting applications because it has a wide range of uses in, for example, sup-
porting the care of the elderly, lifelogging, and home automation [15, 14]. Many
studies have employed body-worn accelerometers to recognize human activities
[10, 1, 12]. While the wearable sensing approach can sense users’ activities in
both indoor and outdoor environments, wearing sensor devices on parts of the
body may place a large burden on the user’s daily life. Many other studies have
focused on sensors that monitor indoor environments, and have tried to recog-
nize activities based on dense ubiquitous sensors such as RFID tags and switch
sensors installed in the environments [17, 21, 22]. While the approach does not
require the user to wear sensors, the costs involved in deploying and maintaining
ubiquitous sensors are huge. Also, sensor nodes attached to many daily objects
can detract from the aesthetics of artifacts in the home [2]. In addition, many
activity recognition studies that employ machine learning techniques require the
end-user to prepare labeled training data herself in her daily life environment.



As outlined above, many existing activity recognition approaches place dif-
ferent kinds of large burdens on users. We summarize the users’ costs below.
- Cost of deployment: A user has to install many sensor nodes in her daily
environment when she uses ubiquitous sensors. In some cases, the user should
manually associate a sensor node with the daily object to which the sensor is
attached. Before the deployment phase, no sensor node knows to which daily
object it is attached.
- Cost of maintenance: In many cases, a user must regularly replace the bat-
tery in a sensor node. The user must also replace broken sensor nodes.
- Cost related to long-term daily use: A user must wear multiple sensor
nodes in her daily life and/or use daily objects to which sensor nodes are at-
tached. The sensor nodes can also detract from the aesthetics of the home.
- Cost related to supervised machine learning: Many ubiquitous sensing
approaches and some wearable sensing approaches require labeled training data
created in an end user’s environment.

On the other hand, recently, many studies in the pervasive computing re-
search field have attempted to monitor the usage of home electrical devices. Be-
cause we live surrounded by large numbers of electrical devices, and frequently
use them when we perform daily activities, we can estimate high-level daily ac-
tivities by recognizing the use of these devices. In addition, due to the growing
interest in energy conservation, many studies have tried to monitor the energy
consumed by electrical devices. Ubiquitous and wearable sensing approaches
have been employed to detect the use of electrical devices. However, many exist-
ing approaches place large burdens on users as mentioned above. In this paper,
we define a new sensing framework called the mimic sensor framework that
does not impose large burdens on users. A sensor node designed based on the
mimic sensor framework works unobtrusively by mimicking objects and plugs
with standardized forms. An example sensor node based on the mimic sensor
framework has the shape of objects with standardized forms such as an AA bat-
tery and an SD memory card and provides the functions of the original object,
e.g., discharge and data storage functions. Because a user can use the sensor
node in the same way as the original object, she can easily install the sensor
node simply by inserting it into the battery case or SD card slot of an electrical
device that she wants to monitor. The sensor node senses phenomena related to
the electrical device and wirelessly sends the sensor data to a host computer.
As described above, because a sensor node designed based on the mimic sensor
framework has the shape of an object that exists in a user’s ordinary daily life
and the user can employ the node in the same way as the original object, we can
monitor the user’s daily life transparently.

In this paper, we implement a prototype battery-shaped sensor node as an
example mimic sensor. The prototype node includes a battery and provides a
current discharge function in the same way as conventional batteries. The node
also monitors (senses) an electrical current that flows through the node when the
node is inserted into an electrical device and then sends the sensor data to a host
computer. We analyze the sensor data and recognize electrical events related to
the electrical device. With a digital camera, for example, by analyzing the data



we can recognize when the user turns it on and when she takes a picture. In
addition, to eliminate the cost related to the association of sensor nodes, we try
to automatically identify into which electrical device the sensor node is inserted
by analyzing the sensor data.

In the rest of this paper, we first introduce work related to detecting the use
of electrical devices, and then describe our definition of the mimic sensor frame-
work. After that, we describe the design and implementation of our prototype
battery-shaped sensor node. We also propose a machine learning-based method
that identifies which electrical device a battery-shaped sensor node is in and that
recognizes electrical events related to the device. The contributions of this paper
are that we propose and develop a new battery-shaped sensor node, and propose
a device identification and event recognition method by analyzing its data. We
also evaluate our method by using sensor data obtained from three real houses.

2 Related Work

As mentioned in section 1, various ubiquitous and wearable sensing approaches
have been proposed for recognizing human activities. Many ubiquitous sens-
ing approaches employ a large number of small sensors such as switch sensors,
RFID tags, and accelerometers attached to daily objects [22, 17, 20]. By using
ubiquitous sensors, we can detect the use of electrical devices in addition to the
use of daily objects. A system proposed in [7] employs ubiquitous sensor nodes
equipped with magnetic sensors or light sensors attached to each electrical de-
vice to detect its use. Although the ubiquitous sensing approach can achieve
fine-grained measurements of daily lives, its deployment and maintenance costs,
e.g., battery replacement costs, are very high. Several studies have employed
small numbers of sensor devices that monitor home infrastructures to detect the
use of electricity, water, or gas in home environments [3, 4, 16]. In particular, the
systems proposed in [16, 5] recognize the use of electrical devices by monitor-
ing noise on home electrical systems. The systems focus on stationary electrical
devices connected to home electrical systems via electric plugs. On the other
hand, the battery-shaped sensor nodes proposed here are designed for use with
portable electrical devices that are not connected to home electrical systems.
The studies that come closest to our concept involve sensor nodes shaped like a
power strip [8, 6]. The power strip sensor node has electrical outlets and supplies
electrical devices connected to the outlets with electrical power. The sensor node
also monitors electrical current drawn from each outlet. Because a user can em-
ploy the sensor node in the same way as a normal power strip, her daily activities
can be monitored transparently. We consider the sensor node to be one example
of a mimic sensor. As another similar example, we can assume a sensor node
shaped like a USB hub. The sensor node has USB ports and monitors the use
of electrical devices that are connected to the node such as I/O and data stor-
age devices. Here, we consider that the above approaches and our approach are
complementary rather than competing techniques because the above approaches
can recognize the use of stationary electrical devices that run without batteries.



Most wearable sensing approaches use multiple sensor nodes attached to the
wearer’s body [1, 19, 13]. Although these approaches can recognize the wearer’s
activities in outdoor environments, they impose the burden of the need to wear
several sensors during daily life. The system proposed in [11] recognizes the use of
portable electrical devices held by a user by employing several magnetic sensors
attached to her hands. The system captures magnetic fields emitted by magnetic
components such as coils and permanent magnets in portable electrical devices
and identifies which electrical device the user is using.

3 Mimic Sensor Framework

As mentioned in section 1, a sensor node designed based on the mimic sensor
framework has a standardized form or a plug with a standardized form, which
means that the sensor node can be connected to another device or a socket.
The sensor node basically receives electrical power via the connection. The sen-
sor node also senses data related to the device or socket to which the node is
connected. We consider that sensing the electrical current that flows through
the node via the connection may be useful and effective for detecting electri-
cal events related to the device. Note that the sensor node can include other
sensors such as an accelerometer and a temperature sensor. This permits us to
capture additional information related to the device usage. Examples of sensor
nodes based on the mimic sensor framework include an AA battery-shaped sen-
sor node, an SD card-shaped sensor node, a flash memory card-shaped sensor
node, a light bulb-shaped sensor node, a fluorescent light-shaped sensor node, a
power strap-shaped sensor node, and a USB hub-shaped sensor node. The sen-
sor nodes provide the functions of the original objects that they are mimicking.
Therefore, the user can employ the sensor node in the same way as the original
object.

In section 1, we mentioned four kinds of burdens placed on users. Here we
explain how the mimic sensor approach reduces these burdens.
- Cost of deployment: Some studies employ such ubiquitous sensors as RFID
tags, infrared sensors, and switch sensors [17, 9, 21]. However, deploying such
sensors requires the user to have specialized knowledge. On the other hand,
because the user can use mimic sensor nodes in the same way as the original
objects, she does not require specialized knowledge.
- Cost of maintenance: Because mimic sensor nodes basically receive electrical
power from other devices or sockets to which they are connected, a user need
not replace their batteries. Note that the user must recharge/replace the battery
included in a battery-shaped sensor node when it runs out. However, this is also
the case even if the user employs a regular battery in place of the node. Therefore,
the battery-shaped sensor node does not impose any additional burdens related
to battery replacement. Note that when the sensor node does not have a power-
saving architecture, the battery replacement interval is shortened.
- Cost related to long-term daily use: Because such ubiquitous sensors as
RFID tags and switch sensors are usually attached to daily objects, they detract
from the aesthetics of those objects. On the other hand, a user can use mimic



sensor nodes exactly as she uses the original objects and so her life remains
unchanged by sensor installation. Moreover, since such sensor nodes as battery-
shaped sensor nodes and SD card-shaped sensor nodes are inserted into electrical
devices, the user is not aware of them.
- Cost related to supervised machine learning: Many ubiquitous sensing
approaches require labeled training data obtained in each user’s environment to
recognize activities in that environment. However, such data is very costly to
prepare. We assume that we sense the amount of electrical current that flows
through a mimic sensor node when the node is connected to a device. We consider
that the flow characteristics are device-dependent and so users can share training
data obtained from the device. Assume that a battery-shaped sensor node is
inserted into a CD player in a house, and the player plays music. Sensor data
(time-series current values) obtained from the player may have a characteristic
frequency and the same model CD player in another house may also have the
same characteristic frequency. Therefore, end users need not prepare training
data in their houses.

4 Prototype Battery-shaped Sensor Node

We design and implement a prototype battery-shaped sensor node as an example
mimic sensor node. We then undertake an investigation to determine whether we
can successfully identify into which electrical device the node is inserted and rec-
ognize electrical events related to the device by analyzing the electrical current
data obtained from the sensor node. Although many portable electrical devices
are now driven by internal rechargeable batteries, the market for primary cells
is large and still growing. (about $16 billion in 2010) Also, rechargeable AA
and AAA batteries (secondary cells) are widely used in our daily lives. Now, we
are living surrounded by many electrical devices that are driven by D, C, AA,
and AAA batteries. Moreover, due to the unreliable power supply caused by
earthquake related accidents at nuclear power plants in Japan, battery-powered
devices have been attracting attention. Also, several countries are reconsidering
or have decided to decommission nuclear power plants, and so the value of bat-
teries, which are very stable power sources, will increase. In addition, we can
add extra value to conventional batteries by incorporating sensors.

4.1 Design

As mentioned in section 3, a battery-shaped sensor node designed based on the
mimic sensor framework will be equipped with an electrical discharge function.
That is, the sensor node will include a battery. Also, the sensor node measures
an electrical current passing through the node just like an ammeter. In addition,
the sensor node measures the voltage of the battery included in the node. We
explain later why we also measure the voltage. Fig. 1 (a) is a schematic of our
prototype battery-shaped sensor node. The sensor node includes a battery and
a resistance. The node measures a current passing through the resistance. The
node also measures the voltage of the included battery. The sensor node samples



(a) (b)

Current 

monitoring

Host PC

Resistance

Battery

Voltage 

monitoring
p

o
si

ti
v
e

  
e

le
ct

ro
d

e

n
e

g
a

ti
v
e

  
e

le
ct

ro
d

e

Fig. 1. (a) Schematic of our prototype sensor node. (b) Our prototype battery-shaped
sensor nodes and a sensor board.

the current and voltage data at about 1000 Hz. Because the sensor node is a
prototype, the node sends the sensor data to a host PC via cables and a sensor
board. Fig. 1 (b) shows prototype AA battery-shaped sensor nodes and the
sensor board. Because the node is a prototype, we simply incorporate a AAA
or N battery in the node. We have also developed D and C battery-shaped
sensor nodes. We use the prototype node to measure actual sensor data from
various electrical devices and to investigate our device identification and event
recognition method introduced in section 5.

4.2 Sensor data

The prototype sensor node measures an electrical current passing through the
node. Fig. 2 shows several sets of example time-series sensor data obtained when
we insert the node into various electrical devices and then operate the devices.
The upper graph in Fig. 2 (a) shows time-series sensor data obtained from an
electric toothbrush. The x-axis indicates time and the y-axis indicates the current
sensor data value (mA). Just after the toothbrush was turned on, we observed
an inrush of current. Then, we can find the characteristic frequency while the
toothbrush was running, which was caused by the motor incorporated in the
toothbrush. The lower graph in Fig. 2 (a) shows a frequency spectrogram com-
puted from the time-series sensor data. We can see narrow peaks, which can be
discriminative features, caused by the characteristic frequency. The upper graph
in Fig. 2 (b) shows time-series sensor data obtained from a flashlight. When the
flashlight was turned on, we also observed an inrush of current. Then, the sen-
sor data values become static. The lower graph in Fig. 2 (b) shows a frequency
spectrogram. While the flashlight was lit, there was no peak in the spectrogram
because the sensor data values were static. We consider that the sensor data
values obtained when the flashlight is lit can be simply used as a characteristic
attribute of the flashlight. The upper graph in Fig. 2 (c) shows time-series sensor
data obtained from a CD player. The graph also shows electrical events such as
‘turn on,’ ‘play,’ ‘seek,’ and ‘turn off’ related to the CD player. Unlike the tooth-
brush and flashlight, it took several seconds for the CD player to start operating.
Then, the CD player started to play music. When a user selected the FF or RW
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Fig. 2. Example current sensor data. The upper graphs show original time-series cur-
rent data. The lower graphs show frequency spectrograms.

button, we observed a noise corresponding to seeking the next/previous track.
It also took several seconds for the player to stop operating. The lower graph in
Fig. 2 (c) shows a frequency spectrogram. As shown in these graphs, the sensor
data from the CD player were time varying, and so we should model temporal
changes in the sensor data to recognize electrical events related to the CD player.

Some portable electrical devices such as electric toothbrushes, electric shavers,
handheld cleaners, and electric screwdrivers include motors. The rotation of the
motors is impeded by various objects and phenomena. For example, motors in
certain electrical devices are affected by the gravity of the earth, and so the
way that the motor rotation changes may depend slightly on their posture in
relation to the direction of the gravitational force. That is, the current sensor
data of several electrical devices with motors will change depending on device
posture. The upper graph in Fig. 3 shows time-series sensor data obtained from
an electric toothbrush. Also, the lower graph in Fig. 3 shows the corresponding
frequency spectrogram. We rotated the toothbrush 90 degrees while it was run-
ning to change its posture. In the spectrogram, we find that the peak frequency
changed slightly when we rotated the toothbrush. This was caused by the grav-
ity of the earth (and the posture change of the toothbrush). That is, when we
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Fig. 4. Sensor data obtained from a CD player (a, b) and a flashlight (c, d) when we
used fully charged batteries or exhausted batteries.

recognize electrical events related to motors with machine learning approaches,
we should collect training sensor data of such devices under various conditions,
e.g., by changing the postures of the devices as in actual use.

Here, we focus on battery-powered electrical devices. With use, the voltage
of the battery decreases and this affects the electrical current passing through
the device (and our sensor node). Fig. 4 shows current sensor data obtained
from a CD player and a flashlight, both of which employ two AA batteries. The
graph in Fig. 4 (a) shows sensor data obtained from the CD player when we
used two fully charged batteries with a total voltage of 3.097 V. By contrast,
the graph in Fig. 4 (b) shows sensor data obtained from the CD player when we
used two exhausted batteries with a total voltage of 2.689 V. Although the two
time-series sequences are similar, the sensor data values in Fig. 4 (b) are slightly
smaller than those in Fig. 4 (a) even though we used the same CD player. For
example, the current values just after the player was switched on, as indicated
by the arrows in Fig. 4 (a) and (b), were about 242 and 220 mA, respectively,
and they were slightly different. Also, the graph in Fig. 4 (c) shows sensor data
obtained from the flashlight when we used two fully charged batteries with a
total voltage of 3.161 V. On the other hand, the graph in Fig. 4 (d) shows sensor
data obtained from the flashlight when we used two exhausted batteries whose
total voltage was 2.654 V. The current values while the flashlight was lit in Fig.
4 (c) and (d) were about 491 and 430 mA, respectively. As above, the current
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sensor data values change depending on the voltage values of the batteries. We
need to cope with this problem when we identify electrical devices by employing
machine learning approaches. There are two solutions to the problem. The first
is to collect training sensor data from an electrical device by using batteries with
various voltage values. The second is to compute a feature specific to the device
and independent of battery voltage.

5 Our Method

By analyzing sensor data obtained from our sensor node, we try to identify
in which electrical device the sensor node is inserted and recognize electrical
events related to the device. Fig. 5 shows the architecture of our identifica-
tion/recognition method. We first extract features from sensor data obtained
from a sensor node. Then, we identify the electrical device and recognize electri-
cal events by employing the extracted feature vectors. To achieve device identifi-
cation and event recognition, we compare the vectors with a model set prepared
for each type (product model) of electrical device constructed by employing a
hidden Markov model (HMM). We describe our method in detail below.

5.1 Feature extraction

We assume time-series current data, and so we compute a feature vector for
each sliding time window. We extract features based on the FFT components
of 64 sample time windows. As mentioned in section 4.2, the FFT components
and simple current values can be distinguishable features. Therefore, we use the
computed FFT component values and the mean in each window as features. In
addition to these features, we use the variance and energy, which can capture
the intensity of sensor data changes, computed in each window as features. The
energy feature is calculated by summing the magnitudes of squared discrete FFT
components. For normalization, the sum was divided by the window length. Note
that the DC component of the FFT is excluded from this summation.

In section 4.2, we mentioned that the current sensor data change depending
on the battery voltage. To cope with this problem, we simply take account of the
electrical resistance of the electrical device. The relationship between the voltage
of a battery V , the current passing through the battery I, and the resistance



of the device R when a certain electrical event occurs is described as V = IR.
Because R = V/I depends only on the device (electrical event), we use R as a
feature. Our sensor node can measure both current and voltage, and so we can
compute R. Note that because R reaches an infinite value when I is zero, we
actually use 1/R as a feature. We describe how well this approach works by using
the examples shown in Fig. 4. We first focus on the CD player sensor data in
Fig. 4 (a) and (b). The current values indicated by the arrows in Fig. 4 (a) and
(b) are about 242 and 220 mA, respectively (10.0% difference). On the other
hand, the computed 1/R values in Fig. 4 (a) and (b) are 0.0782 and 0.0819,
respectively (4.6% difference). With the flashlight, the current values obtained
while the flashlight was lit shown in Fig. 4 (c) and (d) were about 491 and
430 mA, respectively (14.2% difference). On the other hand, the computed 1/R
values in Fig. 4 (c) and (d) are 0.155 and 0.160, respectively (3.2% difference).
It may be very difficult to reduce the error (difference) to zero because of the
effects of many phenomena such as the voltage difference between the battery in
our node and other batteries in the same device, the conversion characteristics of
the regulator IC in electrical devices, and the ambient temperature. However, we
consider that, simply by employing 1/R, we can reduce the effect of the different
battery voltages. Note that with an electrical device that can include n batteries
connected in series, the value of I/V computed from the voltage and current
values sensed by a sensor node in the device actually corresponds to n/R. This
is because our sensor node can measure the voltage value of just the battery
included in the node. As above, we extract a total of 36 features (32+1+1+1+1)
from each window.

5.2 Hybrid identification/recognition method with HMMs

A feature vector sequence is extracted from sensor data obtained from a sensor
node. The task is to identify in which electrical device the node is inserted and
recognize electrical events related to the device. As shown in Fig. 5, our method
identifies the device and simultaneously recognizes electrical events by comparing
the sequence with model sets of electrical devices prepared in advance. We train
the model sets by using labeled training data collected in advance. A model set
is prepared for each type of electrical device and consists of left-to-right HMMs
prepared for each electrical event. The HMMs allow us to capture the temporal
regularity of events.

We explain our identification/recognition method in detail. We focus on a
model set and recognize a feature vector sequence obtained from a node by
using the model set. That is, we assume that the node is inserted into the
electrical device related to the model set, and then recognize the sequence by
using the HMMs in the model set. For the recognition, we simply use the Viterbi
algorithm to find the most probable state sequence in/across the HMMs [18] and
to compute the likelihood (score) of the state sequence. From the state sequence,
we can know into which HMM (electrical event class) a feature vector at time
t is classified. Here, because the model set (electrical device) includes multiple
HMMs (electrical events), we assume state transitions across the HMMs. That
is, we take account of a state transition from the last state of an arbitrary HMM



to the first state of another HMM. With a CD player model set, for example, it
corresponds to a state transition from a ‘play’ HMM to a ‘turn off’ HMM (and
to all other HMMs in the model set). By taking the above state transition into
account, we can represent transitions of electrical events. Here, we can specify
state transitions among HMMs by using a handcrafted grammar. With a digital
camera model set, for example, we can specify that an ‘on’ event (power ON
state) must occur just after a ‘turn on’ event. We construct such a grammar for
each model set (electrical device product) and investigate its effect in the next
section.

We mentioned that the Viterbi algorithm outputs the most probable state
sequence and its score when we recognize the feature vector sequence obtained
from the node with a model set. So, we compute the most probable state sequence
and its score when we recognize the feature vector sequence with each model set,
and we decide that the node should be inserted into an electrical device (model
set) corresponding to the highest score. As above, we can identify into which
electrical device the node is inserted and recognize electrical events related to
the device at the same time.

6 Evaluation

6.1 Data set

For the evaluation, we prepared the many portable electrical devices listed in
Table 1. We selected these devices from those frequently found in appliance and
online stores. Table 1 also shows electrical events related to each device. Each
device includes an ‘off’ event that means the power OFF state. In addition, it
takes several seconds for devices such as TVs, CD players, and digital cameras
to start. Such devices include ‘turn on’ events. On the other hand, it takes a
very short time for such devices as flashlights and toothbrushes to start. We do
not consider that such devices include ‘turn on’ events because it is very difficult
to annotate such short events. We also ignored events (functions) where the
electrical current values remain unchanged. For example, the ‘zoom’ functions
of the digital cameras and digital camcorder used in our experiment did not
induce any change in the current values from those of ‘on’ events (power ON
state), and so we regard ‘zoom’ events to be included in ‘on’ events. This may be
because the regulator IC in the device could provide sufficient current required
for the event, and so the current that the batteries supplied to the regulator did
not change. In addition, with electrical devices with a large number of functions,
we focus only on the main events (functions).

We obtained training data in our experimental environment by using the
devices listed in Table 1. We inserted one sensor node into an electrical device to
collect data. As mentioned in section 4.2, we collected training data by changing
the postures of the devices as if in actual use. We also changed the battery
voltages of the node. We used each device about 30 times in total. We collected
test data in real three houses (houses A, B, and C). In section 4.2 we showed
that sensor data are affected by changes in the posture of electrical devices,



Table 1. Electrical devices used in our experiment and their electrical events.

device events device events

on, turn on, turn off, turn on, turn off,
digital camera 1

take photo, focus, off
cd player 1

play, seek, off

digital camera 2
on, turn on, turn off,

cd player 2
turn on, turn off,

take photo, focus, off play, seek, off
on, turn on, turn off, turn on, turn off,

digital camcorder
take video, off

tv 1
show, off

vacuum 1 vacuum, off tv 2 turn on, show, off
vacuum 2 vacuum, off lantern light, off
video game on, off flashlight 1 light, off
shaver 1 shave, off flashlight 2 light, off
shaver 2 shave, off cassette player 1 ff/rw, play, off
shaver 3 shave, off cassette player 2 ff/rw, play, off
screwdriver 1 ff/rw, light, off dvd player turn on, play, off
screwdriver 2 ff/rw, off soldering iron on, off
toothbrush 1 brush, off mill coarse, fine, off
toothbrush 2 brush, off toy 1 (ship) go ahead, off
toothbrush 3 brush, off toy 2 (car) go forwards, go backwards, off

and so we tested the use of devices by different participants. We gave several
different electrical devices to a participant in each house (House A: 10 devices,
house B: 10 devices, house C: 8 devices. See Tables 3, 4, and 5.) and asked the
participant to use the devices equipped with our nodes. We collect sensor data by
using a semi-naturalistic collection protocol [1] that permits greater variability in
participant behavior than laboratory data. In the protocol, each participant took
part in a session that included the use of electrical devices in a random sequence
following instructions on a worksheet. The participants were relatively free as
regards how they used each device because the instructions on the worksheet
were not very strict, e.g., “play music freely with a CD player” and ‘watch an
arbitrary TV channel(s).’ Because our prototype devices were connected to a
host PC via cables, they were used in the same room in each house. However,
we asked the participants to employ the devices as in actual use. Note that,
as regards the soldering iron, the participant simply turned it on and did not
solder anything. Each participant completed a total of ten sessions. (A and B:
10 devices×10 sessions, C: 8 devices×10 sessions) Each session lasted about ten
minutes. We used fully charged batteries in the first house, and then used the
same partly used batteries in the next house. Note that, when a battery became
very weak, we replaced it with new one. We observed the participants by using
video cameras to enable us to annotate the obtained data.

6.2 Evaluation methodology

We constructed a model set by using training data obtained in our experimental
environment, and evaluated the performance of our method by using test data
obtained in the participants’ houses. That is, we assumed that end users did
not prepare training data in their houses. To investigate the effectiveness of our
approach, we tested the following eight methods.

- HMM: This method models electrical events with HMMs as mentioned in sec-
tion 5.2. This method does not use 1/R as a feature. Also, this method assumes



that the transition probabilities across HMMs are all identical.
- HMM(grammar): This method models electrical events with HMMs. This
method does not use 1/R as a feature. Also, this method employs a handcrafted
grammar prepared for each device when computing transitions among HMMs.
We provide some grammar examples written in extended BNF. The grammar for
flashlights is described as (‘off’ {‘light’ ‘off’}). With this grammar ‘off’ and ‘light’
events are defined as being alternately repeated. The grammar for a digital cam-
era is described as ({‘off’ ‘turn on’ ‘on’ {‘take photo’|‘focus’|‘on’} ‘turn off’ } ‘off’ ).
With this grammar the definition is that ‘off,’ ‘turn on,’ and ‘on’ events occur
sequentially and then ‘take photo,’ ‘focus,’ and ‘on’ events are repeated alter-
nately before the ‘turn off’ and ‘off’ events occur. More specifically, for example,
the transition probabilities from the last state of the ‘turn on’ HMM to the first
states of other HMMs except for the ‘on’ HMM are defined as zero. By contrast,
the transition probability to the ‘on’ HMM is one. Also, the transition probabil-
ities from the last state of the ‘take photo’ HMM to ‘focus,’ ‘on,’ and ‘turn off’
are identical (1/3). By contrast, the transition probabilities to the other HMMs
are zero.
- SVM: This method uses the SVM in place of the HMM. We construct a clas-
sifier for device identification that classifies each feature vector into an electrical
device class. We classify feature vectors obtained from a sensor node and then we
identify the device class of the node by using the majority voting of the feature
vector classification results. Note that when we construct the classifier, we ignore
feature vectors whose current mean values are zero, which corresponds to ‘off’
events, because ‘off’ events are included in all device classes. We also construct
a classifier for event recognition for each electrical device product. The classifier
classifies each feature vector into an electrical event class. Unlike HMM-based
methods, this method cannot model the temporal regularity of electrical events.
This method also does not use 1/R as a feature.
- Tree: This method uses a decision tree in place of the SVM in the above SVM
method. This method does not use 1/R as a feature.
- HMM-R: This method uses 1/R as a feature. Also, this method assumes that
the transition probabilities across HMMs are all identical.
- HMM-R(grammar): This method uses 1/R as a feature. This method also
employs handcrafted grammar.
- SVM-R: This method uses 1/R as a feature. This method also uses the SVM
in place of the HMM.
- Tree-R: This method uses 1/R as a feature. This method also uses the deci-
sion tree in place of the HMM.

6.3 Results

Device identification Fig. 6 shows the transitions of device identification ac-
curacies when we increase the number of test sessions used to identify devices.
When the number of sessions (#sessions) is three, for example, we identify de-
vices by using only the sensor data obtained in each house in the first three ses-
sions. Because we prepared model sets of 28 electrical devices, the random guess
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Fig. 6. Transitions of device identification accuracies when we increase #sessions that
are used to identify devices.

Table 2. Event recognition accuracies (average F-measure) in each house.

House A House B House C AVG.

HMM 0.795 0.807 0.839 0.814
HMM(grammar) 0.861 0.822 0.853 0.845
SVM 0.823 0.834 0.837 0.831
Tree 0.834 0.773 0.908 0.839
HMM-R 0.816 0.809 0.843 0.823
HMM-R(grammar) 0.872 0.865 0.875 0.871
SVM-R 0.821 0.828 0.839 0.829
Tree-R 0.822 0.779 0.889 0.830

ratio is only 3.6% (1/28 = 0.036). However, the HMM and HMM(grammar)
methods achieved 96.4% accuracies when #sessions was ten. These methods
greatly outperformed SVM and Tree, which cannot capture the temporal regular-
ity of electrical events. The HMM-R and HMM-R(grammar) methods achieved
100% accuracies when #sessions was larger than four. (The transitions of these
methods were completely identical in the right graph in Fig. 6.) By using the 1/R
feature, we could identify devices perfectly. These methods also greatly outper-
formed SVM-R and Tree-R. That is, we confirmed the importance of capturing
the temporal regularity of electrical events and taking the electrical resistances
of electrical devices into account. Basically, a larger #sessions exhibited greater
identification accuracy because we could use sufficient quantities of sensor data
and capture the discriminative features of the sensor data. However, the HMM-R
and HMM-R(grammar) methods achieved 96.4% accuracies even when #sessions
was one. These results indicate that even if a battery sensor node is removed
from an electrical device and then inserted into another device, these methods
can soon identify the new device.

Event recognition To evaluate the event recognition performance, we assumed
that the device identification results were all correct, and then calculated the
precision, recall, and F-measure based on the results for the estimated event class



Table 3. Event recognition accuracies in house A.

HMM HMM-R HMM-R(grammar)
precision recall F-measure precision recall F-measure precision recall F-measure

on 0.874 0.671 0.759 0.895 0.716 0.796 0.887 0.726 0.799
turn on 0.473 0.561 0.513 0.493 0.593 0.538 0.978 0.714 0.826

digital turn off 0.316 0.391 0.349 0.335 0.396 0.363 1 0.941 0.97
camera 2 take photo 0.356 0.408 0.38 0.377 0.415 0.395 0.518 0.776 0.622

focus 0.362 0.694 0.476 0.378 0.694 0.489 0.44 0.898 0.591
off 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975

vacuum 2 vacuum 0.993 0.996 0.994 0.993 0.996 0.994 0.993 0.996 0.994
off 0.988 0.977 0.982 0.988 0.977 0.982 0.988 0.977 0.982

video on 1 0.939 0.968 1 0.983 0.992 1 0.983 0.992
game off 0.83 1 0.907 0.947 1 0.973 0.947 1 0.973

shaver 1 shaving 1 0.987 0.994 1 0.986 0.993 1 0.986 0.993
off 0.925 1 0.961 0.919 1 0.958 0.919 1 0.958

screw- ff/rw 0.997 0.982 0.99 1 0.982 0.991 1 0.982 0.991
driver 1 light 0.988 0.995 0.992 0.987 0.995 0.991 0.987 0.995 0.991

off 0.976 0.979 0.977 0.976 0.979 0.977 0.976 0.979 0.977
tooth- brush 1 0.994 0.997 1 0.994 0.997 1 0.994 0.997
brush 1 off 0.972 1 0.986 0.976 1 0.988 0.976 1 0.988

turn on 0.484 0.51 0.497 0.515 0.579 0.545 1 0.569 0.726
cd turn off 0.287 0.566 0.381 0.482 0.762 0.59 0.621 0.979 0.76
player 1 play 0.961 0.65 0.775 0.956 0.686 0.799 0.946 0.898 0.922

seek 0.047 0.66 0.088 0.06 0.681 0.11 0.075 0.936 0.139
off 0.995 0.996 0.995 0.995 0.999 0.997 0.991 1 0.995

tv 1

turn on 0.73 0.514 0.603 0.731 0.651 0.689 0.75 0.982 0.851
turn off 0.309 0.488 0.379 0.336 0.382 0.357 0.917 0.089 0.163
show 1 0.987 0.994 1 0.994 0.997 0.999 0.999 0.999
off 0.795 1 0.886 0.866 1 0.928 0.918 1 0.957

lantern light 0.999 0.994 0.997 0.999 0.994 0.997 0.999 0.994 0.997
off 0.97 0.997 0.983 0.97 0.997 0.983 0.97 0.997 0.983

cassette ff/rw 0.936 0.945 0.94 0.938 0.985 0.961 0.938 0.985 0.961
player 2 play 0.962 0.947 0.954 0.991 0.947 0.968 0.991 0.947 0.968

off 0.976 1 0.988 0.976 1 0.988 0.976 1 0.988

AVG. 0.790 0.832 0.795 0.808 0.850 0.816 0.893 0.913 0.872

at each time slice. Also, the precision, recall, and F-measure were computed by
using all test data (all ten sessions) obtained in each house. Table 2 shows the
event recognition accuracies of the three houses for each recognition method.
The HMM results were poorer than those of SVM and Tree, which are the
discriminative models. This may be because the classification performance of
the discriminative techniques, which find the discriminant boundaries of the
classes, is often superior to that of generative models such as the HMM. On the
other hand, HMM(grammar) outperformed HMM, SVM, and Tree. As described
in detail later, the method was good at recognizing events of electrical devices
that produced confusing sensor data patterns by using the handcrafted grammar.
HMM-R(grammar), which uses both the grammar and the 1/R feature, achieved
the highest accuracy.

Tables 3, 4, and 5 show the detailed event recognition accuracies obtained
in each house. Because most electrical devices have only two electrical events,
the event recognition accuracies were high in each house. We first focused on the
HMM and HMM-R methods. By using the 1/R feature, we could slightly improve
the accuracies of almost all the events. We then focused on the HMM-R and
HMM-R(grammar) methods. By using the grammar, we could greatly improve
the accuracies of the highly functional devices, namely CD players, TVs, DVD
players, digital cameras, and a digital camcorder, which have many electrical
event classes. The average improvement as regards F-measure was 0.122. As
shown in Fig. 2 (c), ‘turn on’ and ‘turn off’ events of these devices have complex
time-series sensor data. Therefore, the recognition accuracies with the HMM-R
method related to these events were poor. The average as regards F-measure was



Table 4. Event recognition accuracies in house B.

HMM HMM-R HMM-R(grammar)
precision recall F-measure precision recall F-measure precision recall F-measure

on 0.902 0.994 0.946 0.886 0.976 0.929 0.884 0.976 0.928
digital turn on 0.663 0.757 0.707 0.676 0.77 0.72 1 0.747 0.855
camcorder turn off 0.278 0.252 0.264 0.282 0.256 0.268 0.659 0.966 0.784

take video 0.965 0.649 0.776 0.906 0.611 0.73 0.907 0.703 0.792
off 0.979 0.998 0.988 0.979 1 0.989 0.976 1 0.988

shaver 2 shave 1 0.994 0.997 0.997 0.994 0.995 0.997 0.994 0.995
off 0.984 1 0.992 0.984 0.992 0.988 0.984 0.992 0.988

screw- ff/rw 1 0.982 0.991 1 0.982 0.991 1 0.982 0.991
driver 2 off 0.972 1 0.986 0.972 1 0.986 0.972 1 0.986
tooth- brush 1 0.992 0.996 1 0.992 0.996 1 0.992 0.996
brush 2 off 0.983 1 0.991 0.983 1 0.991 0.983 1 0.991

turn on 0.838 0.392 0.534 0.93 0.422 0.581 0.987 0.487 0.652
cd turn off 0.387 0.765 0.514 0.506 0.824 0.627 0.674 0.948 0.788
player 2 play 0.924 0.945 0.935 0.916 0.967 0.941 0.915 0.969 0.941

seek 0.018 1 0.035 0.019 1 0.037 0.02 1 0.04
off 0.995 0.982 0.989 0.996 0.995 0.996 0.986 0.995 0.99

flash- light 1 0.99 0.995 1 0.99 0.995 1 0.99 0.995
light 1 off 0.975 1 0.987 0.975 1 0.987 0.975 1 0.987
flash- light 1 0.986 0.993 1 0.987 0.994 1 0.987 0.994
light 2 off 0.973 1 0.986 0.976 1 0.988 0.976 1 0.988
cassette ff/rw 0.94 0.239 0.381 0.543 0.038 0.071 0.543 0.038 0.071
player 1 play 0.551 0.908 0.686 0.492 0.912 0.639 0.492 0.912 0.639

off 0.798 0.976 0.878 0.822 0.998 0.901 0.822 0.998 0.901
turn on 0.7 0.742 0.721 0.788 0.785 0.787 0.998 0.992 0.995

dvd player play 0.392 0.343 0.366 0.56 0.564 0.562 0.984 0.996 0.99
off 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989

soldering on 0.994 0.992 0.993 0.994 0.992 0.993 0.994 0.992 0.993
iron off 0.982 0.986 0.984 0.982 0.986 0.984 0.982 0.986 0.984

AVG. 0.828 0.852 0.807 0.827 0.858 0.809 0.882 0.915 0.865

Table 5. Event recognition accuracies in house C.

HMM HMM-R HMM-R(grammar)
precision recall F-measure precision recall F-measure precision recall F-measure

on 0.63 0.929 0.751 0.636 0.956 0.764 0.629 0.956 0.759
turn on 0.556 0.599 0.577 0.675 0.574 0.621 1 0.669 0.801

digital turn off 0.611 0.374 0.464 0.702 0.586 0.639 0.995 0.747 0.854
camera 1 take photo 0.658 0.554 0.602 0.667 0.577 0.618 0.803 0.869 0.835

focus 0.397 0.818 0.535 0.382 0.788 0.515 0.311 0.848 0.455
off 0.984 0.992 0.988 0.968 0.992 0.98 0.976 1 0.988

vacuum 1 vacuum 0.998 0.993 0.996 0.998 0.993 0.996 0.998 0.993 0.996
off 0.981 0.995 0.988 0.981 0.995 0.988 0.981 0.995 0.988

shaver 3 shave 1 0.994 0.997 1 0.994 0.997 1 0.994 0.997
off 0.987 1 0.993 0.987 1 0.993 0.987 1 0.993

tooth- brush 0.998 0.989 0.994 0.998 0.989 0.994 0.998 0.989 0.994
brush 3 off 0.974 0.996 0.985 0.974 0.996 0.985 0.974 0.996 0.985

turn on 0.716 0.536 0.613 0.751 0.53 0.621 0.892 0.484 0.627
tv 2 show 0.886 0.92 0.903 0.881 0.95 0.914 0.875 0.976 0.922

off 0.578 0.965 0.723 0.525 0.625 0.571 0.552 0.98 0.706

mill coarse 1 0.955 0.977 1 0.963 0.981 1 0.963 0.981
off 0.977 1 0.988 0.977 1 0.988 0.977 1 0.988

toy 1 go ahead 1 0.994 0.997 1 0.995 0.997 1 0.995 0.997
off 0.971 1 0.985 0.977 1 0.988 0.977 1 0.988
go forwards 0.684 0.849 0.757 0.67 0.858 0.752 0.67 0.858 0.752

toy 2 go backwards 0.801 0.563 0.661 0.812 0.563 0.665 0.812 0.563 0.665
off 0.949 1 0.974 0.975 1 0.987 0.975 1 0.987

AVG. 0.833 0.864 0.839 0.843 0.860 0.843 0.881 0.903 0.875

0.571. We could greatly improve the accuracies by incorporating such grammar
as ‘turn on’ event follows ‘off’ event and ‘off’ event follows ‘turn off’ event. The
average improvement was 0.248.

Finally, we describe the electrical events that HMM-R(grammar) could not
recognize with high accuracy. The accuracies as regards the ‘seek’ events for the
two CD players in houses A and B were very poor. This may be because we
could not prepare sufficient quantities of training data (feature vectors) about
the events. As shown in Fig. 2 (c), the time length of ‘seek’ is very short. The
accuracy as regards the ‘turn off’ event of tv 1 in house A was poor. The event



was mistakenly confused with an ‘off’ event because the current value approaches
zero during a ‘turn off’ event. Also, the accuracy as regards the ‘ff/rw’ event of
cassette player 1 in house B was poor. Because the player was light in weight,
we collected training data by holding it in the hand. However, the participant
placed the player on a table and operated it. (We did not collect training data
when the player was placed on a table.) As mentioned in section 4.2, the motor
rotation is affected by the posture of the motor. The HMMs of the player trained
with our training data could not capture the use of the player in house B.

7 Conclusion

In this paper, we proposed and implemented a prototype battery-shaped sen-
sor node for monitoring the use of electrical devices. We also proposed a device
identification and electrical event recognition method by analyzing the sensor
data. With the method, we can automatically identify into which electrical de-
vice the sensor node has been inserted and recognize electrical events related
to the device. In addition, we achieved very high identification and recognition
accuracies by using sensor data obtained from three real houses. As a part of our
future work, we plan to develop other types of sensor nodes based on the mimic
sensor framework to capture a broader range of real world activities. We also
plan to develop wireless battery-shaped sensor nodes and conduct long-term
experiments using them. We consider that there are two problems as regards
developping wireless sensor nodes. The first problem relates to the size of the
sensor and wireless transmission components. However, our sensing architecture
is very simple as shown in Fig. 1 (a). Also, recently, a CPU has become avail-
able that includes a wireless transmission component the length of whose side is
less than the diameter of an AA battery. Moreover, an SD card that includes a
CPU and a WiFi AP component is already on the market (e.g., Eye-Fi3). The
second problem relates to the energy consumption of the node. We can greatly
reduce the energy consumption by stopping the node from transmitting sensor
data while the current sensor data value is zero, i.e., OFF state. Also, as shown
in Figs. 2 and 3, many electrical devices continually produce similar sensor data
patterns. The node should be designed to transmit sensor data only when they
are very different from those of the latest sample.
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