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Abstract

We propose a novel index structure, A-tree
(Approximation tree), for similarity search of
high-dimensional data. The basic idea of the
A-tree is the introduction of Virtual Bound-
ing Rectangles (VBRs), which contain and ap-
proximate MBRs and data objects. VBRs can
be represented rather compactly, and thus af-
fect the tree configuration both quantitatively
and qualitatively. Firstly, since tree nodes
can install large number of entries of VBRs,
fanout of nodes becomes large, thus leads to
fast search. More importantly, we have a free
hand in arranging MBRs and VBRs in tree
nodes. In the A-trees, nodes contain entries of
an MBR and its children VBRs. Therefore, by
fetching a node of an A-tree, we can obtain the
information of exact position of a parent MBR
and approximate position of its children. We
have performed experiments using both syn-
thetic and real data sets. For the real data
sets, the A-tree outperforms the SR-tree and
the VA-File in all range of dimensionality up
to 64 dimension, which is the highest dimen-
sion in our experiments. The A-tree achieves
77.3% (77.7%, resp.) savings in page accesses
compared to the SR-tree (the VA-File, resp.)
for 64-dimensional real data.
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1 Introduction

1.1 Data Retrieval in High-Dimensional
Space

Fast content-based retrieval is a core function to pro-
vide high-quality human interface for large-scale mul-
timedia databases. In content-based retrieval, usu-
ally, feature vectors extracted from multimedia data
are used as keys. For instance, the features extracted
from images include color, texture, structure and so
on. In the balance of the reduction of computational
cost and the raise of object recognition ratio, feature
vectors of which dimensionality is ten or tens are used
in many recognition methods[12][13] or systems[17].
Since retrieving high-dimensional feature vectors in-
curs high cost for large data sets, new spatial indices
and search methods that offer efficient data retrieval
are required. Various spatial indices[16][6] have been
proposed so far. This paper introduces a new index
structure, named A-tree (Approximation tree), that
offers remarkably higher search performance than ex-
isting indices.

1.2 Related Work

The conventional approach to supporting similarity
search in high-dimensional vector space can be broadly
classified into two categories. The first approach is
using data-partitioning index trees. Neighbor vectors
are covered by MBRs (Minimum Bounding Rectan-
gles) or MBSs (Minimum Bounding Spheres), which
are organized in a hierarchical tree structure. Many
index trees have been proposed so far. They include
the R-tree[8], the R*-tree[2], the Hilbert R-tree[10] and
the SS-tree[19]. Also, nearest neighbor search meth-
ods using such indices have been proposed[14][9]. Two
recently proposed indices, the X-tree[5] and the SR-
tree[11], are reported to offer good performance. The
X-tree[5] introduces the notion of supernode, and out-
performs the R*-tree. The SR-tree[11] has a unique
feature in that it uses both MBRs and MBSs, and is



reported to outperform both the R*-tree and the SS-
tree. The second approach is the use of approximation
files. Among others, the VA-File (Vector Approxima-
tion File)[18] is a simple yet powerful scheme. The
VA-File divides the data space into cells and allocates
a bit-string to each cell. The vectors inside a cell are
approximated by the cell, and the VA-File itself is sim-
ply an array of these geometric approximations. For
search, the entire VA-File is scanned to select candi-
date vectors. Those candidates are then verified by
visiting the vector files. In [18], Weber et al. have
reported that the VA-File outperforms both the R*-
tree and the X-tree when the dimensionality is high
(≥ around 6.) To sum up, among access methods for
high-dimensional vector space search, the SR-tree and
the VA-File are two methods which are not reported
to be outperformed by other methods1 .

In the field of spatial search for high-dimensional
data, the well-known problem, the “curse of dimen-
sionality” looms large before us. Of late, search meth-
ods which present an approximate answer [1] [7], have
been proposed to avoid the influence of the problem.
Although these works are useful, the goal of our work
to overcome the problem by providing a search method
which gives an exact answer.

1.3 The Introduction of the A-tree

In this paper, we propose a new index structure, the
A-tree. The introduction of the A-tree is motivated
by the comparison and analysis of the SR-tree and the
VA-File. Since no result on the comparison between
these two access methods is available, we first per-
formed experiments comparing the two access meth-
ods. Based on the experiments, we have developed a
new tree index structure, A-tree, and search and up-
date algorithms. The basic idea of the A-tree is the
introduction of Virtual Bounding Rectangles (VBRs),
which contain and approximate MBRs and data ob-
jects, respectively. VBRs can be represented rather
compactly, and thus affect the tree configuration both
quantitatively and qualitatively. Firstly, since tree
nodes can install large number of entries of VBRs,
fanout of nodes becomes large, thus leads to fast
search. More importantly, we have a free hand in
arranging MBRs and VBRs in tree nodes. In the A-
trees, nodes contain entries of an MBR and its children
VBRs. Therefore, by fetching a node of an A-tree, we
can obtain the information of exact position of a par-
ent MBR and approximate position of its children.

We evaluate the performance of the A-tree using
both synthetic and real data. The results demon-
strate the effectiveness of the A-tree in high-dimension
search. The mechanism of the A-tree is remarkably
successful, especially for non-uniformly distributed

1 Recently, Berchtold et al. have reported that the IQ-tree
outperforms the VA-File in the range of dimensionality up to 16
[4].

data sets such as real data sets. For both real data sets
and synthetic clustered data sets, the A-tree outper-
forms the SR-tree and the VA-File in all dimensional-
ity ranges up to 64 dimensions, the highest dimension
examined in our experiments. The A-tree achieves 77.3
% (77.7 %, resp.) savings in page access compared to
the SR-tree (the VA-File, resp.) for real data with
64-dimensions. As far as we know, 64 is the highest
dimension of real data used for performance evalua-
tion in high-dimensional access methods with the only
exception of 100-dimensional EigenFace data used in
[19].

The remainder of this paper is organized as follows.
In Section 2, the summary of the comparison and anal-
ysis of the SR-tree and the VA-File is given. Based
on the summary, the motivation and design principles
of the A-tree are presented. Section 3 describes the
definitions and algorithms of the A-tree. Section 4
presents the results of a performance evaluation of the
A-tree and conventional access methods. Finally, Sec-
tion 5 concludes the paper.

2 Motivation: An Introduction of
Approximation Mechanism in Tree
Structure

In this section, we summarize the result of performance
evaluation of the SR-tree and the VA-File. Based on
the summary, we present the design philosophy of the
A-tree, and shows the uniqueness of the A-tree among
the proposed indices for high-dimensional data.

2.1 Properties of the SR-tree and the VA-File

We have performed extensive experiments to analyze
the SR-tree and the VA-File. The details of the exper-
iments are described in [15]. The result revealed that
both indices have their own drawbacks. The evalua-
tion result can be summarized as follows:

(1) For non-uniformly distributed data such as real
data and synthetic clustered data, the SR-tree of-
fers better performance than the VA-File. Since
the tree structure changes flexibly according to
the distribution of data sets, the SR-tree exhibits
higher search performance for non-uniformly dis-
tribute data sets. In the VA-File, vector data are
approximated based on absolute positions. Since
the approximation of absolute vector positions is
independent of data distribution, a large number
of dense data tend to be approximated by same
value. Hence, the absolute approximation leads to
large approximation errors for skew data. Thus,
the VA-File is not effective for non-uniformly dis-
tributed data which are commonly found in real
applications.

(2) However, in the SR-tree, like many other indices
in the R-tree family, the size of entries in a node



is directly proportional to dimensionality. Hence,
as dimensionality increases, the fanout of nodes
becomes small. This causes the increase of back-
tracks of non-leaf nodes; thus degrades search per-
formance.

(3) Increasing node page size leads to the increase of
fanout. With real data, the SR-tree provides the
lowest search cost at one page per node, and the
structures for larger node size require higher cost.
However, larger fanout contributes to the reduc-
tion of the number of node accesses.

(4) In the SR-tree, as dimensionality increases, the
frequency of the usage of MBSs decreases since
MBSs occupy much larger volume than MBRs.
Hence the contribution of MBSs in node pruning
is small in high-dimensional spaces.

2.2 The Design Philosophy of the A-tree

By analyzing the experimental results, we have de-
veloped a new index data structure, A-tree, which is
based on the following design philosophy:

• Tree Structure: From the evaluation result (1),
we adopt a tree index.

• Relative Approximation: To overcome the
problem of tree indices identified in the evalua-
tion result (2), we introduced a new notion, rela-
tive approximation, which is a simple yet powerful
approximation method utilizing the hierarchy of
tree indices. In relative approximation, bounding
regions or data points are approximated by their
relative positions in terms of parent’s bounding
region. Relative approximation has the following
benefits:

– Unlike the absolute approximation in the
VA-File, approximation values of the relative
approximation change in accordance with
the data distribution. By this flexibility, the
approximation error in the relative approxi-
mation is considerably smaller than that of
the VA-File. This feature is especially ef-
fective for non-uniformly distributed vectors,
commonly found in real applications.

– Since approximation values can be com-
pactly represented, the size of entries in an
index node becomes small, which implies
larger fanout. This leads to the reduction
of the number of node accesses as shown in
evaluation result (3).

– Compact representation of approximated
bounding regions allows wider design options
of tree configuration freed from traditional
tree indices. More concretely, each index
node of the A-tree contains representation
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Figure 1: Classification of spatial access methods.

of i) exact position of a bounding region B;
and ii) relative approximation of B’s chil-
dren. Therefore, by fetching a node of an
A-tree, we can obtain the (partial) informa-
tion on bounding regions in two generations.
This configuration is also useful for efficient
handling of update operations.

As a negative side, approximation error may cause
the degradation of the power of pruning subtrees
in searching. From the performance evaluation
presented in Section 4, we have confirmed the
benefits of relative approximation well compen-
sate the approximation error.

• Partial Usage of MBSs: Since the SR-tree is
one of the best indices among the tree indices pro-
posed so far, the SR-tree is used as a start point
in the design of the A-tree. However, as shown
in the evaluation result (4), the effect of MBSs is
limited in search of high dimensional data. Hence,
MBSs are not stored in the A-tree, but the cen-
troid of data objects in a subtree is used only for
insertion and deletion.

In all, the A-tree is a new index which applied the
notion of the relative approximation to the hierarchi-
cal structure of the SR-tree. However, this application
is not simple; the configuration of the A-tree is unique
in that 1) each node contains an MBR and represen-
tation of relative approximation of its children; and 2)
centroid of data objects are used only for update.

2.3 Classification of Indices

Figure 1 shows a classification of spatial access meth-
ods from two viewpoints: representation of spatial ob-
jects and index structure. Conventional spatial access
methods can be roughly classified into the following
three categories: (1) linear scan; (2) the VA-File, a se-
quential file of absolute approximation of feature vec-
tors; and (3) R-tree family which has tree structures.
R-tree family can be further classified into “pure” tree-
structured indices such as the R*-tree and the SR-tree,
and “hybrid” of tree and sequential structure such as



the X-tree, which, with the notion of supernode, shows
stronger property of sequential scan as dimensionality
increases. The A-tree does not belong to any of these
categories and is unique in that i) the A-tree is a tree-
structured index; and ii) the representation of MBRs
and data objects is based on approximation relative to
their parent MBRs.

3 The Data Structure and Algorithms
of the A-tree

In this section, we first give the definitions of VBR
(Virtual Bounding Rectangle), which is represen-
tation of relative approximation of an MBR or a data
object in the A-tree. Then we describe the structure
of the A-tree. Also, algorithms for searching and up-
dating are presented. The nearest neighbor search al-
gorithm is guaranteed to return exact answers, that is,
the A-tree finds the desired objects without omission.

3.1 Virtual Bounding Rectangle

A VBR is a rectangle that contain and approximate an
MBR or a data object. In the A-tree, children MBRs
and data objects are approximated as VBRs by the
relative position in terms of their parent MBR.

A rectangle A in n-dimensional space is represented
by the two endpoints a and a′ of its major diago-
nal: A = (a, a′), where a = [a1, a2, . . . , an], a′ =
[a′

1, a
′
2, . . . , a

′
n], and ai ≤ a′

i for i ∈ {1, 2, . . . , n}. Let
B = (b, b′) (b = [b1, b2, . . . , bn], b′ = [b′1, b

′
2, . . . , b

′
n])

be a rectangle contained in A. Hence, ai ≤ bi ≤ b′i ≤
a′

i (i = 1, 2, . . . , n) holds. The basic idea of relative
approximation is to quantize the start value bi and the
end value b′i of the interval (bi, b

′
i) relatively to the in-

terval (ai, a
′
i). The quantization functions for the start

and end values are similar but slightly different.
We will define the quantization functions more

specifically. Let q (≥ 1) be an integer. The quantiza-
tion function Qs for start values is defined as follows:

Qs(bi) = ai +
(a′

i − ai)hs(bi)
q

where

hs(bi) =

{
q − 1 (if bi = a′

i)⌊
( bi−ai

a′
i
−ai

) · q
⌋

(otherwise)

Similarly, the quantization function Qe for end values
is defined as follows:

Qe(b′i) = ai +
(a′

i − ai)he(b′i)
q

where

he(b′i) =

{
1 (if b′i = ai)⌈

( b′i−ai

a′
i
−ai

) · q
⌉

(otherwise)
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Figure 2: An example of spatial representation using
VBR.

Note that hs(bi) ∈ {0, 1, . . . , q − 1}, and he(b′i) ∈
{1, 2, . . . , q}. Also, it is easy to verify that the fol-
lowing property holds:

ai ≤ Qs(bi) ≤ bi ≤ b′i ≤ Qe(b′i) ≤ a′
i (1)

The virtual bounding rectangle (VBR for short)
of B (in A with radix q) is the rectangle

VB = (v, v′)

where
v = (Qs(b1), Qs(b2), . . . , Qs(bn))

v′ = (Qe(b′1), Qe(b′2), . . . , Qe(b′n))

From the property (1), B is contained in VB, and VB

is contained in A. Let C be a data object contained
in a rectangle A. Since a data object can be regarded
as a special rectangle of which two diagonal endpoints
coincide, the VBR of C (in A with radix q) can be
similarly defined. Figure 2 shows an example of VBR.
In this figure, VB is the VBR of B in A with radix 8.

The VBR VB of B (in A with radix q) can be repre-
sented by 2n integers hs(bi), he(b′i) (i = 1, 2, . . . , n).
Since the number of possible values of hs(bi) is q,
hs(bi) can be represented by a binary code of length
l (= �log2 q�). The same discussion applies to he(b′i).
More specifically, we define the binary representation
of hs(bi) be [hs(bi)]2. Also, the binary representation
of he(b′i) be [he(b′i)−1]2. Here, [x]2 is the binary num-
ber of an integer x. We call the binary code of length
2nl, which are obtained by concatenating these 2n bi-
nary codes of length l, as the subspace code of VB

(in A with radix q). For a data object C, the VBR
VC of C (in A with radix q) can be represented by n
integers hs(bi) (i = 1, 2, . . . , n). Hence, the subspace
code of VC (in A with radix q) is of length nl. For ex-
ample, for the VB in Figure 2, hs(b1) = 2, he(b′1) = 6,
hs(b2) = 3, and he(b′2) = 6. Hence, 010101011101,
which is the concatenation of four binary codes [2]2,
[6 − 1]2, [3]2, [6 − 1]2 of length 3 (= �log2 8�), is the
subspace code of VB in A with radix 8. The subspace
code of a VBR V is denoted by sc(V ).

Obviously, there is a tradeoff between the length of
subspace code and the approximation error. We will
discuss this tradeoff in Section 4.
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Figure 3: The A-tree structure.

3.2 Index Structure

Besides MBRs and data objects, subspace code of
VBRs are included in the structure of the A-tree. Fig-
ure 3 shows an example of this structure. In Fig-
ure 3(a), the rectangle R represents the entire space.
M1 and M2 represent rectangles in R. M1 is the MBR
of M3 and M4. M3 is the MBR of data objects P1

and P2. In this structure, V 1, V 2, V 3 and V 4 are the
VBR of M1 in R, the VBR of M2 in R, the VBR of
M3 in M1, and the VBR of M4 in M1, respectively.
Also, C1 and C2 are the VBRs of P1 and P2 in M3,
respectively.

As shown in Figure 3(b), A-trees consist of index
nodes and data nodes. Index nodes other than the
root in A-trees contain exactly one MBR, say M , and
subspace codes of VBRs of MBRs in children nodes.
M is the MBR of MBRs (or data objects) contained in
children nodes. In the root node, no MBR is contained;
instead, the entire data space is assumed. When creat-
ing A-trees, subspace codes of children VBRs in a node
can be calculated from the information of their parent
MBR in the same node and the children MBRs (or
data objects). In case of the root node, subspace codes
of children VBRs are calculated from the information
of the entire data space and the children MBRs. In-
versely, when searching data objects, the absolute po-
sitions of children VBRs of a node can be calculated
from the parent MBR and subspace codes of those
VBRs stored in the node. Therefore, a node in A-trees
contains partial information of MBRs in two consecu-
tive generations; namely the exact position of an MBR
and approximate positions of its children MBRs. The
search algorithm of the A-tree effectively uses these
VBRs for node pruning.

In A-trees, index nodes are classified into leaf nodes,
intermediate nodes and the root node. The configura-
tion of each type of nodes is described below:

1. Data nodes:

A data node has a list of entries (P1, o1), (P2, o2),
. . ., (Pm, om), where Pi (i = 1, 2, . . . , m) is the

spatial vector of a data object, and oi (i =
1, 2, . . . , m) is the pointer to the data object de-
scription record. The number of entries in a leaf,
m, is bounded by predefined minimum and max-
imum.

2. Leaf nodes:

There is a one-to-one correspondence between
data nodes and leaf nodes. The leaf node cor-
responding to a data node N((P1, o1), (P2, o2),
. . ., (Pm, om)) has i) a rectangle M , which is the
MBR of P1, P2, . . . , Pm. ii) a pointer to N ; and iii)
a list of entries sc(V1), sc(V2), . . . , sc(Vm), where
Vi is the VBR of Pi in M (i = 1, 2, . . . , m.)

3. Intermediate nodes:

An intermediate node, which is an index nodes
other than the root node and leaf nodes, contains
i) a rectangle M , which is the MBR of children
nodes’ MBRs. ii) a list of entries, each of which is
a quadruplet (ptr, sc(V ), ω, Pcentroid), where ptr
is the pointer to a child node C, V is the VBR of
the MBR contained in C, ω is the number of all
data objects contained in the subtree rooted by C,
and Pcentroid is the centroid of the data objects in
the subtree.

As explained in Section 2.2, in the A-trees, MBS
radius is not stored in non-leaf nodes. ω and
Pcentroid is used only for the insertion or deletion
of data objects. Since the search algorithm uses
only M , ptr and sc(V ), the data of ptr and sc(V )
is clustered together in the implementation. This
method of implementation allows larger fanout of
ptrs and faster access to the necessary data in
searching.

4. The root node:

The root node has entries of the form:
(ptr, sc(V ), ω, Pcentroid), where ptr is the pointer
to a child node C, V is the VBR of the MBR



contained in C, ω is the number of all data ob-
jects contained in the subtree rooted by C, and
Pcentroid is the centroid of the data objects in the
subtree.

3.3 Full Utilization

For data-partitioning index trees, the number of en-
tries is less than the maximum number of entry slots
in most of the nodes.2 That is, there are many empty
slots in index nodes. We present a new technique, full
utilization, which fully uses all disk pages in an A-
tree structure. With this technique, blank disk space is
equitably distributed among all entries in a node. The
distributed space is then unevenly assigned to each di-
mension in an entry. The amount of assigned space
in an entry depends on the edge length of the parent
MBR. Dimensions along which the MBR has longer
edge have higher priority and a large number of bits
are assigned to the dimensions. This assignment re-
duces the approximation error.

Let emax be the maximum number of entry slots
in a node. A node has available space of size l · n ·
emax for entire entry slots, where l is the length of
subspace code and n is the dimension of the space.
In the full utilization, this space is evenly shared by
entries. Hence, if e is the number of stored entries in
a node, each entry is assigned a space of the length:

Lentry =
l · n · emax

e

Note that the code of length Lentry is equitably as-
signed to each entry. If Ei is the edge length of a
parent MBR on the i-th dimension (i = 1, . . . , n), the
code length for approximating the i-th position coor-
dinate in an entry is determined as:

Li = log2

(
Ei · n

√
2Lentry∏n

j=1 Ej

)

Code length is calculated in every accessed node
for the search and the updating of an A-tree with full
utilization.

3.4 Searching

Figure 4 shows the k-nearest neighbor search algo-
rithm for the A-tree, which is an improvement on
the algorithm in [9]. In the algorithm of [9], which
uses traditional tree structures, MINDIST (i.e. mini-
mum distance) between MBRs in a node and a given
query point are calculated and kept in a priority queue.
The priority queue is sorted in the ascending order of
MINDIST. Nodes are visited from the top of the queue
until the queue becomes empty. Also, a list is main-
tained to keep k-nearest objects found during the exe-
cution of the algorithm. The priority queue is pruned

2 The exception is the Hilbert R-tree [10]; this method can
utilize about 100 % page space.

Procedure search(point query, integer k)
1. enqueue(a pointer to the root, 0);
2. for i = 1 to k,

NNOL[i] := (node : dummy, dist : ∞);
3. for i = 1 to k, NNV L[i] := ∞;
4. while emptyQueue() = false do
5. N := dequeue();
6. if N is a data node then
7. for each entry ∈ N do
8. if DIST(query, entry.vector) ≤

NNOL[k].dist then
9. NNOL[k].node := entry.oid;
10. NNOL[k].dist :=

DIST(query, entry.vector);
11. sort NNOL by dist;
12. pruneQueue(NNOL[k].dist);
13. endif
14. enddo
15. else // N is an index node
16. for each entry ∈ N do
17. vbr := decode(N.MBR, entry.sc(VBR));
18. if MINDIST(query, vbr) ≤ NNOL[k].dist

and MINDIST(query, vbr) ≤ NNV L[k]
then

19. enqueue(entry.ptr, MINDIST(query, vbr));
20. if N is a leaf node and

MAXDIST(query, vbr) ≤ NNV L[k] then
21. NNV L[k] := MAXDIST(query, vbr);
22. sort NNV L;
23. pruneQueue(NNV L[k]);
24. endif
25. endif
26. enddo
27. endif
28. enddo
29. output(NNOL); // output the result

Figure 4: k-nearest neighbor search algorithm.

by eliminating nodes whose distance to the query is
longer than that of the k-th nearest neighbor object in
the list.

In the priority queue of the search algorithm of the
A-tree, pairs of a pointer to a node and a distance are
kept. The queue is sorted in the ascending order of the
distance. Since the sort of queue incurs high CPU cost
if a substantial amount of data is stored in the queue,
the search algorithm performs filtering using two near-
est neighbor lists. One is the usual nearest neighbor
list created using the algorithm of [9]. Candidate data
objects and their distance from the query point are
stored in this list. It is called the NNOL (Nearest
Neighbor Object List) in this paper. The other list
stores the maximum distance from the query point to
VBRs of data objects, and is called the NNVL (Near-
est Neighbor VBR List.)

In Procedure search (see Figure 4), as an initializa-
tion, the pair of a pointer to the root and 0 is stored
in the priority queue (step 1). In step 5, the function
dequeue() dequeues the pair from the top of the pri-



ority queue, extracts a pointer to a node from the pair,
traverses the extracted pointer, and fetch a node. If a
fetched node is an index node, the positions of VBRs
are calculated from the MBR of the node and the sub-
space codes for all entries by the function decode()
(step 17). If the distance between query and a VBR is
less than or equal to the k-th distance in NNOL (and
the k-th distance in NNVL), the function enqueue()
inserts the pair of the pointer to the corresponding
child node and the distance into the queue, then sort
the queue in the ascending order of the distance. (steps
18 and 19). In steps 20 to 24, MAXDIST(query, vbr), the
maximum distance from query to each VBR, is calcu-
lated. Moreover, if the distance is less than or equal to
the k-th distance in NNVL, NNVL is updated and the
function pruneQueue() is executed. This function re-
duces the queue size by eliminating pairs in the queue
whose distance to query is longer than the argument.

If the extracted node is a data node, data objects
in the node are examined (steps 6 and 7). If the dis-
tance between query and the data object is less than or
equal to the k-th nearest neighbor object found so far,
the data object together with its distance is stored in
NNOL as a nearest neighbor candidate (steps 8, 9, 10),
and NNOL is sorted (step 11). Furthermore, queue fil-
tering is performed using NNOL (step 12).

We explain the search algorithm using Figure 3(a)
as an example. First, VBRs V 1 and V 2 are calculated
from the position coordinates of R, sc(V 1) and sc(V 2).
If the distance from the query point to V 1 is less or
equal to the distance to the k-th nearest neighbor, the
node which contains M1 is fetched, then VBRs V 3
and V 4 are calculated from M1, sc(V 3) and sc(V 4).
Similarly, the calculated VBRs are compared to the
k-th nearest neighbor. If V 3 is not subject to prun-
ing, the node which contains M3 is fetched, then the
VBRs C1 and C2 are calculated from M3, sc(C1) and
sc(C2), and the calculated VBRs are compared to the
k-th nearest neighbor. Moreover, MAXDIST from the
query point to C1 and to C2 are stored in NNVL. If
C1 is not subject to pruning, P1 is accessed.

3.5 Updating

The update algorithm of the A-tree is based on that
of the SR-tree. Starting from data object insertion or
deletion, it propagates upward while adjusting MBRs
and centroids in non-leaf nodes. The difference be-
tween the A-tree and the SR-tree is that the A-tree
algorithm needs to calculate and update the codes of
VBRs. Concretely, the A-tree structure is updated as
follows:

(1) Let N be a data node, and M be the MBR of
N . Then, M is stored in the parent node of N .
If a data object insertion or deletion occurs in
N , adjust M and the centroid of all data objects
contained in N .

(2) If M is unchanged, calculate the code of the VBR
that approximates the inserted object from M ,
and update. Otherwise, update the codes of all
VBRs stored in the parent node of N .

(3) Let N be an index node, and M be the MBR of N .
If a data object insertion or deletion occurs in the
subtree whose top node is N , update the centroid
of all data objects contained in the subtree, which
is stored in the parent node of N . Moreover, if the
insertion or deletion causes a change in a child
MBR, adjust M .

(4) If M is unchanged, calculate the code of the VBR
that approximates the updated child MBR from
M , and update. Otherwise, update the codes of
all VBRs stored in the parent node of N .

On structures with full utilization, code length for
approximating MBRs or data objects in each node
varies according to circumstances. Therefore, if the
MBR or the number of entries in a node is changed,
the codes for all entries in the node must be calculated.
Concretely, the A-tree with full utilization performs
(2’) and (4’) instead of (2) and (4):

(2’) If M and the number of entries in N are un-
changed, calculate the code of the VBR that ap-
proximates the inserted object, and update. Oth-
erwise, calculate the code length assigned to each
dimension for approximating all data objects from
M and the number of entries, and update the
codes of all VBRs stored in the parent node of
N .

(4’) If M and the number of entries in N are un-
changed, calculate the code of the VBR that
approximates the updated child MBR, and up-
date. Otherwise, calculate the code length as-
signed to each dimension for approximating all
children MBRs, and update the codes of all VBRs
stored in the parent node of N .

4 Performance Test

To verify the effectiveness of the A-tree, we imple-
mented the algorithm and compared our proposed
method with the VA-File and the SR-tree. The ex-
periments used three data sets:

(1) Uniformly distributed data sets
Random point sets uniformly distributed in the
range [0.1) in each dimension.

(2) Real data sets
Feature vectors of Hue histograms extracted from
color images.

(3) Cluster data sets
For cluster data sets, the number of clusters is
100 in each data set and the center of cluster is



Table 1: Maximum number of entry slots in SR-trees.

Dimensionality 4 8 16 24 32
Non-leaf 73 39 20 13 10

Leaf 227 120 62 41 31

Dimensionality 40 48 56 64
Non-leaf 8 7 6 5

Leaf 25 21 18 15

Table 2: Maximum number of entry slots in A-trees.

Dimensionality 4 8 16 24 32
Root 818 511 292 204 157

Intermediate 812 503 283 195 147
Leaf 2706 1342 660 433 319

Dimensionality 40 48 56 64
Root 127 107 93 81

Intermediate 117 97 82 71
Leaf 251 205 173 149

distributed uniformly in the range [0.10). In addi-
tion, as the number of objects is N , N/100 objects
are gathered according to Gaussian distribution
around the center of cluster.

In our evaluation, the dimensionality for synthetic
and real data is varied from 4 to 64. The size of
all data sets is 100,000. The page size is 8KB. For
the A-tree and the SR-tree, one node occupies one
page (i.e. 8KB) because both indices give the best
search performance under this configuration. In as-
sessing search performance, the page access number
and CPU-time were measured by the average of 1,000
queries. Query points were generated randomly and
independently of data points in indices. 20-nearest
neighbor queries are used. CPU-time was measured
on a SUN UltraSPARC-II 296MHz. The search per-
formance of the SR-tree was measured using the algo-
rithm presented in [9], which outperforms the branch-
and-bound R-tree traversal algorithm [14] as shown in
[3]. As for insertion, the average cost for 1,000 inser-
tions was measured; 1,000 objects not included in the
indices were inserted into the data sets. The maxi-
mum number of entry slots in SR-trees is shown in
Table 1. For the A-tree, the most superior structure
from among five variants, l = 4, l = 6, l = 8, l = 10
and l = 12, was chosen. The maximum number of en-
try slots in A-trees of code length l = 6, is shown in
Table 2 as an example.

4.1 Search Performance

Figure 5 shows a comparison of the A-tree with the
VA-File and the SR-tree. The comparison used code
lengths of l(∈ {4, 6, 8, 10, 12}) of the A-tree because
these values yield the best search performance for the
different levels of dimensionality. The optimum code
length for uniformly distributed data sets was l = 12

for 4 dimensions, and l = 4 for dimensions from 8
to 64. For real data sets, the code lengths selected
were l = 12 for 4 dimensions, l = 8 for 8 dimensions,
l = 6 for dimensions from 16 to 64. Also, for clustered
data sets, the optimum code length was l = 12 for 4
dimensions, l = 6 for dimensions from 8 to 64. For the
comparison shown in Figure 5, we selected the best
code length for each dimension. Also, for the VA-File,
the most superior approximation file from among three
variants, l = 4, l = 6 and l = 8, was chosen according
to [18].

As shown in Figure 5, in all data sets ranging in
dimensionality from 4 to 64, the effectiveness of the A-
tree is obvious. The A-tree is almost equal to the VA-
File with uniform data sets, and greatly outperforms
the other structures for non-uniformly distributed data
sets such as real data sets. The A-tree is extremely ef-
fective for non-uniformly distributed data sets in par-
ticular. For example, the A-tree needs 77.3 % (77.7
%) fewer accesses than the SR-tree (the VA-File) for
real data sets with 64 dimensions.

Figure 6 shows the effectiveness of full utilization.
Although both A-trees have the same organization,
their coding differs. Since full utilization distributes
blank disk space among all entries in a node for cod-
ing, the approximation errors of VBRs are reduced.
Accordingly, this technique decreases the search cost
of the A-tree.

The experimental results in the rest of the paper
are based on real data sets.

4.2 Superiority of the A-tree

4.2.1 Comparison of the A-tree with the SR-
tree

Figure 7 shows the number of page accesses to index
nodes of the A-tree and non-leaf nodes of the SR-tree.
Also, Figure 8 shows the page accesses to data nodes
of the A-tree and leaf nodes of the SR-tree. As shown
in these figures, the A-tree requires remarkably fewer
accesses to both index nodes and data nodes compared
with the SR-tree. Moreover, the difference between the
two curves increases with dimensionality. Confirming
the position stated in Section 2.1, one of the most sig-
nificant problems with the SR-tree is its high search
cost for non-leaf node accesses because both MBRs
and MBSs are stored in non-leaf nodes. Since the A-
tree is based on relative approximation, the cost of
storing VBRs is small. This property leads to higher
performance.

4.2.2 Approximation Error with Variable
Length Code

VBRs include approximation error which could degen-
erates the search performance of the A-tree. There is a
tradeoff between approximation error and the length
of subspace code. We measured the approximation
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Figure 5: Number of page accesses versus dimensionality.
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Figure 6: Number of page accesses
for the structure with full utiliza-
tion.

Figure 7: Number of page accesses
to index nodes of the A-tree and
non-leaf nodes of the SR-tree.

Figure 8: Number of page accesses
to data nodes of the A-tree and leaf
nodes of the SR-tree.

error of the distance between query points and vis-
ited VBRs in the root and intermediate nodes during
search. Figure 9 plots the error of MBR approxima-
tion against dimensionality for different code lengths.
Note the logarithmic scale of the vertical axis in this
figure. We defined the approximation error ε of the
distance as follows:

ε = (1 − r) · 100, r =
1
S

S∑
i=1

‖p, Vi‖
‖p, Mi‖

where p is a query point and S is the number of vis-
ited VBRs in the root and intermediate nodes during
search. Vi are the visited VBRs, and ‖p, Vi‖ is the
distance between p and Vi. Mi are the MBR corre-
sponding to Vi. ε was measured by the average of
1,000 queries.

Figure 9 shows that the approximation errors ver-
sus dimensionality for the A-trees with l = 4, l = 6
and l = 8. In the structures with l = 4, l = 6 and
l = 8, the distance decreases by about 10 %, 2 % and
0.7 %, respectively. The approximation error decreases
significantly as the length of the code increases. How-
ever, on the other hand, longer codes cause smaller
fanout of nodes, thus could degenerate search perfor-
mance. Hence, there is an optimum code length in
terms of search performance. As described in Section
4.1, in our experimental setting, the optimum code
length changes from l = 4 to 12 depending on the di-

mensionality and distribution of data sets. In A-trees
with optimum code length, the effect of reducing the
entry size outweighs the influence of VBR error; con-
sequently, fewer node accesses are required.

4.2.3 Comparison of the A-tree with the VA-
File

This section explains why the A-tree is superior to
the VA-File. Although both the A-tree and the VA-
File employ a common idea of approximating position
coordinates, their data structures and algorithms are
completely different. In the A-tree, the approximation
is calculated in terms of a parent MBR. Therefore,
as the level of nodes goes down to the leaves, smaller
VBRs are used for approximation. This property is
in clear contrast to the approximation computed by
the entire space in the VA-File. The difference of data
structures causes the difference in accuracy of data ob-
ject approximation. Figure 10 shows the average edge
length of VBRs for data objects. In the VA-File, the
edge of each cell occupies the interval 2−l. When com-
pared with the VA-File, the A-tree provides high accu-
racy for VBRs as shown in the figure. Consequently,
fewer data object accesses are required and the search
cost is reduced. Figure 11 gives the number of object
accesses as a function of dimensionality. As expected,
the difference in data object access number between
the A-tree and the VA-File is significant.
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and VBRs in root and intermedi-
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Figure 10: Edge length of VBRs in
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Figure 11: Number of object ac-
cesses versus dimensionality.
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4.3 Evaluation of CPU-time

Figure 12 shows the CPU-time measured for the VA-
File, the SR-tree, and the A-tree. CPU-time was mea-
sured using the same conditions used in Figure 5(b).
The figure indicates that the A-tree is superior in terms
of CPU-time. For 64 dimensions, the performance of
the A-tree is almost equal to that of the SR-tree, and
it outperforms the VA-File by 81.8 %.

Since the VA-File must calculate the approximated
position coordinates for all objects, its CPU-time is
much higher than the A-tree as shown in Figure 12.
On the other hand, although the A-tree needs to cal-
culate VBRs, the CPU-time of the A-tree is lower than
that of the VA-File for the following reason. Since the
number of node accesses is extremely low, calculation
and comparison of the distances from the query point
are reduced. Therefore, the A-tree requires less CPU
time even though it must calculate VBRs. In addition,
the search algorithm filters the queue using two near-
est neighbor lists in order to lower CPU cost. This
filtering lowers queue length and provides a valuable
contribution to the reduction in CPU-time. As a re-
sult, the A-tree provides reasonable CPU cost.

4.4 Insertion Cost

Figure 13 compares the A-tree with the SR-tree in
terms of insertion cost under the same conditions as
used in Figure 5(b). Insertion cost was measured as

the average cost of inserting 1,000 randomly-selected
objects. Random objects were used because inserted
objects are usually unpredictable in practical situa-
tions.

Since the A-tree must access VBRs in addition to
MBRs and data objects to maintain the structure, the
A-tree incurs larger insertion cost than the SR-tree.
However, the increase in cost for the A-tree without
full utilization is modest. On the other hand, the A-
tree with full utilization considerably increases inser-
tion cost. Since full utilization provides lower search
cost, this method is suitable for static data set.

4.5 Storage Cost

Figure 14 compares the storage cost of the A-tree to
that of the SR-tree under the same conditions as used
in Figure 5(b). The A-tree and the SR-tree incur simi-
lar storage costs for 4 to 32 dimensions, but the A-tree
incurs 19.5 % less cost for 64 dimensions. The storage
cost of the A-tree is low even though it includes VBRs.
There are two reasons for this. First, VBRs need only
small storage volumes. Second, the number of index
nodes in the A-tree is extremely small due to its larger
fanout.

5 Conclusions

This paper has presented the A-tree ( approximation
tree ) which offers excellent performance in searching



for data in high-dimensional spaces. First, we analyzed
the VA-File and the SR-tree, existing structures used
for high-dimensional searching, and discussed their
problems. Based on this analysis, we developed the
A-tree to overcome the problems and so achieve higher
search performance.

The A-tree achieves high performance due to its
use of relative approximation. Since the A-tree in-
dex nodes contain VBRs, whose storage size is low,
the volume of entries in the nodes is reduced which
yields improved search performance. Although VBRs
include approximation error in terms of size, the error
is reduced by the mechanism of relative approxima-
tion. By using this mechanism, A-tree bests the alter-
native search methods, the VA-File and the SR-tree.

The mechanism of the A-tree is remarkably effi-
cient, especially for non-uniformly distributed data
sets such as real data sets. For non-uniformly dis-
tributed data sets, the A-tree outperforms the SR-tree
and the VA-File in all dimensions up to 64, which is the
highest dimension examined in our experiments. The
A-tree requires 77.3 % (77.7 %) fewer page accesses
than the SR-tree (the VA-File) for real data with 64-
dimensions.

We also present a new technique, full utilization,
which fully uses all disk pages in an A-tree struc-
ture. This technique provides higher search perfor-
mance since the approximation errors of VBRs are re-
duced.

VBRs approximate MBRs and data objects, how-
ever, searches yield exact solutions, that is, the A-tree
finds the desired objects without omission. The search
performance of the A-tree is greatly improved, and its
storage cost is low. Thus, this method well supports
practical applications.
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