
SoundCompass: A Practical Query-by-Humming System

Normalization of Scalable and Shiftable Time-Series Data
and Effective Subsequence Generation

Naoko Kosugi, Yasushi Sakurai, Masashi Morimoto
NTT Cyber Space Labs. 1-1, Hikarinooka, Yokosuka, Kanagawa, Japan

{kosugi.naoko, sakurai.yasushi, morimoto.masashi}@lab.ntt.co.jp

ABSTRACT
This paper describes our practical query-by-humming sys-
tem, SoundCompass, which is being used as a karaoke song
selection system in Japan. First, we describe the fundamen-
tal techniques employed by SoundCompass such as normal-
ization in a time-wise sense of music data, time-scalable and
tone-shiftable time-series data, and making subsequences for
efficient matching. Second, we describe techniques to make
effective feature vectors based on real music data and do
matching with them to develop accurate query-by-humming.
Third, we share valuable knowledge that has been obtained
through month’s of practical use of SoundCompass. Fourth,
we describe the latest version of the SoundCompass system
that incorporates these new techniques and knowledge, as
well as describe quantitative evaluations that prove the prac-
ticality of SoundCompass. The new system provides flexible
and accurate similarity retrieval based on k-nearest neighbor
searches with multi-dimensional spatial indices structured
with multi-dimensional feature vectors.

1. INTRODUCTION
A vast amount of information flows through the WWW,

and all of it can be quickly accessed via search engines such
as Google. Even so, there is no good way to search for a
song that people know only a part of!!

These days, recorded music is everywhere we go, in shops,
in cafes, etc., and it is almost impossible to find TV pro-
grams or commercials that do not include music. Music
seems to be an essential part of our lives. It is no wonder
that virtually everyone has probably heard a familiar song
whose name they couldn’t remember. Wouldn’t it be great
if you could “remember” the name by only humming a part
of the melody? A “query-by-humming system” makes this
possible.

The problem of searching for a song that you remember
only a part of would seem to be a comparatively simple one.
It is not, however, because there are many issues that require
a wide variety of technologies to resolve; they are as follows:

• A Similarity retrieval technique is necessary.
People hum and input a part of a melody as a query
with a microphone. Some errors may be included when

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2004 June 13-18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 . . . $5.00.

the voice signal data is processed. Moreover, few peo-
ple can sing a song in exactly the same way as written
in the music score.

• Complex time-series data handling is necessary.
Music can be recognized even if it is performed faster
or slower than usual, or in higher or lower keys. This is
because music is time-scalable and tone-shiftable time-
series data.

• A Complex subsequence matching technique is neces-
sary.
When users search for a song by humming, no one
knows in advance what segment they will hum, or how
long, how fast, or in what key they will hum the tune.

• A Compact database, efficient indices, and fast match-
ing techniques are necessary to make a practical sys-
tem.

A query-by-humming system is not only essential for mu-
sic searching; it is also a noteworthy development for the
database research area as a whole because it incorporates
a number of very important database technologies, such as
similarity retrieval, time-series data handling, and subse-
quence matching. Our previous version of SoundCompass
[8] has been used as a part of a karaoke song selection system
in Japan since the end of 2000. In this paper, we describe
techniques the latest version uses to time-normalize music
data, which is time-scalable and tone-shiftable time-series
data, and to do efficient subsequence matching for efficient
query-by-humming. We also confirm the practicality of the
new techniques through quantitative evaluations.

Figure 1 shows the meaning of the terms “time-scaling”,
“tone-shifting”, and “time-normalization” used in this pa-
per. Here, time-scaling means “scaling in a time-wise sense”,
tone-shifting means “shifting in a tone-wise sense”, and time-
normalization means “normalization in a time-wise sense”.

2. RELATED WORK
Notes are used in both note-based [4, 9] and beat-based

processing [8]. Recently, though frame-based music data
processings that directly use voice signals have been pro-
posed [1, 5, 10, 12]

The advantage of the frame-based processing is that no er-
rors caused by note transcription are included in the queries.
However, it is not always true that through frame-based pro-
cessing better queries can be made, because it is inevitable
that many errors sources, such as noise, affect humming
data. In addition, timing information remains in the data,
and this will influence matching. Thus, some research uses
Dynamic Time Warping [6, 11], or DTW, for matching to
reduce the influence of the time elasticity of music data [5,
12]. DTW was originally used in speech recognition, since it
enables matching without the influence of the local timing

t
(A)

t
(B)

t
(C)

t

t

t

(A’)

(B)

(C’)

time-normalized

time-scaling

tone

tone

tone

t
(F)

tone-shifting

tone

t
(E)

tone

t
(D)

tone

tone

tone

tone

Figure 1: Time-scaling, tone-shifting, and time-
normalization of time-series data.

gaps in data. Indeed, DTW seems to be useful for matching
of music data and humming, because general people are not
good at keeping a constant tempo when they hum. However,
its advantages and disadvantages for query-by-humming sys-
tems are not clear enough, since its application is limited at
present.

3. TIME-NORMALIZATION AND GENER-
ATION OF SUB/SUBSUBSEQUENCES

In this section, we describe methods to time-normalize
music data and make sub/subsubsequences from them. We
used 21,804 songs and 591 hummings for our investigations
and evaluations. All the songs are in MIDI format and
used in karaoke. Most songs are Japanese pop hits; how-
ever, about 6,000 of them are foreign songs, simple nursery
songs, and folk songs. Thirty-four people (26 males, 8 fe-
males) hummed the samples. Some hummed in time with a
metronome, and others without one.

3.1 Onset-to-onset Duration
For the hummings, the duration of an utterance is defined

as the interval from the time one utterance starts to the time
the next utterance starts, and for songs, the duration of a
note is defined as the interval from the time one note starts
sounding to the time the next note starts sounding. This is
called the onset-to-onset duration [9]. We refer to the onset-
to-onset duration of an utterance as an utterance-duration
for hummings, and that of a note as a tone-duration for
music data.

Why we focus only on the start timings of utterances and
notes is that it is highly likely that the timing at which an
utterance starts may often be temporally correct. If the
utterance starts with the wrong timing, the humming lacks
rhythm, so it is difficult for people to recall the correct song.
Thus, many people are especially sensitive to the start tim-
ing of the utterances as well as the pitches when they hum.
The timing when an utterance starts can be fairly accurately
found based on changes in amplitude of the voice signal.

3.2 Unit-length and Beat-resolution
Song data and hummings are time-normalized by convert-

ing all tone-durations and utterance-durations to relative
values based on the most frequently appearing durations.
We define the basis for hummings as unit-length (ul), and
for split song data (sub/subsubsequence in this paper) as

beat-resolution (br). Let Lhi be the i-th utterance-duration,
and Lsj be the j-th tone-duration; they are converted into

L′
hi

and L′
sj

with the following equations.

L′
hi

= Lhi/ul L′
sj

= Lsj /br

3.3 Subsequences and Subsubsequences
We propose a two-stage music data split, in other words,

generation of subsequences and subsubsequences. Segments
that hold the same amount of music information are neces-
sary for efficient subsequence matching. However, it is dif-
ficult to define adequate “segments” for music data because
of the data’s time-elasticity. Thus, we propose a two-stage
data split; the first is a temporal split to define the seg-
ments, and the second is a split in which every segment has
the same amount of music information based on the beat-
resolution. The temporal split is used to create subsequences
and the second split is used to make subsubsequences from
a subsequence.

Let the most frequently appearing tone-duration in each
song be the temporal beat-resolution (TBR) of the song.
The song data is temporally normalized with TBR, and then
subsequences of constant length based on the TBR are gen-
erated by using the sliding-window method [2]. Next, for all
subsequences, the most frequently appearing tone-duration
in every subsequence is reselected. If the tone-duration of
a subsequence is not the same as the TBR, it is defined as
the real beat-resolution (RBR) of the subsequence. Then,
both slide-length and window-length are reset based on the
RBR, and subsubsequences are generated from the subse-
quence. Figure 2 shows subsequences and subsubsequences
for the cases RBR < TBR (left), RBR = TBR (middle),
and RBR > TBR (right), respectively.

• RBR < TBR
Subsubsequences whose lengths are equal to the window-
length based on RBR are made by deleting music data
from the end of the subsequence.

• RBR > TBR
Subsubsequences whose lengths are equal to the window-
length based on RBR are made by adding music data
that come directly after the subsequence.

song data

RBR>TBR

RBR<TBR

subsequence

subsubsequence

subsubsequence
subsubsequence

subsubsequence

subsubsequence

subsubsequence

subsequence

subsequence

RBR=TBR

Figure 2: Generation of sub/subsubsequences.

Figure 3 shows the percentage of how often the most fre-
quently appearing tone-duration appears in each song. The
figure shows that the most frequently appearing tone-duration
appears in the 40%–60% range in many songs. Thus, sub-
subsequences are also necessary in addition to subsequences
to make all the segments be normalized based on the most
frequently appearing tone-durations in them.

3.4 Phonetic Value Rate
Tone-durations in our MIDI data have a wide variation,

in contrast to what we imagined would be a narrower vari-
ation. For example, a standard quarter note is represented
with 480 ticks; however, quarter notes in our data corre-
spond to 460, 500 ticks, etc. This is because MIDI data
makers do their best to make values that are close to the

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100

N
um

be
r

of
 s

on
gs

percentage

"notes_percentage"

Figure 3: Percentage of the most frequently appear-
ing tone-duration appearing in each song

original performance. However, few users can utter notes
consistently reflecting on such small differences. In the same
way as in humming, most of the variations in L′

hi
s are not

intended by the user but are simply mistakes. This means
it is not good for queries and data in the database to re-
flect such variations. Thus, we propose a method to map
all tone/utterance-durations converted based on the unit-
length and beat-resolution to representative values, phonetic
value rates, in pvrs. The possible phonetic value rates were,

0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 6.0 pvrs (1)

These values are determined based on the frequency of
appearance of converted tone-durations. Figure 4 shows the

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

N
um

be
r

of
 n

ot
es

Normalized values

"phonetic-value-rates"

Figure 4: Distribution of L′
sj

.

distribution of L′
sj

of all sub/subsubsequences. The L′
sj

’s
exceeding 8.0 are not displayed. There are many notes with
1.0, 0.5, or 2.0, and fairly many with 1.5, 3.0, 4.0, 5.0, or
6.0. It is difficult for casual singers to extend long notes
correctly. Thus, the maximum phonetic value rate was set
as 6.0 pvrs, and longer tone-durations are mapped to 6.0
pvrs.

Song data time-normalized with this method are similar
to those of the beat-based processing whose effectiveness was
already proved in our previous paper [8]. This method not
only provides fast matching, but also improves the discrim-
inatory power by utilizing the duration information of each
note/utterance as well as pitches for matching.

4. FEATURE VECTORS AND MATCHING
STRATEGY

4.1 Feature Vectors

4.1.1 Tone-in Phonetic Value Rate
One of the greatest pleasures of music appreciation is lis-

tening to timely changes in the heights and lengths of tones.
These changes also constitute one of the most important
features of music. As such, we propose a feature vector that

represents the transition of tones in a timely fashion, which
we call Tone-in phonetic value rate, or TPV. It is defined as
tone values in a line that are ordered for every phonetic value
rate. Each vector element is a difference relative to a given
tone, which we call the base-tone; this makes it possible to
search for songs with various key heights.

The followings explains how to make a TPV with the first
bar of an example tune in Figure 5. C4, D4, and so on
represent pitch names and the number to the right is the
MIDI note number. The vector generated from the melody
depends on the beat-resolution of the sequence that includes
it. For example, if the base-tone is the lowest tone, 60 in this
example, in the tune, when the beat-resolution is a quarter
note, the first note has 3.0 pvrs and the next one 1.0 pvr.
Thus a four-dimensional vector (0, 0, 0, 7) is generated.
When the beat-resolution is an eighth note, the first note
has 6.0 pvrs and the next one 2.0 pvrs. Thus, an eight-
dimensional vector (0, 0, 0, 0, 0, 0, 7, 7) is generated.

4.1.2 Matching with Vector Heads
We proposed a “partial tone transition feature vector” for

the previous SoundCompass [8] to match the heads of the
vectors made from song data and from humming. We do so
by setting the heads of feature vectors so that they don’t
have to be the beginnings of the sub/subsubsequences. This
technique is used for both time-normalized hummings and
song data.

Here, let the slide-length be represented sl, and the window-
length wl. The feature vector is basically a TPV-type vector
whose head is set where the most distinguishable tone that
first appears within sl pvrs in a sub/subsubsequence. Thus,
the dimension of the vector is (wl − sl). We confirmed that
the retrieval accuracy was the highest when the highest tone
was used as the most distinguishable. This feature vector
is called the variable slide-length TPV, or VSTPV. On the
other hand, feature vectors whose heads are identical to the
beginnings of the sub/subsubsequences are called constant
slide-length TPV, or CSTPV.

The generation of VSTPVs and CSTPVs is explained be-
low for the example tune shown in Figure 5. Suppose that

1 2 3 4 5 6 7 8

t

(dimension)

C4 (60)
D4 (62)
E4 (64)
F4 (65)

9 10 11 12 1314 15 16 17 18 19 20 21 22

4
4

CSTPV1
CSTPV2

VSTPV1
VSTPV2

G4(67)

(A) (B)

Figure 5: Tune in which the start beat of the beginning
part (A) differs from that of the bridge part (B).

the bridge part (B) begins at the fourth beat of the first
bar, and the start of the song (A) is at the first beat of
the first bar. This means that this tune is an auftakt with
respect to the bridge part. All of the beginnings of the
sub/subsubsequences made from this tune are at the first
beat of each bar if the beat-resolution is an eighth note and
the slide-length is 8 pvrs. Thus, the two CSTPV vectors’
heads are the same as the beginning of each bar. This means
that when a user hums the bridge part, there is no CSTPV
vector in the database whose head is consistent with that of
the hummed tune. On the other hand, if we let the most
distinguishable tone be the highest tone, the head of the
VSTPV1 is the fourth beat of the first bar (7th element of
CSTPV1) and matches the head of the bridge part. Thus,

it doesn’t matter whether the user hums from the start of
the song (A) or from the bridge part (B); the VSTPV vector
made from such hummings will be the same one, and there
will be a matching VSTPV vector in the database. In pilot
studies, VSTPV showed almost the same retrieval accuracy
as did CSTPV whose slide-length is 1/4 that of the VSTPV.

4.2 Matching Strategy

4.2.1 OR-retrieval among Humming Subsequences
If a user hums longer than the window-length, the sliding-

window method will generate multiple subsequences. We
use each subsequence for matching and the final result is
generated by merging the results from each matching.

Suppose that m subsequences are generated from a hum-
ming h, and n subsequences are generated from a song s.
The distance between the song and the humming, D(h, s),
is defined by eq.(2). The distance between the i-th subse-
quence of a humming h and the j-th sub/subsubsequence of
a song s is represented as d(hi, sj).

D(h, s) = min
1≤i≤m,1≤j≤n

{d(hi, sj)} (2)

This is effective, because we do not know in advance what
errors exist where in the humming nor which subsequence is
the most discriminable among them.

4.2.2 AND/OR-retrieval of Features
The percentage of hummings whose CSTPV heads were

not matched to those made from song data but whose VSTPV
heads were matched to those made from song data was about
24.6%. On the other hand, the percentage of hummings
whose VSTPV heads were not matched to those made from
song data but whose CSTPV heads were matched to those
made from song data was about 5.8%. Thus, it will be ef-
fective to use both features separately for the retrieval and
use the better one, i.e., OR-retrieval.

Another type of feature vector is necessary to deal with
the number of utterances/notes, since the TPV-type feature
vectors can not distinguish between eight successive eighth
notes and one whole note in the same pitch. Thus, a distri-
bution of tone difference, or DTD [8], which represents the
tone difference between successive notes is introduced. In
the pilot study, we confirmed that it is useful as an aux-
iliary feature vector to consider the number of utterances
and notes, though it does not have sufficient discriminatory
power by itself. Since DTD is not exclusive, it is used in
AND-retrieval with VSTPV and CSTPV. In Section 6, the
retrieval accuracy is evaluated with the feature combination
“(VSTPV && DTD) || (CSTPV && DTD)”.

5. SOUNDCOMPASS

5.1 Database Construction
Database construction starts with extracting melody data

from 21,804 songs. Time-normalization and generation of
sub/subsubsequences are performed simultaneously as de-
scribed in Section 3. The slide-length and the window-length
are set to be 8 pvrs and 32 pvrs, respectively, since the most
frequently appearing phonetic value in our song data is an
eighth note. This means 1.0 pvr may correspond to an eighth
note in many songs. Moreover, 97% of all songs are in 4/4
time, and many phrases in 4/4 time are about four bars. A
bar and four bars in 4/4 time means 4 beats and 16 beats, in
other words, 8 eighth notes and 32 eighth notes, respectively.

Next, VSTPVs, CSTPVs, and DTDs, are generated. The
VSTPVs and CSTPVs are tone-shifted to let their average
tone value be 0.0. Here, sub/subsubsequences that produce
the same feature vectors are deleted, letting the first appear-
ing one be kept, in order to reduce the size of the database

and to keep the system’s discriminatory power high. (Most
of the songs have redundant structures [3], i.e., several verses
[8].) Finally, feature vectors are individually indexed accord-
ing to the feature.

5.2 Hummed Tune Processing
A hummed tune is recorded in 11kHz/8bit/monoral. The

acoustic data is processed with 512-point data for every 256
points by FFT to pick up the timing of utterances and to
track the fundamental frequency (F0) of each frame. In
SoundCompass, pitch and duration of an utterance are de-
termined based on the assumption that one utterance cor-
responds to one note. Since many melodies that have lyrics
allocate one syllable (one letter in Japanese) per note, the
assumption seems valid.

Next, the unit-length is determined, and each utterance-
duration is adjusted with a set of phonetic value rates. Sub-
sequences are then generated. Feature vectors, VSTPVs,
CSTPVs, and DTDs, are generated from each subsequence
and used for queries.

5.3 Retrieval Engine and Similarity Measure-
ment

To achieve scalability and high-speed similarity retrieval,
we built a search engine with distributed indices, which we
call Keren [7]. All queries are processed in parallel with
multiple threads that are generated when Keren is initial-
ized. Keren comprises a global manager (GM) and multi-
ple database managers (DM). GM accepts retrieval requests
from clients and sends queries to DMs. It also receives re-
trieval results from DMs, merges and formats them, and
sends them to the clients. In the database update phase,
the GM evenly distributes input songs to DMs and requests
database update. The DMs, in the retrieval phase, accept
queries from the GM, retrieve results, and send them to
GM. In the update phase, DMs process data distributed
by GM and restructure their indices so as to make them
well-balanced. This ensures that Keren is able to conduct
efficient searches.

The similarity retrieval function finds vectors in each fea-
ture’s vector space that are close to the vectors generated
by the hummed tune. The city-block distance is used for
the similarity measurement. The shorter the distance to the
sub/subsubsequence is, the more the sub/subsubsequence
resembles the humming. All results from each feature vec-
tor space are merged based on the combination described in
Section 4.2.

5.4 User Interface
The hummed tune is recorded through a microphone. The

user is required to clearly hum the song notes using only the
syllable “ta” to transcribe pitches as accurately as possible.

Figure 6 shows the GUI screen for recording humming.
Here, SoundCompass is in the middle of recording (the screen’s
central bar is still not completely filled with note icons). Ex-
planations for each button can be seen in the lower part of
the screen. Thus, beginners can easily use the system by
referencing them.

5.5 Issues
Here, we discuss issues that have been brought up before

in many papers, but which we believe we should discuss
again, in view of practical use of SoundCompass.

5.5.1 Is a metronome necessary?
The previous version of SoundCompass [7, 8] needed a

metronome to time-normalize the humming data. The Sound-
Compass does not need one because song data and hum-
mings are time-normalized automatically. Nonetheless, some
people say it’s better to sing to metronome beats because

Figure 6: Recording Screen for Humming

a metronome lets people recognize the recording time, and
its beats urge smooth humming. Moreover, some people say
that they can hum easier to the beat of the metronome.
Thus, the new SoundCompass system still has a metronome
as an optional user interface. Users can retrieve songs even
if they are out of beat with the metronome.

5.5.2 Is it better to sing to lyrics than with “ta”?
Some systems, including SoundCompass, require users to

hum with only a syllable “ta” or “da”, because it is effective
for voice signal processing [8, 9]. In addition, we found other
advantages.

A fairly large number of people said that singing to lyrics
is more embarrassing than singing to the syllables “ta” or
“da”. Moreover, many people said that actual humming to
a microphone is far more embarrassing. They said singing
with “ta” tends to eliminate embarrassment as they get used
to it. The reason may be that they might not want to be
embarrassed in front of other users by singing poorly to lyrics
that have been recorded by popular singers.

Even more important is that few users can concentrate on
the pitch and duration of each note when they sing lyrics.
The result will be poor-quality queries and failure to retrieve
correct songs. Music class teachers often sing with the syl-
lable “ta” in teaching their classes, because it allows them
to sing melody more correctly than they could by using the
actual lyrics. Thus, if people really want to find the song,
it’s important for them to concentrate on reproducing the
melody as correctly as possible.

The reason that the experimental subjects said it was bet-
ter for them to sing lyrics is that they selected songs whose
melodies and lyrics were already familiar to them. This
doesn’t necessarily correspond to how such a system would
be used in practice. From a practical viewpoint, we should
not consider a system that can accept singing to lyrics, but
one that enables users to get used to singing with “ta” or
“da” naturally.

5.5.3 Is there any other use for query-by-humming?
There are a variety of usages for query-by-humming sys-

tems besides searching for unknown songs. Some people
use SoundCompass in our laboratory as a game and enjoy
making “hits” or “misses” by setting a variety of rules for
humming. Some people use it to check key differences be-
tween keys of their voice and those of songs for singing train-
ing. Some people use it to point to a specific place within
a song, since it provides subsequence matching. For exam-
ple, if lyrics are accompanied by melody data such as meta
data, we can refer to any portion of lyrics with a query-by-
humming system. Thus, we can conclude that a query-by-
humming is a very useful application.

6. EVALUATION

6.1 Experimental environment
Figure 7 shows an experimental system. Keren (Section

5.3), SoundCompass Server (query-by-humming server), and
Client PCs are connected to a network. A microphone is
connected to a client PC. Humming is sent to the Sound-
Compass server. The server processes it, makes queries and
sends them to Keren. Keren retrieves the queries and sends
results to the SoundCompass server. The server receives the
results, formats them, and sends them to the client PCs.

Client
 PC

Client
 PC

Client
 PC

......

query
result

SoundCompass
 Server

Keren

Figure 7: Experimental System

6.2 Effectiveness of Time-Normalization and
Sub/subsubsequence Generation

The number of hummings that have sub/subsubsequences
that are time-normalized in the same way as humming is
shown in Table 1. “Time-normalized in the same way as a
humming” for song data means the tone-durations in one
of the sub/subsubsequences of the song data have the same
phonetic value rates as those of the utterance-durations in
the humming. As shown in Table 1, about 83.93% of hum-

Table 1: Number of sub/subsubsequences time-
normalized in the same way as humming

number of unit-lengths
1 2

subsequence 496 (83.93%) 513 (86.81%)
subsubsequence 59 (9.98%) 61 (10.31%)

summation 555 (93.91%) 574 (96.15%)

mings have subsequences that are time-normalized in the
same way and about 9.98% of hummings have only subsub-
sequences that are time-normalized in the same way when
only one unit-length is used for the time-normalization. This
means subsubsequences are necessary. Moreover, by using
the second-most frequently appearing utterance-duration (two
unit-lengths) in addition to the first most, about 96.15% of
hummings have sub/subsubsequences that are time-normalized
in the same way as those in the database.

6.3 Retrieval Accuracy
The effectiveness of the techniques proposed here is quan-

titatively evaluated by comparing the retrieval accuracies of
three types of combinations of data-handling and matching
method. The data were also split with a sliding-window
to speed up matching for the DTW case. Figure 8 shows
retrieval accuracies of the three types. The x-axis repre-
sents rank and the y-axis represents the retrieval accuracy by
showing the percentage of songs retrieved within the rank.
“DTW” indicates that DTW alone was used for matching.
“TN+DTW” indicates that DTW was used for matching
and music data was time-normalized based on the techniques
described in Section 3. “SC” indicates that a city-block dis-
tance measurement was used for linear matching, music data
were time-normalized, and the feature vectors and matching
strategies described in Section 4 were applied.

Difference between “DTW” and “TN+DTW” is the way
in which they handled the music data: the former uses tim-
ing information as is and the latter uses the time-normalized

0

20

40

60

80

100

0 5 10 15 20 25

R
e
t
i
e
r
v
a
l

A
c
c
u
r
a
c
y

(
%
)

Rank

"SC"
"TN+DTW"

"DTW"

Figure 8: Retrieval Accuracy

timing information. Using the timing information as is means
that it is highly likely that the amount of musical informa-
tion in the song data and in the humming data will be differ-
ent. Because two 10-seconds music data for the same part of
the same piece of music can not be regarded as maintaining
the same amount of information in musical sense if they are
not played at the same tempo. Thus, the matching between
them will not be fair. On the other hand, if the music data
are time-normalized, 10-beats music data or 10-pvrs mu-
sic data can be regarded as maintaining the same amount
of information in the musical sense, even if their durations
are different. Consequently, fair and fast matching becomes
possible. This is the main reason for the difference in the re-
trieval accuracies between “DTW” and “TN+DTW”. Thus,
it is clear that equalizing the quantity of information for
correct matching is necessary, i.e., the effectiveness of the
time-normalization and generation of sub/subsubsequences
is proved.

The reason that the retrieval accuracy of “SC” is better
than that of “TN+DTW” is that; 1) linear matching raises
the discriminatory power since both pitch and duration of
notes can be taken into account for matching; 2) VSTPVs
made from song data will match VSTPVs made from hum-
ming data more often than if CSTPVs were used; 3) the re-
trieval with multiple kinds of feature vectors also improves
the discriminatory power.

In summary, we find two important points for music data
matching as follows:

• The amounts of musical information in the two data
sets to be compared must be equal. In other words,
both the beginnings and ends of the music data must
be identical.

• Note-duration information should also be used for match-
ing in addition to pitch information to improve dis-
criminatory power.

6.4 Discussion
Though the effectiveness of the techniques proposed in

this paper has been quantitatively confirmed, the retrieval
accuracy shown in Figure 8 is not commensurate compared
to the accuracy of time-normalization and sub/subsubsequence
generation shown in Table 1. The main reasons are errors
in voice signal processing and failure of tone-shifting.

Regarding the errors in voice signal processing, the detec-
tion accuracy of frames in which utterances start is about
88.94%. The detection accuracy is the percentage of hum-
mings whose actual number of utterances matches those ex-
tracted by voice signal processing in the range of ± 2. More-
over, more errors can be included through the pitch tracking
process. Thus, the retrieval accuracy for the present Sound-
Compass seems to be less than 90%. We can not evaluate
the retrieval accuracy of a query-by-humming system apart
from the accuracy of voice signal processing. In addition,

as the number of users increase, the signal processing errors
increase, because the voice variation and the ways of singing
increase. As a result, there will be voice signals that can not
be handled with our current voice signal procedures. Thus,
we have to investigate the hummings that are not retrieved
to improve the voice signal procedures. The upper limit of
accuracy can be found by repeating experiments with many
users.

Regarding tone-shifting, we tried to use the highest tone
as the base-tone as well as the average tones. As a result,
there are no differences in retrieval accuracy between the
two cases. Thus, we need to conduct more investigations to
address this problem.

7. CONCLUDING REMARKS
In this paper, we described techniques to time-normalize

and generate sub/subsubsequences for music data (time-
scalable and tone-shiftable time-series data) for a query-by-
humming system called SoundCompass. These techniques
realize fast and accurate query-by-humming, since linear
matching with both pitch and duration of notes becomes
possible. Moreover, feature vectors with variable slide-length
and AND/OR combination matching of feature vectors were
proposed to increase the retrieval accuracy. Our latest ver-
sion of SoundCompass incorporates all these techniques, and
their effectiveness was quantitatively evaluated.

Acknowledgments
Authors would like to thank Gengo Suzuki, Makoto Onizuka,
Yoshiaki Ito, and Kiyoshi Igarashi for their great help and
also all people who gladly hummed a lot of tunes for us.

8. REFERENCES
[1] W. P. Birmingham, R. B. Dannenberg, G. H. Wakefield,

M. Bartsch, D. Bykowski, D. Mazzoni, C. Meek, M. Mellody,
and W. Rand. MUSART: Music Retrieval Via Aural Queries.
In Third International Conference on Music Information
Retrieval, 2001.

[2] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast
Subsequence Matching in Time-Series Database. In Proceedings
of the ACM SIGMOD, International Conference on
management of Data, pages 419–429, 1994.

[3] J. Foote. Visualizing Music and Audio using Self-Similarity. In
Proc. ACM Multimedia 99, pages 77–80, November 1999.

[4] A. Ghias, J. Logan, and D. Chamberlin. Query By Humming.
In Proc. ACM Multimedia 95, pages 231–236, November 1995.

[5] J.-S. R. Jang and H.-R. Lee. Hierarchical Filtering Method for
Content-based Music Retrieval via Acoustic Input. In Proc. of
the 9th ACM International Conference on Multimedia, pages
401–410, 2001.

[6] E. Keogh. Exact Indexing of Dynamic Time Warping. In Proc.
of the 28th VLDB Conference, 2002.

[7] N. Kosugi, H. Nagata, and T. Nakanishi. Query-by-Humming
on Internet. In 14th DEXA 2003 Proceedings, pages 589–600,
2003.

[8] N. Kosugi, Y. Nishihara, T. Sakata, M. Yamamuro, and
K. Kushima. A Practical Query-By-Humming System for a
Large Music Database. In Proc. of the 8th ACM International
Conference on Multimedia, pages 333–342, 2000.

[9] Rodger McNab. INTERACTIVE APPLICATIONS OF MUSIC
TRANSCRIPTION. Master’s thesis, Computer Science at the
University of Waikato, 1996.

[10] T. Nishimura, H. Hashiguchi, J. Takita, J. Xin Zhang,
M. Goto, and R. Oka. Music Signal Spotting retrieval by a
Humming Query Using Start Frame Feature Dependent
Continuous Dynamic Programming. In Third International
Conference on Music Information Retrieval, 2001.

[11] L. Rabiner and B.-H. Juang. FUNDAMENTALS OF SPEECH
RECOGNITION. PTR Prentice-Hall, Inc, 1993.

[12] Y. Zhu and D. Shasha. Warping Indexes with Envelope
Transforms for Query by Humming. In Proceedings of the
ACM SIGMOD, International Conference on management of
Data, pages 181–192, 2003.

