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ABSTRACT

Given a large collection of co-evolving online activities, such as

searches for the keywords “Xbox”, “PlayStation” and “Wii”, how

can we find patterns and rules? Are these keywords related? If so,

are they competing against each other? Can we forecast the volume

of user activity for the coming month?

We conjecture that online activities compete for user attention in

the same way that species in an ecosystem compete for food. We

present ECOWEB, (i.e., Ecosystem on the Web), which is an in-

tuitive model designed as a non-linear dynamical system for min-

ing large-scale co-evolving online activities. Our second contri-

bution is a novel, parameter-free, and scalable fitting algorithm,

ECOWEB-FIT, that estimates the parameters of ECOWEB.

Extensive experiments on real data show that ECOWEB is ef-

fective, in that it can capture long-range dynamics and meaningful

patterns such as seasonalities, and practical, in that it can provide

accurate long-range forecasts. ECOWEB consistently outperforms

existing methods in terms of both accuracy and execution speed.

Categories and Subject Descriptors: H.2.8 [Database manage-

ment]: Database applications–Data mining

Keywords: Ecosystem; Time-series; Non-linear; Parameter-free;

1. INTRODUCTION
The increasing volume of online user activity represents a vi-

tal new opportunity for data scientists and analysts to measure the

collective behavior of social, economic, and other important evolu-

tions [57, 56, 27, 13].

Given real-time, online user activity sequences, such as the search

volume for the keywords “Xbox” and “PlayStation”, how can we

find patterns and rules to perform, e.g., sociological, behavioral,

and even marketing research? If we know nothing about the se-

quences, we could (and should) try using Fourier, Wavelets, AR,

Kalman filters and the other time series analysis tools. However,

we are told that the sequences correspond to online user activity

(e.g. the search volume for a keyword) — Can we do better than

the existing methods?

This is exactly the idea behind our work. We conjecture that

the volume per keyword/activity will behave like a species in an

“ecosystem”. It will compete with other species for food and also

exhibit seasonal behavior. Here we propose that “food” corresponds
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to user resources: given a set of users and their resources (e.g., at-

tention, time, money), the d keywords/activities compete for the

user resources.

In this paper, we present an intuitive model, namely ECOWEB,

which provides a good description of large collections of co-evolving

online activities. 1 In short, the problem we wish to solve is as fol-

lows:

INFORMAL PROBLEM 1. Given a large collection of co-evolving

sequences X = {x1, · · · ,xd}, which consists of d keywords/activities

of duration n, where each record xi(t) corresponds to a user ac-

tivity (e.g., queries, time/dollars spent) for keyword i at time tick t,
we want to

• detect competition (e.g., “Xbox” vs. “PlayStation”)

• find seasonal events (e.g., Christmas, summer vacations)

• forecast future dynamics

Preview of our results. Figure 1 shows our discoveries related to

the video game industry consisting of d = 4 activities, namely, the

search volumes for “Xbox” (x1), “PS2, PS3” (x2), “Wii” (x3), and

“Android” (x4), taken from Google, 2 and spanning over a decade

(2004-2014), with weekly measurements. ECOWEB discovered the

following important patterns:

• Long-term fitting: Figure 1 (a) shows the original volume of

the four activities/keywords as circles, and our fitted model

as solid lines. Notice that our fit is even visually very good,

and it detects seasonalities and up- or down-trends: For ex-

ample, our model fitted the success of “Wii” (which launched

in 2006 and apparently drew attention from the competing

“Xbox”). Similarly, it fitted the fall in the popularity of “Wii”

in 2011, which coincided with the ascent of “Android”, pos-

sibly indicating that mobile and social games attracted the

attention of Wii gamers.

• Interspecies interaction: Recently, video games have been

facing increasing competition (from online/social games), and

our model automatically identifies this latent competition:

Figure 1 (b) shows the interaction network that captures the

interaction between the four activities/keywords. Edges in-

dicate interaction/competition between two keywords; the

thicker the edge, the stronger the interaction. For example,

the red edge from “Wii” to “Android” indicates that the latter

is drawing attention away from “Wii”. Similarly, “Xbox” has

strong connections to “PlayStation” and “Wii” (blue edges),

summarizing the fact that the attention for “Xbox” was anti-

correlated with “Wii” and “PlayStation”, during 2007-2010.

1 Available at
http://www.cs.kumamoto-u.ac.jp/~yasuko/software.html
2http://www.google.com/trends/

http://www.cs.kumamoto-u.ac.jp/~yasuko/software.html


2004 2006 2008 2010 2012 2014
0

0.2

0.4

0.6

0.8

1

Time (weekly)

V
o

lu
m

e
 @

 t
im

e
 

Fitting result - RMSE=0.058817

 

 
x1

x2

x3

x4
1

2 3

4

Xbox

Android

Wii
Play
Station

Jan Mar May Jul Sep Nov

0

0.2

0.4

Time (weeks)

V
a

lu
e

B (k=1)

 

 

b1
Black Friday

E3

Christmas

Summer
vacation 

(a) Fitting result (solid lines) vs. original data (in circles) (b) Interaction network (c) seasonal activities

Figure 1: Modeling power of ECOWEB: (a) Our model (solid lines) fits the original data (in circles) very well, and (b) it reveals

latent interaction networks, such as “Xbox” vs. “PlayStation” and “Wii” vs. “Android”, as well as (c) seasonal activities (i.e., they

all peak on Black Friday and at Christmas). Moreover, our fitting algorithm is fully automatic, requiring no user intervention.

• Seasonal activities: Figure 1 (c) succinctly summarizes the

seasonality of all four keywords. There is a clear yearly pe-

riodicity, with peaks every November (“Black Friday”) and

December (Christmas); a small peak in June (coinciding with

the Electronic Entertainment Expo (E3), an annual trade show

for video games); and sustained, medium-level activity dur-

ing the summer vacations.

Contributions. We propose ECOWEB, a succinct, yet powerful

model, which is inspired by the competition between biological

species, and which captures the evolution of multiple online ac-

tivities. ECOWEB has the following desirable properties:

1. Effective: ECOWEB captures long-range dynamics, impor-

tant patterns and seasonalities that agree with human intu-

ition.

2. Automatic: ECOWEB-FIT requires no training set, no pa-

rameters to tune, no user intervention.

3. Scalable: It is carefully designed to be linear on the input

size.

4. Practical: It can provide long-term forecasting, outperform-

ing existing methods (Sections 6 and 7).

Outline. The rest of the paper is organized in the conventional way:

Section 2 discusses related work and Section 3 describes some fun-

damental concepts. In Section 4 and Section 5, we describe our

proposed model and algorithms. Sections 6 and 7 describe our ex-

perimental results and applications. We conclude in section 8.

2. RELATED WORK
The related work falls into the following large subgroups:

Similarity search and forecasting: There is a lot of interest in min-

ing time series and data streams [42, 1, 20, 53, 11, 48]. Traditional

approaches applied to data mining include auto-regression (AR),

linear dynamical systems (LDS), Kalman filters (KF) and their vari-

ants [18, 30, 51]. Similarity search and pattern discovery in time

sequences have also attracted huge interest [52, 25, 50, 48, 9].

Large-scale sequence mining: Here, TriMine [33] is a scalable

method for forecasting co-evolving multiple (thousands of) sequences,

while, FUNNEL [35] is a non-linear model for spatially coevolv-

ing epidemic tensors. [32] developed a fully-automatic mining al-

gorithm for co-evolving sequences. Rakthanmanon et al. [46] pro-

posed a similarity search algorithm for “trillions of time series” un-

der the DTW distance. Yang et al. [55] developed a new model for

mining time-evolving event sequences. As regards parameter-free

mining, the work in [5, 7] focused on summarization and clustering

based on the MDL principle.

Table 1: Capabilities of approaches. Only our approach meets

all specifications.

LV DWT AR++ AUTOPLAIT ECOWEB

Domain knowledge
√ √

Co-evolution
√ √ √

Periodicity
√ √ √ √

Parameter free
√ √

Forecasting
√ √

Social media analysis: Analyses of social media and online user

behavior has attracted considerable interest [44, 24, 22, 49, 31,

10, 28, 3]. Gruhl et al. [15] explored online “chatter” (e.g., blog-

ging) activity, and measured the actual sales ranks on Amazon.com.

Ginsberg et al. [13] examined a large number of search engine

queries tracking influenza epidemics. They reported that the evo-

lutions of search engine keywords are highly correlated with actual

flu virus activity. The work reported in [8, 45, 14] studied keyword

volume, to predict consumer behavior.

Spikes and propagation: The work in [34] studied the rise and fall

patterns in the information diffusion process through online social

media. The work in [12] investigated the effect of revisits on con-

tent popularity, while [47] focused on the daily number of active

users. Prakash et al. [43] described a case where two competing

products/ideas spreading over the network, and provided a theoret-

ical analysis of the propagation model (winner takes all: WTA) for

arbitrary graph topology.

Economic models: Leontief [26] developed the “input-output model”,

which represents an economy as d interdependent industries (i.e.,

sectors). This model represents an economy as a system of equa-

tions, with producer-consumer relationships (analogous to prey-

predator equations).

Contrast with competitors. Table 1 illustrates the relative advan-

tages of our method. Only our ECOWEB matches all requirements,

while,

• The Lotka-Volterra (LV) model [36], the logistic function

(LF) [6], the susceptible-infected (SI) model [2], and other

non-linear equations [17, 38, 43, 35] incorporate domain knowl-

edge, however, they are not intended to capture co-evolving

user activities and seasonal patterns.

• Wavelets and Fourier transforms (i.e., DWT, DFT, DCT) fo-

cus on a single time sequence, and cannot detect interaction

between multiple co-evolving sequences.

• The traditional AR, ARIMA and related forecasting methods

including AWSOM [40], PLiF [30] and TriMine [33] are fun-

damentally unsuitable for our setting, because they are based



on linear equations, while we employ non-linear equations.

Moreover, (a) they can not incorporate domain knowledge,

and (b) most of them require parameter tuning.

• AUTOPLAIT [32], SWAB [21] and pHMM [54] have the

ability to capture the dynamics of sequences and perform

segmentation, however, they cannot model the long-range

evolution of multiple time series.

In short, none of the existing methods focuses specifically on

the automatic mining of non-linear dynamics in co-evolving online

activities.

3. BACKGROUND - ECOLOGICAL CON-

SIDERATIONS
Let us consider a biological ecosystem by analogy with a jungle

where herbivores feed on plants, carnivores feed on other animals,

and so on. How many spider monkeys should we expect to have

in the next time tick, given the current count of spider monkeys,

bananas, squirrel monkeys, etc? This is exactly the focus of popu-

lation ecology, namely, to develop mathematical models to predict

the evolution of the population of each species [39, 38].

Competition between species. There are two major mechanisms

that the equations try to model: (a) un-restricted growth, i.e., with

infinite resources, every squirrel monkey generates r offspring in

each time tick, and (b) competition, i.e., with finite resources, the

“carrying capacity” K of the environment is the maximum number

of squirrel monkeys it can support.

There is competition between the members of the same species

(two squirrel monkeys competing for fruit), as well as between dif-

ferent species (e.g., squirrel monkey vs. spider monkey, all com-

peting for fruit). This competition is what keeps the population size

of a species from exploding exponentially: If an ecosystem has too

many squirrel monkeys and too few fruits, competition for those

resources increases, throttling the growth of the squirrel monkey

population.

One of the simplest models that captures the above phenomena

is the Lotka-Volterra population model of competition [37]. It de-

scribes the interaction of d species with the following non-linear

differential equations:

dPi

dt
= riPi

(

1−

∑d

j=1 aijPj

Ki

)

, (i = 1, 2, . . . , d) (1)

where,

• Pi: Population size of species i.
• ri: Intrinsic growth rate of species i, i.e., the rate of repro-

duction in the absence of density regulation (ri ≥ 0).

• Ki: Carrying capacity of species i when the other species

are absent (Ki ≥ 0).

• aii: Intraspecies competition, i.e., competition for resources

between members of the same population (aii = 1).

• aij : Interspecies competition, i.e., competition between two

different species (aij ≥ 0).

Here, time t is considered continuous and dPi/dt is the derivative.

For each species i, the number of offspring per parent increases lin-

early with the size of the current population Pi, and it corresponds

to the intrinsic growth rate ri.
In the Lotka-Volterra equation, it is assumed that multiple (i.e.,

d) species are competing for some common resources. For ex-

ample, Figure 2 (a) shows the interaction between wild animals

in the jungle. 3 Assume that these species share some of the

3
Image courtesy of xura, criminalatt, David Castillo Dominici, happykanppy at

FreeDigitalPhotos.net.

resources (e.g., fruits). The number of individuals using the re-

sources of species i can be described as: ai1P1+· · · aijPj · · ·Pi+

· · · aidPd =
∑d

j=1 aijPj . Here, aij(i 6= j) is called “interspecies

competition”, which measures the effect an individual of species j
has on an individual of species i. 4

4. PROPOSED MODEL
In this section, we present our proposed model, namely, ECOWEB.

Consider that we have a collection of activity volumes X of d
keywords, with duration n. That is, we have X = {x1, · · · ,
xi, · · · ,xd}, where xi is a sequence of keyword i, (i.e., xi =
{xi(t)}

n
t=1). Given a set of co-evolving time series X , our goal is

to (a) capture the evolutions of X , (b) find the hidden relationship

between each sequence, and (c) forecast future dynamics.

So, how can we describe the evolutions of multiple keywords,

and spot interactions between two different keywords? What ex-

actly is the relationship, say, between Xbox and Wii, or Facebook

and LinkedIn? Are there any differences or similarities? Do they

compete with each other, like wild animals?

Ecosystem on the web - intuition behind our model. So, what

is an ecosystem on the web? Can we find similar phenomena in

virtual communities? If so, what kind of species live on the web?

How does the population size of each species evolve over time? —

Our answers are that: (a) there are an infinite number of “virtual

species” living on the web (as in a “jungle”), and (b) they evolve

naturally over time by interacting with other species.

Figure 2 (b) shows an ecosystem on the web. Similar to the bio-

logical community, which consists of multiple species (e.g., mon-

keys and macaws, as shown in Figure 2 (a)), there is a community

of virtual species on the web (e.g., Xbox and PlayStation, as shown

in Figure 2 (b)).

Here, we provide two important analogies with respect to the

ecosystem on the web.

• Keyword/activity (i.e., species): No keyword can survive on

the web if no one is paying attention to that topic. It behaves

like a living organism. The relationship between keywords

and users (e.g., between Wii and kids) is similar to the re-

lationship between species and food resources (e.g., between

squirrel monkeys and fruits or between capybaras and grass).

No species can survive without resources.

• User resources (i.e., food resources): Similar to an ecolog-

ical system, there are a finite number of users and their re-

sources on the web. The user resources could be anything,

such as user interest/attention, or an amount of the time and

money they spend. Users cannot use their time/money for

multiple purposes simultaneously. 5 As shown in Figure 2 (b),

there are some groups of users, such as kids, teenagers and

adults. For example, kids love video games, e.g., Xbox,

PlayStation and Wii, while most adults prefer Android.

Although important, the above analogies are not immediately ap-

plicable to our setting. We need a few more concepts. Specifically,

we want to describe the following three properties:

• (G1): Non-linear evolution of keywords/activities

• (G2): Interaction coefficients between keywords

• (G3): Seasonality of user activities

4 There are several variations of the Lotka-Volterra model, e.g., the
predator-prey/parasitism model. However, in this paper, we only
focus on the simplest case where aij ≥ 0 (i 6= j) for all species i
and j (i.e., neutralism/amensalism/competition).
5 For example, given N users, there are N × 24 hours/resources
per day, or fewer, depending on the keyword and the demographic
group it appeals to.
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(a) Ecosystem in the jungle (b) Ecosystem on the web

Figure 2: Illustration of jungle vs. web: (a) Ecosystem in the jungle (e.g., Amazon rainforest): squirrel monkeys partially share

their food with spider monkeys and macaws, while capybaras are isolated (i.e., they have no competitors here); (b) Ecosystem on the

web (e.g., game industry): the main targets of Xbox, PlayStation and Wii are kids and teenagers, while most adults are interested in

Android games rather than Xbox and PlayStation.

Table 2: Analogy: Jungle vs. web.

Jungle Web

Species (e.g., squirrel monkeys) Keywords/activities (e.g., Wii/Xbox)
Food resources (e.g., fruits) User resources (e.g., kids/adults)
Population Popularity
Climate/season Annual events (e.g., Christmas)

In a real ecosystem, the population of each species varies contin-

uously over time. It depends on the reproduction rate per generation

and the number of offspring produced in a lifetime by each individ-

ual. The same thing happens on the web: the popularity size of

each keyword evolves over time. The popularity size corresponds

to the aggregated volume of each user interest/attention. If a new

product (say, Android) is attractive, the users would spend more

time on it, or recommend it to their friends. Similarly, their friends

would influence other users, and eventually, this would lead to an

exponential growth in popularity size. To handle (G1), we propose

using a non-linear difference equation.

For (G2), we assume that there are latent interactions between

two different keywords. For example, in Figure 1 (a), the sequences

of Xbox (i.e., x1) and PlayStation (i.e., x2) behave in opposite

ways: When the volume of PlayStation increases, the volume of

Xbox decreases considerably (please see Figure 1 (a) from 2007 to

2010). That is, there must be competition/interaction between these

two keywords.

We should also note that online activities have certain annual

patterns, i.e., seasonality (G3). For example, in Figure 1 (a), all the

sequences have a huge spike at Christmas. This is because the users

modulate their activities based on a yearly cycle. Similar behavior

is observed with wild animals in that their activities may depend on

climate and season.

Table 2 describes our basic analogy, namely, the jungle ecosys-

tem applied to the web. We conjecture that users of the web behave

in the same way as wild animals in the jungle in that they interact

and compete with each other for resources.

Next, we introduce our model in steps of increasing complexity.

4.1 EcoWeb-individual (G1)
We begin with the simplest case, where we have a single se-

quence/keyword, i.e., there is no interspecies interaction/competition.

Let K be the quantity of available user resources that might be

used (i.e., paid attention) as regards this keyword, and p represent

the quantity of user resources that have already been used as regards

this keyword at time tick t = 0 (i.e., initial condition).

In our model, we assume that the keyword/activity follows some

very simple local rules:

Table 3: Symbols and definitions.

Symbol Definition

d Number of unique keywords/activities (i.e., species)
n Duration of sequences
X d co-evolving time sequences (i.e., X = {x1, . . . ,xd})
xi Sequence of keyword i (i.e., xi = {xi(1), . . . , xi(n)})
xi(t) Volume of keyword i at time tick t

Pi(t) Popularity size of keyword i at time tick t
Ci(t) Estimated volume of keyword i at time tick t

p Initial popularity size i.e., {pi}di=1
r Growth rate i.e., {ri}di=1
K Carrying capacity i.e., {Ki}di=1

A Interaction matrix (d× d) i.e., A = {aij}d,di,j=1

np Period (i.e., 52 weeks)
k Number of hidden seasonalities

E Seasonal activities (d× n) i.e., E = {ei(t)}d,ni,t=1

W Participation matrix (d× k) i.e., W = {wij}d,ki,j=1

B Seasonality matrix (k × np) i.e., B = {bj(τ)}k,np

j,τ=1

• It maintains its current popularity size (i.e., user attention)

unless there is intra/interspecies competition.

• For each time tick t, it obtains new user resources, and the

popularity size increases by a constant percentage r.

Let P (t) be the popularity size of the keyword at time tick t.
The evolution of a single keyword is described by the following

difference equation:

P (t+ 1) = P (t)

[

1 + r

(

1−
P (t)

K

)]

, (2)

with the initial condition P (0) = p, where,

• P (t): Popularity size of the keyword at time tick t, i.e., the

aggregated volume of user attention to the keyword. 6

• p: Initial condition, i.e., popularity size at time tick t = 0.

• r: growth rate, i.e., the attractiveness/strength (i.e., impact)

of the keyword.

• K: Carrying capacity, i.e., maximum popularity size of the

keyword (= available user resources).

Note that the term:
[

1 + r
(

1− P (t)
K

)]

corresponds to the con-

tribution of the current popularity to the next popularity growth,

where
(

1− P (t)
K

)

is the percentage of available user resources for

the keyword at time tick t. If the keyword runs out of user re-

6 In this paper, we assume that P (t) is the popularity density of
a keyword, i.e., 0 ≤ P (t) ≤ 1, however, our equations can also
handle other settings, such as the actual numbers of keyword ap-
pearances.



sources (i.e., P (t) = K), the expanding popularity will hit a con-

straint. Also note that Equation 2 is a discrete version of the Lotka-

Volterra differential equation, (Equation 1), when it has a single

species (d = 1).

4.2 EcoWeb-interaction (G2)
We now move on to the next step, namely, spotting an interaction

between co-evolving keywords (G2). In general, some keywords

are competing for some common user resources. Obviously, there

is some kind of competition between video game consoles, such

as Xbox and PlayStation. Most users choose one of the consoles

based on their preferences (e.g., price and available game titles).

MODEL 1 (ECOWEB-INTERACTION). Let Pi(t) be the pop-

ularity size of keyword i at time tick t. Our interaction model is

governed by the following equations,

Pi(t+ 1) = Pi(t)

[

1 + ri

(

1−

∑d

j=1 aijPj(t)

Ki

)]

,

(i = 1, · · · , d), (3)

where, ri > 0,Ki > 0, aii = 1, aij ≥ 0, and Pi(0) = pi.

In Model 1, it is assumed that competing keywords share some of

the same user resources. At time tick t, the percentage of potential

(i.e., available) user resources for keyword i 7can be described as,
(

1−

∑d

j=1 aijPj(t)

Ki

)

, (4)

where, aij is the interaction coefficient, which describes the effect

rate of keyword j on keyword i.
Please note that if there is no interspecies interaction/competition,

(that is, aij = 0 (i 6= j)), this model is identical to Equation 2 (i.e.,

“neutralism”). In contrast, if aij = aji = 1 for keywords i, j, this

means that two keywords i, j compete with each other, by sharing

exactly the same user resource group. If aij = 1, aji = 0, the

model describes an asymmetric competitive interaction, which is

known as “amensalism”. In this case, keyword i is strongly affected

by keyword j, while keyword j is almost unaffected by keyword i.

EXAMPLE 1. Figure 1 (b) shows the interaction between d = 4
keywords, where we have an interaction matrix:

A =









1 0.5 0.1 0
0 1 0 0.1
0 0 1 0.3
0 0 0 1









.

Here, Xbox x1 is affected by PlayStation x2, (i.e., a12 = 0.5) and

Wii x3, (i.e., a13 = 0.1), while PlayStation and Wii are affected by

Android x4, (i.e., a24 = 0.1, a34 = 0.3). Xbox and Android do not

interact directly with each other (i.e., a14 = a41 = 0).

4.3 With seasonality (G3)
Thus far, we have discussed how to describe the long-range dy-

namics of d co-evolving sequences. Although important, it is not

sufficient to capture the real keyword evolutions. Each keyword

(e.g., Xbox and Amazon) always has a certain number of users (i.e.,

popularity), however, the users change their behavior dynamically,

according to various seasonal events (e.g., Amazon.com has many

visitors on Black Friday). We can observe similar behavior in an

7 We can also say: the amount of available user resources for
keyword i with a limited size of maximum popularity size Ki is:

Ki −
∑d

j=1 aijPj(t).

ecological system, where activities depend on season and climate:

for example, most monkeys are active during warm and sunny days,

while they sleep at night. Most importantly, these activities are of-

ten correlated with other related species/keywords, e.g., the sales

of most retailers including Amazon peak on Black Friday. That is,

there must be some groups of “hidden” seasonal activities, (e.g.,

seasonal retail sales).

So how can we reflect this phenomenon in our equation? We

want a powerful yet simple model that can capture seasonal pat-

terns (G3) in real co-evolving sequences, as well as long-range

non-linear evolutions. We provide an answer below.

MODEL 2 (ECOWEB-FULL). Let Ci(t) be the estimated vol-

ume of keyword i at time tick t. Our full model captures seasonal

user activities with the following equations:

Ci(t) = Pi(t) [1 + ei(t)] (i = 1, · · · , d), (5)

where ei(t) describes seasonal activities of keyword i over time.

The estimated volume Ci(t) describes how many times keyword

i appears at time tick t, and depends on the latent popularity size

Pi(t) and seasonal activities E = {ei(t)}
d,n
i,t=1. Each element in E

describes the relative value of the potential popularity size versus

the actual keyword volume, and it corresponds to seasonal events,

holidays, etc. If there is no seasonal pattern in keyword i at time t,
(i.e., ei(t) = 0), the keyword volume is equal to the popularity size

(i.e., Ci(t) = Pi(t)).

Compact representation of seasonality. With respect to seasonal

activities E, we need (d × n) parameters to describe the entire

dataset X , and this is not feasible in our case. We want to avoid

redundancy, and so it should be compressed into a small set of pa-

rameters. We are interested in capturing (a) yearly periodic patterns

(e.g., Black Friday) as well as (b) hidden groups of seasonal activ-

ities (e.g., retail sales). So how can we deal with this issue? We

propose decomposing E, to achieve much better modeling. Specif-

ically, we decompose E into two matrices, namely, seasonality ma-

trix B of size (k×np) and participation matrix W of size (d×k).
Here, B represents a set of k seasonal components of period np,

while W describes the participation weight of each sequence for

each seasonal component. Consequently, the seasonal activities

E = {ei(t)}
d,n
i,t=1 can be described as the following function:

ei(t) ≃ f(i, t|W,B) =
k
∑

j=1

wijbj(τ) (τ = [t mod np]) (6)

where,

• np: Period (say, 52 weeks in one year).

• k: Number of latent seasonal components.

• W = {wij}
d,k
i,j=1: Participation matrix, i.e., participation

weight of keyword i for the j-th seasonal component.

• B = {bj(τ)}
k,np

j,τ=1: Seasonality matrix, i.e., temporal activ-

ity at time tick τ for the j-th seasonal component.

Note that the number of components k should be estimated auto-

matically, and we will describe this in the next section.

EcoWeb: full model parameter set. Figure 3 shows our modeling

framework. Given a set of d co-evolving sequences X , our goal

is to find important patterns with respect to three aspects: (G1)

individual properties, i.e., initial popularity size: p = {pi}
d
i=1,

growth rate: r = {ri}
d
i=1, carrying capacity: K = {Ki}

d
i=1;

(G2) interaction matrix: A = {aij}
d,d
i,j=1; (G3) a set of k seasonal

activities, which consists of participation matrix W and seasonality

matrix B.
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Figure 3: Illustration of ECOWEB structure. Given a set of d sequences X of length n, we extract (G1) individual properties, i.e.,

initial popularity size: p, growth rate: r, carrying capacity: K, (G2) interaction matrix: A, as well as (G3) a set of k seasonal

components, i.e., participation matrix: W and seasonality matrix: B.

DEFINITION 1 (COMPLETE SET OF ECOWEB). Let S be a com-

plete set of parameters (namely, S = {p, r,K,A,W,B}) that

describe the individual/interactive/seasonal patterns of X .

5. OPTIMIZATION ALGORITHM
In the previous section, we have seen how we can describe the

evolutions of multiple sequences with respect to three properties

that we observed with real time series data. Now, we want to figure

out how to estimate an optimal parameter set. Specifically, we need

to answer the following two questions: (1) How can we find an

optimal set of seasonal components, (i.e., W,B)? (2) How can we

efficiently and effectively estimate full parameter set S that best

captures the important patterns in X? Each question is dealt with

in the following subsections.

5.1 Automatic seasonal component analysis
Let us begin with the first question, namely, how to find an ap-

propriate set of seasonal components W and B. Here, we divide

the question into two parts:

• Seasonal component detection: Find good seasonal matrices

W and B, when given a fixed number of components k.

• Automatic component analysis: Search for the best number

of components among all possible k values (k = 1, 2, . . . ).

Seasonal component detection. Assume that we are given X , and

also a set of base model parameters for our model, i.e., {p, r,K,A}.

According to Models 1 and 2, each element in E can be simply

computed by:

ei(t) =
xi(t)− Pi(t)

Pi(t)
(i = 1, . . . , d; t = 1, . . . , n). (7)

After computing E of size (d × n), our next step is to decompose

it into an optimal set consisting of W and B.

The most straightforward solution would be to assume that there

is a set of k = d different temporal activities of length n for all d
sequences. However, this solution requires (d × n) parameters to

capture the entire sequence set X . Also, it gives a very poor rep-

resentation, and cannot capture seasonal dynamics among multiple

keywords.

We thus propose an efficient and effective algorithm that can find

an optimal set of k distinct seasonal patterns among all sequences

X . Figure 4 illustrates our approach. Given a set of seasonal activ-

ities E of size (d×n), our algorithm splits each sequence into non-

overlapping subsequences of length np, and constructs a matrix Ê

of size ([d×⌈n/np⌉]×np). It then finds a set of k components from

Ê and creates a seasonality matrix B of size (k×np). After finding

B, it estimates a participation matrix W of size (d× k) so that we
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Figure 4: Illustration of seasonal component analysis (for np =
2). Given a set of seasonal activities E of size (d× n), it creates

a matrix Ê of d × ⌈n/np⌉ disjoint windows. It then finds their

k major components, i.e., B (k × np).

can reconstruct the original matrix E as described in Equation 6,

(i.e., E ≃ f(W,B)).
There is an important issue here: what is the best way of find-

ing typical seasonal components B in Ê? The first idea would be

to perform principal component analysis (PCA) [19] as employed

in [23, 41]. However, PCA has pitfalls: it uses an orthogonal trans-

formation. Given an input matrix Ê, it tries to find the best com-

ponent that goes through Ê; and then the second best component

(orthogonal to the first), and so on, until it obtains k components.

That is, it cannot capture “real” activities. We thus propose em-

ploying independent component analysis (ICA) [16], which is also

known as blind source separation (BSS). Unlike PCA, it finds a set

of k components that are both statistically independent and non-

Gaussian. That is, it seeks components that are the most indepen-

dent from each other.

Automatic component analysis. As regards seasonal component

analysis, we need to determine the number of components, k. We

thus provide an intuitive coding scheme, which enables our algo-

rithm to find appropriate sizes for W and B, automatically. Our

coding scheme is based on the minimum description length (MDL)

principle. In short, it follows the assumption that the more we can

compress the data, the more we can learn about its underlying pat-

terns.

The description complexity of model parameter set S consists of

the following terms: The number of dimensions d and time ticks



n require log∗(d) + log∗(n) bits. 8 The initial popularity size,

growth rate, carrying capacity i.e., {p, r,K} and the interaction

matrix A require d×3 and (d×d−d) parameters, respectively, i.e.,

CostM (p, r,K)+CostM (A) = cF ·d(3+d−1), where cF is the

floating point cost9. Similarly, the model description cost of k sea-

sonal components is CostM (k,W,B) = log∗(k) + log∗(np) +
cF (dk + knp).

Once we have decided the full parameter set S, we can encode

the original data X using Huffman coding [4], i.e., a number of

bits is assigned to each value in X , which is the logarithm of the

inverse of the probability (i.e., the negative log-likelihood) of the

value. The encoding cost of X given S is computed by:

CostC(X|S) =
∑d,n

i,t=1 log2 p
−1
Gauss(µ,σ2)

(xi(t)− Ci(t)),

where, xi(t) and Ci(t) are the original and estimated volumes of

keyword i at time tick t (i.e., Model 2). Also, µ and σ2 are the mean

and variance of the distance between the original and estimated

values. 10

The total code length for X with respect to a given parameter set

S can be described as follows:

CostT (X;S) = log∗(d) + log∗(n) + CostM (p, r,K)

+CostM (A) + CostM (k,W,B) + CostC(X|S) (8)

Consequently, our algorithm automatically determines the optimal

number of seasonal components kopt according to the above func-

tion, i.e., kopt = arg min
k

CostT (X;S).

5.2 Multi-step fitting algorithm
We have described how to find seasonal activities {W,B} in

X , when a set of base parameters {p, r,K,A} were given. Next,

we tackle the most important and challenging question, namely,

how to efficiently and effectively estimate a full parameter set S.

We would like to estimate (G1) individual parameters {p, r,K},

(G2) interaction matrix A and (G3) seasonal activities {W,B},

simultaneously.

So how do we go about finding the optimal solution S? The

most straightforward approach would be simply to estimate all the

parameters in S simultaneously. This approach requires us to esti-

mate (3d + (d2 − d) + k(d + np)) parameters for each iteration.

It also requires us to compare all possible solutions for a different

number k (1 ≤ k ≤ d). This method is both extremely expensive

and ineffective in that it is difficult to optimize all the parameters

directly.

We thus propose an efficient algorithm, STEPFIT, which divides

a parameter set S into two subsets {p, r,K,A}, and {W,B},

and estimates the parameters alternately (see Algorithm 1). The

first step assumes that there is no seasonality, i.e., k = 0, and es-

timates the base parameters. In the next step, the base parameters

are fixed, and B and W are computed using automatic seasonal

component analysis as described in subsection 5.1. Here, we use

the Levenberg-Marquardt (LM) [29] algorithm to minimize the cost

function (i.e., Equation 8). The algorithm continues to estimate the

parameters until convergence.

However, STEPFIT still needs to update the parameters of inter-

action matrix A of size (d× d), as well as all d individual param-

eters i.e., {p, r,K} for every iteration. In other words, STEPFIT

tries to find the best solution S among all possible combinations of

8Here, log∗ is the universal code length for integers.
9 We digitize the floating number into cF = 8 bits.

10 Here, µ, σ2 need 2cF bits, but we can eliminate them because
they are constant values and independent of our modeling.

Algorithm 1 STEPFIT (X)

1: Input: Co-evolving sequences X (d× n)
2: Output: Full parameter set, i.e., S = {p, r,K,A,W,B}
3: W = B = 0; /* Initialize seasonal activities (k = 0) */
4: while improving the parameters do
5: /* (I) Base parameter fitting (G1), (G2) */
6: {p, r,K,A} = arg min

p′,r′,K′,A′

CostT (X;p′, r′,K′,A′,W,B);

7: /* (II) Seasonal parameter fitting (G3) */
8: {W,B} = arg min

W′,B′

CostT (X;p, r,K,A,W′,B′);

9: end while

10: return S = {p, r,K,A,W,B};

Algorithm 2 ECOWEB-FIT (X)

1: Input: Co-evolving sequences X (d× n)
2: Output: Full parameter set, i.e., S = {p, r,K,A,W,B}
3: A = Id; /* Initialize A, i.e., identity matrix of size (d× d) */
4: /* (I) Single fitting (G1), (G3) */
5: for i = 1 : d do
6: /* Estimate individual parameters of keyword i */
7: Si = STEPFIT(xi);
8: end for
9: /* (II) Pair fitting (G1), (G2), (G3) */

10: while improving the parameters do
11: /* Find the most unfitted sequence xi */
12: i = arg max

1≤i′≤d

CostT (xi′ ;S);

13: /* Estimate parameters of pair (i, j) */
14: for j = 1 : d do
15: S′

ij = STEPFIT(xi,xj);
16: end for
17: /* Find the most affecting sequence xj on xi */
18: j = arg min

j′
CostT (xi,xj′ ;S′

ij′ );

19: /* Update best pair parameters */
20: Update Sij = S′

ij ;
21: end while
22: /* (III) Full fitting (G1), (G2), (G3) */
23: S = arg min

S′

CostT (X;S′);

24: return S;

d keywords. One subtle but important issue is that, compared with

the linear model, it is difficult to find the optimal parameter set for

non-linear equations. So, how can we efficiently and effectively es-

timate all the parameters S? We want to find the optimal solution

in terms of both the individual and interactive parameters.

Algorithm - EcoWeb-Fit. We thus extend STEPFIT and intro-

duce a partitioning approach for analyzing a large number of key-

words, which yields a dramatic reduction in the computation cost.

Algorithm 2 describes the overall procedure. The idea is that in-

stead of fitting all the parameters of X simultaneously, it first as-

sumes that there is no interspecies competition, (that is, it sets

A = Id, i.e., aij = 0 (i 6= j)), and estimates a model parameter

set Si = {pi, ri,Ki, wii, bi} for each individual sequence xi (i =
1, . . . , d), separately using STEPFIT. In the next step, it assumes

that there is competition between two keywords i and j. Specif-

ically, for each iteration, the algorithm tries to find the best pair

(xi, xj) so that it minimizes the cost function i.e., CostT (xi, xj |Sij).
It continues pair-fitting until convergence. Finally, the algorithm

optimizes the full parameter set S using the entire sequence set X .

6. EXPERIMENTS
In this section we demonstrate the effectiveness of ECOWEB

with real data. The experiments were designed to answer the fol-

lowing questions:



Q1 Effectiveness: How successful is our method in spotting mean-

ingful patterns in given input sequences?

Q2 Accuracy: How well does our method match the data?

Q3 Scalability: How does our method scale in terms of compu-

tational time?

6.1 Q1: Effectiveness
We now demonstrate the power of our model in terms of captur-

ing important and informative patterns of online activities. We per-

formed experiments on sequence sets of keywords/activities from

five areas on GoogleTrend. Note that the dataset is scaled so that

each sequence has a peak volume of 1.0.

#1. Video games. The result for this area has already been pre-

sented in Figure 1 of section 1. Our method captures long-range

evolving dynamics between three game consoles (i.e., Xbox, PlaySta-

tion and Wii), and the appearance of Android, as well as important

annual events, e.g., Black Friday and Christmas.

#2. Programming languages. Figure 5 (a) shows our discoveries

on “C”, “R” and “MATLAB”.

• Long-range evolution and interaction: Figure 5 (a-i) shows

the fitting results (lines) and the original sequences (circles).

Again, our method fits the real data very well. Moreover, it

captures the interaction: Figure 5 (a-ii) shows the interaction

network, indicating competition between the “C” program-

ming language and the “R” statistical system, while “MAT-

LAB” seems not to be involved. Indeed, the time sequences

show that the interest in “R” has increased constantly since

2004, at the expense of “C” - possibly, due to an emphasis on

big data analytics.

• Seasonal activities: Figure 5 (a-iii) shows the full param-

eter set of ECOWEB (darker gray corresponds to a higher

value). With respect to the seasonal activities (W and B,

shown at the bottom), our method discovered, to our surprise,

that there is a strong correlation with the academic calendar.

For example, during the spring, summer and winter breaks,

the attention paid to each keyword (especially, MATLAB)

decreases significantly: Apparently, most of those issuing

queries, are students (as opposed to professional program-

mers), and they enjoy their vacation, instead of coding.

#3. Social media. Figure 5 (b) shows the fitting result for the social

media activities: “Tumblr”, “Facebook” and “LinkedIn”.

• Long-range evolution and interaction: Most social media

sites have been attracting searches only recently (say, after

2008 - p ≈ 0, see (b-iii)). For example, Tumblr is a blog

platform that was founded in 2007, and it has been attract-

ing huge numbers of users (i.e., the growth rate r of Tumblr

is steep). Figure 5 (b-ii) shows that there is competition be-

tween Tumblr and Facebook, but there is no competitor for

LinkedIn.

• Seasonal activities: The bottom figure (b-iii) shows that there

is an opposite seasonality as regards social media: during

Christmas and New Year’s day, the number of Facebook users

increases, while the number using LinkedIn drops signifi-

cantly. This is probably because the former is used for private

purposes, while the latter is a business-oriented SNS.

#4. Apparel companies. Figure 5 (c) shows the result for four

heavily-searched fashion-related companies: Nordstrom (an upscale

department store); Kohl’s (a discount retailer) JCPenney (a mid-

range department store, with CEO problems) and Forever21 (which

focuses on young girls, and recently added a line of bigger sizes).

• Long-range evolution and interaction: Our method captures

the competition between Kohl’s and Nordstrom, and between

JCPenney and Forever21. Arguably due to the recession

(2008 onwards), shoppers moved away from upscale Nord-

strom and towards discount-priced Kohl’s (which also en-

gaged in some brilliant marketing: offering discounts for se-

niors, and issuing its own credit card to encourage increased

customer loyalty). Similarly, Forever21 grew significantly,

probably due to their decision to add a line of bigger sizes;

thus, it apparently lured attention away from JCPenney, which

was damaged by poor decisions made by the new CEO, Ron

Johnson, who was eventually fired.

• Seasonal activities: All keywords have clear patterns of an-

nual activity. There is a huge spike on Black Friday: the

biggest sale event of the year. There is also a small spike in

August, which is the “back to school” period.

#5. Retail companies. Figure 5 (d) shows the results for the top

six retail companies.

• Long-range evolution and interaction: Clearly, every key-

word is steadily increasing, with Best Buy being the only ex-

ception (arguably suffering, due to the success of online re-

tailers). There is no clear interaction, except between Home

Depot and Lowes, which are home improvement and appli-

ance retailers, or, do it yourself (DIY) stores. In Figure 5 (d-

i), our method captures both the individual and interaction

dynamics of retail activities.

• Seasonal activities: As described in (d-iii), our method auto-

matically discovered two hidden seasonal patterns (i.e., k =
2) in retail companies. The first component (b1, in light

brown) corresponds to Home Depot and Lowes, and the sec-

ond component (b2, in purple) corresponds to Amazon, Wal-

mart, Best Buy and Costco. In addition to a huge clear spike

on Black Friday in both components, there are multiple spikes

in Home Depot and Lowes, corresponding to the national

holidays in summer (see b1): Memorial Day (last Monday in

May), Independence Day (4th of July) and Labor Day (first

Monday in September).

6.2 Q2: Model accuracy
Next, we discuss the quality of our approach in terms of fitting

accuracy. We compared ECOWEB-FIT with the standard LV model.

To evaluate the effect of our efficient fitting algorithms, we also

compared them with a special version of our method: ECOWEB-

Plain, which uses only STEPFIT to estimate model parameters.

Figure 6 shows the root mean square error (RMSE) between the

original and estimated volumes for five sequence sets (#1-#5). A

lower value indicates a better fitting accuracy. As shown in the

figure, our approach achieved high fitting accuracy. Since the LV

model cannot capture seasonal patterns, it was strongly affected by

multiple spikes and failed to capture co-evolving dynamics. ECOWEB-

Plain has the ability to capture periodic patterns, but it was not

completely successful in capturing complicated dynamics and in-

teractions between multiple sequences.

6.3 Q3: Scalability
We also evaluated the scalability of our method. Figure 7 shows

the average computational cost of ECOWEB-FIT. We varied the

dataset size from five to ten years. Our method achieved a large

reduction in terms of computation time as well as fitting error for

every sequence set. We observed that ECOWEB-FIT was linear

with respect to data length n, and was up to 20 times faster than

ECOWEB-Plain. ECOWEB-FIT was also up to 7 times faster than

the LV model, even though our method has the ability to capture

seasonal dynamics.
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Figure 5: Fitting results of ECOWEB for four areas, i.e., (a) Programming languages, (b) social media, (c) apparel and (d) retail

companies. Our model (solid lines) fits the original data (in circles) very well; spots competitors (indicated by edges); and spots the

strongest seasonal patterns. See text for more observations.
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ECOWEB-FIT is 7 times faster than LV

and 20 times faster than ECOWEB-Plain.
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Figure 9: Forecasting future evolutions. Top: original sequence set. Middle and bottom: ECOWEB clearly outperforms AR. Both

methods train the model parameters using 2/3 of each sequence set, and then start forecasting (at the vertical line, i.e., 2012).

7. EcoWeb AT WORK - FORECASTING
Here, we describe the most important application of ECOWEB,

namely, forecasting the future dynamics of co-evolving activities.

Figure 8 shows the forecasting accuracy of five sequence sets (i.e.,

#1-#5) and Figure 9 shows results of our forecasting in relation to

three sequence sets: (#1, #2 and #4). We trained the model param-

eters by using the 2/3 values for each sequence set (black lines in

Figure 9), and then forecasted the following years (colored lines,

from 2012). We compared ECOWEB with the auto regressive (AR)

model. For a fair comparison, we used coefficients that were the

same size as our model parameters. In Figure 9, the top, middle

and bottom rows show the original sequences, and the forecast re-

sults of ECOWEB and AR, respectively. As shown in Figure 9, our

method successfully forecasted the long-range evolution of each

sequence, as well as seasonal spikes, while AR failed to capture the

non-linear evolutions.

The forecasting error (RMSE) between the original and the fore-

casted volume of each dataset is shown in Figure 8. A lower value

indicates a better forecasting accuracy. Unlike AR, our method

achieves high forecasting accuracy for every sequence set.

8. CONCLUSIONS
We presented ECOWEB, an intuitive model for mining large scale

co-evolving online activities. Our main idea is that online activities

behave like species in an ecological system in that they compete

for resources (such as user attention), and they evolve over time

according to a non-linear dynamical system. Our proposed method

has the following appealing properties:

1. Effective: it detects important patterns, hidden interactions

and seasonalities that match human intuition.

2. Automatic: it needs no parameter tuning, thanks to our cod-

ing scheme.

3. Scalable: it is linear on the input size.

4. Practical: it can undertake long-range forecasting and out-

performs existing methods (Section 7).
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