
AutoPlait: Automatic Mining of
Co-evolving Time Sequences

Yasuko Matsubara
Kumamoto University

yasuko@cs.kumamoto-u.ac.jp

Yasushi Sakurai
Kumamoto University

yasushi@cs.kumamoto-u.ac.jp

Christos Faloutsos
Carnegie Mellon University

christos@cs.cmu.edu

ABSTRACT

Given a large collection of co-evolving multiple time-series, which
contains an unknown number of patterns of different durations,
how can we efficiently and effectively find typical patterns and the
points of variation? How can we statistically summarize all the
sequences, and achieve a meaningful segmentation?

In this paper we present AUTOPLAIT, a fully automatic mining
algorithm for co-evolving time sequences. Our method has the fol-
lowing properties: (a) effectiveness: it operates on large collections
of time-series, and finds similar segment groups that agree with hu-
man intuition; (b) scalability: it is linear with the input size, and
thus scales up very well; and (c) AUTOPLAIT is parameter-free,
and requires no user intervention, no prior training, and no param-
eter tuning.

Extensive experiments on 67GB of real datasets demonstrate that
AUTOPLAIT does indeed detect meaningful patterns correctly, and
it outperforms state-of-the-art competitors as regards accuracy and
speed: AUTOPLAIT achieves near-perfect, over 95% precision and
recall, and it is up to 472 times faster than its competitors.

Categories and Subject Descriptors: H.2.8 [Database manage-

ment]: Database applications–Data mining

General Terms: Algorithms, Experimentation, Theory

Keywords: Time-series data, Automatic mining

1. INTRODUCTION
Given a large collection of co-evolving time series, such as mo-

tion capture and web-click logs, how can we find the typical pat-
terns or anomalies, and statistically summarize all the sequences?
In this paper we focus on a challenging problem, namely fully-
automatic mining, and more specifically, we tackle the four im-
portant time-series analysis tasks, namely, CAPS (Compression /
Anomaly-detection / Pattern-discovery / Segmentation).

Our goal is to analyze a large collection of multiple time-series,
(hereafter, a "bundle" of time-series), and summarize all the se-
quences into a compact yet powerful representation. So, what is a
good representation of time-series? In practice, real-life data has
distinct multiple trends, such as the weekday/weekend patterns of

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.

Copyright 2014 ACM 978-1-4503-2376-5/14/06 ...$15.00.

http://dx.doi.org/10.1145/2588555.2588556.

200 400 600 800 1000 1200 1400
0

0.5

1

1
2

3
4

left/right
legs  

left/right
arms

beaks tail feathers
claps

beaks tail feathers
clapswings wings

(a) AUTOPLAIT result

   beaks      !"wings     tail feathers      claps#

(b) Four basic steps of the “chicken dance”

Figure 1: AUTOPLAIT “automatically” identifies the dance

steps of a motion capture clip, as well as the positions of the

all cut points: original motion capture sequences and our re-

sult for the “chicken dance”, which consists of four basic steps,

“beaks”, “wings”, “tail feathers” and “claps”.

web-click sequences, and the normal/abnormal patterns seen in net-
work traffic monitoring (hereafter we refer to such a pattern as a
"regime"). How can we describe all these trends and distinct pat-
terns (i.e., regimes) in large datasets? We need a good summariza-
tion of time-series in terms of a statistical framework.

In this paper, we present AUTOPLAIT, 1 which answers the above
questions, and provides a good description of large collections of
co-evolving sequences. Intuitively, the problem we wish to solve is
as follows:

INFORMAL PROBLEM 1. Given a large collection of co-evolving

time series X (i.e., bundle), find a compact description of X , i.e.,

• find a set of segments and their cut points,

• find a set of groups (namely, regimes) of similar segments

• automatically, and quickly

Our algorithm automatically identifies all distinct patterns/regimes
in a time-series, and spots the time-position of each variation.

Preview of our results. Figure 1 (a) shows the original time-series
of the “chicken dance”2 and the result we obtained with AUTO-
PLAIT. The motion consists of four co-evolving sequences: left/right
arms, and left/right legs, composed of four basic steps in the fol-
lowing order: “beaks”, “wings”, “tail feathers” and “claps” (see

1Available at http://www.cs.kumamoto-u.ac.jp/~yasuko/software.html
2 Popular in the 1980’s; please see, e.g.,
http://www.youtube.com/watch?v=6UV3kRV46Zs&t=49s

http://www.cs.kumamoto-u.ac.jp/~yasuko/software.html
http://www.youtube.com/watch?v=6UV3kRV46Zs&t=49s


Table 1: Capabilities of approaches. Only our approach meets

all specifications.

DWT pHMM/ HHMM AUTOPLAIT

DynaMMo

Compression
√ √ √ √

Segmentation
√ √ √

Regime identification
√ √

Anomaly detection
√

Parameter free
√

Figure 1 (b)). Figure 1 (a) also shows the regime labels (1,2,3,4)
assigned to the frames along the vertical axis of the figure. The as-
signment of labels made it possible to successfully identify the four
basic steps (i.e., "regimes") of the chicken dance, (i.e., the beak,
wing, tail-feather, and clap steps are assigned to #4, #3, #2, and #1,
respectively). Most importantly, these steps (i.e., “regimes”) are
unknown in advance, and thus the algorithm should recognize the
groups, each of whose motions has similar characteristics. Also
notice that our method automatically determines the discontinu-
ity/transition points, by dividing the time interval into 8 segments
(two for each regime).

1.1 Importance of fully-automatic mining
There are many, fascinating research problems for time-series

analysis including pattern discovery [22, 25], summarization [24],
clustering [19], segmentation [14, 18, 34] and sequence match-
ing [28, 33, 26]. Although important, these methods basically re-
quire parameter settings and fine tuning. For example, the state-of-
the-art methods [18, 34] require several user-specified inputs, such
as the number of segments, and the reconstruction error thresholds
(details are provided in section 6), and they are very sensitive to
these parameters. The ideal method should look for arbitrary pat-
terns and require no initial human intervention to guide it.

There is another important question: what if we have to handle
very large datasets with millions, billions (or even trillions [26]) of
time-series? In fact, faced with "big data", fully automatic min-
ing is even more important: otherwise, the user would have to try
several parameter tuning steps, each of which would take too long
(e.g., hours, or days). Namely, as regards real big data analysis, we
cannot afford human intervention.

1.2 Contrast with competitors
Table 1 compares AUTOPLAIT with existing methods. We illus-

trate their strengths and shortcomings: a check mark (
√

) indicates
that a given method fulfills the corresponding requirement. Only
our approach has checks against all entries, while,

• Wavelets and Fourier transforms (i.e., DWT, DFT) can com-
press the data into a fixed amount of memory, and detect
bursts and typical patterns by keeping track of the top c largest
wavelet/Fourier coefficients, but they cannot detect any seg-
ments or regimes.

• SWAB [14] and pHMM [34] have the ability to find linear
piecewise segments from time-series, however, they are not
intended to capture regimes (i.e., high-level distinct patterns
in time-series).

• DynaMMo [18] is capable of compression and segmentation,
but, it cannot find similar sequence patterns.

• HHMM [9] and BP-AR-HMM [11] are the stochastic mod-
els that can describe the high-level dynamics of sequences.
However, they require human experts for parameter and model
structure settings, and, they do not focus on scalability.

Most importantly, none of above are parameter-free methods.

1.3 Running examples
Here, we briefly describe application domains and provide some

illustrative, intuitive examples of the usefulness of our approach.

Sensor data management. Many real-life applications such as
inventory management systems [6], emergency medical care [30],
and thermal management in data centers [17] rely on data captured
from physical sensor devices. For example, consider motion cap-
ture sensors, which generate a collection of numerical attributes
of kinetic energy values. In this setting, every motion can be rep-
resented as a bundle of d co-evolving sequences. Our approach
can summarize all these sequences, and find similar motion groups
without using annotations or other meta-data; e.g., “Are there any

distinct patterns?”, “If yes, how many and what kind?”

Web-click analysis. Consider a large number of clicks on web
sites, where each click has a list of attributes, e.g., URL, user,

time. Suppose that we record this information for all users, ev-
ery minute. For this huge collection of web-click logs, we would
like to find typical patterns of user behavior; e.g., “Are there any

daily/weekly periodicities or other distinct patterns in the clicking

events?”, “How many visitors can we expect on weekends?”

Social media marketing. Web content such as blogs, online news
and SNS has been attracting considerable interest for business pur-
poses as well as personal use. One of our motivating applications is
monitoring online social activities. Assume that we are analyzing
the online keyword search activities, such as Google, where each
sequence represents search volumes related to the keyword over
time. In this case, web-site owners and manufacturers could find
“extreme” behavior and events (e.g., disease pandemics and new
product releases), as well as typical daily activity patterns.

1.4 Contributions
The main contribution of this work is the design and analysis of

AUTOPLAIT, which has the following desirable properties:

1. Effective: it correctly estimates the count of regimes (e.g.,
dance steps), the type of regimes, and the count and location
of transition points (segments), in several diverse settings.
Also, it guarantees to find the optimal location of each tran-
sition point.

2. Sense-making: thanks to our novel model proposed in section 4,
it gives a high-level summary (i.e., set of regimes) that are
easier for a human to understand and interpret (please see
Figure 1, “beaks”, “wings”, etc).

3. Parameter-free: it is fully automatic, requiring no “magic
numbers” (no user intervention), no estimate for the count of
segments, no estimate for the count of regimes.

4. Scalable: it scales linearly with the input size, and thus is
applicable to very large sequences.

Outline. The rest of the paper is organized in the conventional
way. Next, we describe related work and background, followed by
definitions, the proposed method, experiments and conclusions.

2. BACKGROUND
Here, we introduce some necessary background material.

2.1 Related work
We provide a survey of the related literature, which falls broadly

into three categories: (1) probabilistic model estimation, (2) pattern
discovery in time series, and (3) summarization and clustering.

Probabilistic model estimation. Recently significant progress has
been made on understanding the theoretical issues surrounding learn-
ing probabilistic models. Hidden Markov models (HMMs) have



been used in various research areas including speech recognition [35],
and biological data analysis [8]. As regards HMM-based approaches
for large time-evolving sequences, [16] presented a system for exe-
cuting event queries over Markovian streams, generated from RFID
sensors, while [12] proposed a fast search algorithm for large HMM
datasets.Very recently, Wang et al. [34] improved [14], and pre-
sented a pattern-based hidden Markov model (pHMM). The pHMM
is a new dynamical model for time-series segmentation and clus-
tering, and provides a piecewise linear representation. It converts a
time-series into a sequence of line segments, and learns a Markov
model from the sequence. Regarding the hierarchical modeling,
Fine et al. [9] presented a hierarchical HMM (HHMM), which is
a recursive hierarchical generalization of the HMMs, while Fox
et al. proposed the beta process autoregressive HMM [11] and
variations [10], which are based on a Bayesian approach to learn-
ing Markov switching processes. These methods are the stochas-
tic models that can describe the high-level dynamics of sequences,
however, they require expert users for the parameter-tuning and the
model structure setting, and also, they do not focus on scalability.

Pattern discovery in time series. In recent years, there has been
an explosion of interest in mining time series [4, 7, 29, 25]. Tra-
ditional approaches applied to data mining include auto-regression
(AR) or linear dynamical systems (LDS), Kalman filters (KF) and
variants [13, 19, 31]. Li et al. [18] developed DynaMMo, which is
a scalable algorithm for co-evolving time sequences with missing
values. DynaMMo is based on a linear dynamical system, and the
algorithm has the ability to segment a data sequence. The work
described in [31] presents an approach for recursively predicting
motion sequence patterns. For web-click and social media analy-
sis, Agarwal et al. [1] exploit the Gamma-Poisson model to esti-
mate “click-through rates” in the context of content recommenda-
tion, while [21] studies the rise and fall patterns in the informa-
tion diffusion process through online social media. TriMine [20] is
a scalable method for forecasting co-evolving multiple (thousands
of) sequences. Mueen et al. studied time series motifs [22], while
Rakthanmanon et al. [26] proposed a novel algorithm to acceler-
ate a similarity search for “trillions of time-series” under the DTW
distance.

Summarization and clustering. Work on summarization and clus-
tering is remotely related to this work. A huge number of clus-
tering techniques have been proposed including CLARANS [23],
BIRCH [36], and TRACLUS [15]. As regards parameter-free min-
ing, the work reported in [3] proposes OCI, which is a parameter-
free clustering approach based on exponential power distributions
(EPD). Related work [5, 32], focuses on summarization and clus-
tering based on the MDL principle.

In summary, none of the above methods focus on (1) finding dis-
tinct high-level patterns from a large set of co-evolving sequences,
(2) without any parameters, (3) in an efficient way.

2.2 Review of HMM
Although our proposed framework allows any model to take ad-

vantage of the compact representation of time-series data, we use
the hidden Markov model (HMM) throughout this paper for sim-
plicity. An HMM is a statistical model in which the system being
modeled is assumed to be a Markov process with hidden states. It is
widely used in many applications such as speaker recognition and
the analysis of biological sequences.

An HMM is composed of the following probabilities: initial
state probabilities π= {πi}ki=1, state transition probabilities A=
{aij}ki,j=1, and output probabilities B={bi(x)}ki=1.

Likelihood function. Given a model θ = {π,A,B} and an input
sequence X , the likelihood value P (X|θ) is computed as follows:

state 1
 

11
a

33
a

state 3
 

state 2
 

a
22

a
12

a
23

a
31

θ

2−t 1−t t 1+t

X

11
a

11
a

33
a

33
a

11
a

33
a

state 1
 

state 3
 

state 2
 

(a) State transition diagram (b) State transition over time

Figure 2: Illustration of the HMM structure. Given a bundle

X and a model θ (here, hidden states k = 3, sequence length

n = 4), the colored states in (b) denote the Viterbi path.

P (X|θ) = max
1≤i≤k

{pi(n)}

pi(t) =

{

πibi(x1) (t = 1)
max1≤j≤k{pj(t− 1)aji}bi(xt) (2 ≤ t ≤ n)

(1)

where pi(t) is the maximum probability of state i at time t, and n
is the length of X . The likelihood is computed based on the “trellis

diagram” shown in Figure 2, where states lie on the vertical axis,
and sequences are aligned along the horizontal axis. The likelihood
is computed using a dynamic programming approach, called the
Viterbi algorithm, which maximizes the probabilities from previous
states (i.e., each state probability is computed using all previous
state probabilities, associating transition probabilities, and output
probabilities). The state sequence, which gives the likelihood, is
called the Viterbi path. Note that the Viterbi algorithm requires
O(ndk2) time to compute the likelihood value, where n and d are
the length and dimension of X , and k is the number of states.

Learning the parameters. Given a set of time series X , the Baum-
Welch algorithm is an efficient way to find the maximum likelihood
model parameter set: θ = {π,A,B}. The complexity of the algo-
rithm is O(ndk2). For more details, please see, e.g., [2].

3. PROBLEM FORMULATION
In this paper we tackle a challenging problem, namely fully-

automatic mining, and specifically, CAPS (Compression / Anomaly-
detection / Pattern-discovery / Segmentation) for large co-evolving
time series. Let us begin by defining a few key concepts.

DEFINITION 1 (BUNDLE). Let X = {x1, . . . ,xn} be a set

of d co-evolving time sequences, where xt is a d-dimensional vec-

tor at time-tick t. We refer to X as a bundle.

Given a bundle X , we want to convert X into a set of m non-
overlapping segments S= {s1, . . . , sm} where si consists of start-
ing and end positions of the i-th segment (i.e., si = {ts, te}). We
also want to find a set of distinct patterns of segments by assigning
each segment to a segment group, namely, the regime of segments.

DEFINITION 2 (REGIME). Let r denote the desired number of

segment groups. Each segment s is assigned to one of these groups.

We define each such segment group as a regime, which is repre-

sented by a statistical model θi (i = 1, . . . , r).

For example, in Figure 1, the motion consists of m = 8 segments,
each of which belongs to one of the r = 4 regimes, (i.e., “beaks”,
“winds”, “tail feathers” and “claps”).

DEFINITION 3 (SEGMENT-MEMBERSHIP). Let F be a list of

m integers, F = {f1, . . . , fm}, where fi is the regime that the i-th
segment belongs to (i.e., 1 ≤ fi ≤ r).



In Figure 1, the first segment belongs to regime #4 (“beaks”), and
the second segment belongs to #3 (“wings”), and so on. These steps
are repeated twice. That is, the segment-membership is, F ={4, 3,
2, 1, 4, 3, 2, 1}.

Our goal is to determine the number of segment cuts and their
positions automatically, in a scalable way, and describe each seg-
ment compactly. Thus, we want to provide a coding scheme with an
appropriate cost function, and also achieve the optimal segmenta-
tion with probabilistic model learning to minimize the cost, without
any knowledge of the characteristics of the sequences. We formally
define the problem (i.e., CAPS: Compression / Anomaly-detection
/ Pattern-discovery / Segmentation) as follows:

PROBLEM 1 (FULLY-AUTOMATIC CAPS). Given a set of co-

evolving sequences (bundle) X , find a compact description that

best summarizes X , that is,

1. determine the count m of segments and their positions,

i.e., S = {s1, . . . , sm},

2. determine the count r of regimes and their segment-membership,

i.e., F = {f1, . . . , fm},

3. estimate the model parameters of the r distinct regimes,

i.e., Θ = {θ1, . . . ,θr,∆r×r},

to optimize the cost function of Equation 6, that is, the total lossless

description length.

Here, we should note that the model parameter set Θ consists of
the HMM parameters of r regimes, i.e., {θ1, . . . ,θr}, and, one ad-
ditional matrix, namely, the regime transition matrix ∆r×r . We
will describe the details about the regime transition matrix (Defini-
tion 5) and the cost function (Equation 6) in section 4.

As described in Problem 1, our final goal is to find a good repre-
sentation of X , which we refer to as a candidate solution.

DEFINITION 4 (CANDIDATE SOLUTION). Let C be a complete

set of parameters (namely C = {m, r,S,Θ,F}) that describe a

segmentation, the regimes each segment belongs to, the parameters

of each regime.

We want to provide a good solution C to the problem. The essential
questions are: how should we decide the number of segments and
regimes, i.e., m and r, respectively? How can we generate ‘infor-
mative’ regimes and assign segments to their proper regimes? We
address these questions without any parameter fine tuning.

4. DATA COMPRESSION AND SUMMARIZA-

TION
In this section we present our model for dealing with Problem 1.

There are two main ideas behind our model:

1. Multi-level chain model (MLCM): We group states of the
HMMs into regimes, and regimes into super-regimes, etc.
Figure 3 illustrates our approach: The blue states are grouped
into regime 1 (which could correspond, say, to the “beaks”
phase of the dance of Figure 1), and similarly for the red
states (regime 2, e.g., “wings”). Here, we stay with two
levels only, ‘states’ and ‘regimes’. Within each regime, we
have a transition matrix A; our novelty is that we allow
across-regime transitions, with regime transition probabili-

ties ∆r×r , which is an r×r transition matrix, where r is the
count of regimes (r = 2, in Figure 3).

2. Model description cost: We use the MDL (minimum de-
scription length) principle, to choose among alternative seg-
mentation and regime-descriptions. Although important, the

state 1
 

a
1;11

a
1;33

state 3
 

state 2
 

a
1:22

a
1;12

a
1;23

a
1;31

state 1
 

a
2;11

state 2
 

a
2;22

a
2;12

a
2;21

Regime 

switch
 

δ
12

δ
21

δ
11

θ
1

Θ

θ
2

δ
22

Regime 1 (e.g., “beaks”) Regime 2 (e.g., “wings”) 

Figure 3: Multi-level transition diagram for the r = 2 regime

transition model Θ; blue regime (regime 1, say, “beaks”) and

red regime (say, “wings”), each with three and two internal

states. The black and green arrows indicate “within”-regime

and “across”-regime transitions, respectively.

MDL principle is a model selection criterion based on loss-
less compression principles, which does not directly address
our problem. Thus, we define a new coding scheme for
the segmentation and summarization of a given bundle X .
Specifically, we propose (a) a novel cost function (i.e., Equa-
tion 6) to estimate the description cost of a given candidate
and (b) an efficient algorithm to find an optimal segmenta-
tion.

Overall, our model consists of two parts: (1) MLCM (Multi-Level
Chain Model), a statistical model for dealing with multi-level tran-

sitions, and (2) a cost model, which enables our algorithm to esti-
mate probabilistic parameters automatically. These two parts are
described next.

4.1 MLCM: multi-level chain model
One of the novelties of this paper is the multi-level chain model,

where we propose grouping states into ‘regimes’ as shown in Figure 3.
Here we stay with two levels only, but it is possible to employ
higher-level models. Our idea is best described with an example, as
in Figure 3. There, we have five states total, but instead of having
a 5 × 5 transition matrix, we propose grouping states into super-
states, that we refer to as ‘regimes’. In Figure 3, suppose we group
the three blue states together (say, they describe the “beaks” mo-
tion of the dance example of Figure 1), with the remaining two
states grouped into the red regime (say, “wings” of Figure 1). Each
regime has its own transition matrix (a1;ji ∈ A1 and a2;ji ∈ A2,
in our running example, shown as the black arrows), and there is
a second-level transition matrix (δvu ∈ ∆2×2) which governs the
across-regime transitions (shown as the green arrows).

DEFINITION 5 (REGIME TRANSITION MATRIX). Let ∆r×r

denote a transition probability matrix of r regimes, where each el-

ement δij ∈ ∆ is the regime transition probability from the i-th
regime to the j-th regime.

Matrix ∆ has all the properties of a transition matrix: all entries
δi,j are probabilities, and thus in the range (0,1), and the rows sum
up to 1, i.e., 0 ≤ δij ≤ 1, with

∑

j
δij = 1.

Consequently, we define a set of model parameters of r regimes
as Θ = {θ1, . . . ,θr,∆r×r}, where θi are the parameters of the
i-th regime, i.e., θi = {πi,Ai,Bi}. 3

3 In our setting, we assume a Gaussian distribution for the output
probability, which is able to handle multi-dimensional vectors at

each time-tick (i.e., B = {N (µi,σ
2
i )}ki=1).



4.2 What is a good description?
We introduce a new, intuitive coding scheme, which is based

on lossless compression principles. In short, the goodness of the
model can be roughly described as follows: CostT = Cost(M)+
Cost(X|M), where Cost(M) shows the cost of describing the
model M, and Cost(X|M) represents the cost of describing the
data X given the model M.

4.2.1 Model description cost

The description complexity of our model consists of the follow-
ing terms:

• The number of time-ticks n and the number of dimensions d
require log∗(n) + log∗(d) bits. 4

• The number of segments m and the number of regimes r
require log∗(m) + log∗(r) bits.

• The assignments of the segments to regimes (i.e., segment-
membership of these regimes) require m log(r).

• The length of each segment s, needs
∑m−1

i=1
log∗ |si| bits.

• The model parameters of r regimes need CostM (Θ), i.e.,

CostM (Θ) =
r

∑

i=1

CostM (θi) + CostM (∆). (2)

Here, a single model θ requires log∗(k) for the number of
hidden states k, and the model cost (i.e., θ = {π,A,B}).
That is,

CostM (θ) = log∗(k) + cF · (k + k2 + 2kd), (3)

where cF is the floating point cost5. Similarly, the regime
transition requires the cost of CostM (∆) = cF · r2.

4.2.2 Coding cost of whole bundle

After estimating a representation of the bundle X , we need a re-
liable approach to judge the accuracy of the fit. Data compression
using Huffman coding assigns a number of bits to each value in X ,
which is the logarithm of the inverse of probability (i.e., the nega-
tive log-likelihood) of the values. The coding cost of X , Huffman-
coded with a given model θ is:

CostC(X|θ) = log2
1

P (X|θ) = − lnP (X|θ), (4)

where P (X|θ) is the likelihood of X , described in Equation 1.
Given a whole bundle X , and the model parameters of r regimes,
Θ, the total cost of data compression is

CostC(X|Θ) =
m
∑

i=1

CostC(X[si]|Θ)

=
m
∑

i=1

− ln(δvu · (δuu)|si|−1 · P (X[si]|θu)), (5)

where the i-th and (i−1)-th segments are governed by the u-th and
v-th regimes, respectively (i.e., fi = u and fi−1 = v), and f0 =
f1. Also, X[si] is the sub-bundle of segment si, and P (X[si]|θu)
is the likelihood of si. Notice that θu is the regime that the segment
si belongs to (i.e., the regime that describes it best).

4Here, log∗ is the universal code length for integers, defined as
log∗(x) ≈ log2(x) + log2 log2(x) + . . . , where only the positive
terms are included in the sum [27].
5We used 4× 8 bits in our setting.

Table 2: Symbols and definitions.
Symbol Definition

for bundle

n Number of time ticks
d Number of dimensions
X Bundle: d co-evolving time sequences

for segments

m Number of segments in X

S Segment set in X , i.e., S = {s1, . . . , sm}
F Segment-membership i.e., F = {f1, . . . , fm}
for regimes

r Number of regimes in X

Θ Model parameters of r regimes, i.e.,
Θ = {θ1, . . . , θr,∆r×r}

θi Model parameters governing i-th regime
ki Number of hidden states in θi

∆r×r Regime transitions, i.e., ∆ = {δij}ri,j=1

for coding scheme

C Candidate solution i.e., C = {m, r,S,Θ,F}
CostM (Θ) Model description cost of Θ
CostC(X|Θ) Coding cost of X given Θ

CostT (X; C) Total cost of X given C

4.2.3 Putting it all together

The total code length for bundle X with respect to a given can-
didate solution: C = {m, r,S,Θ,F} can be described as follows:

CostT (X; C) = CostT (X;m, r,S,Θ,F)

= log∗(n) + log∗(d) + log∗(m) + log∗(r) +m log(r)

+

m−1
∑

i=1

log∗ |si|+ CostM (Θ) + CostC(X|Θ) (6)

Thus, our goal is to find the best combination of segments and
regimes, to minimize the above function. This is exactly the focus
of section 5.

We illustrate our ideas with a simple example, with a “bundle”
consisting of a single sequence (d=1), with categorical values (al-
though our upcoming algorithms are mainly for numerical values.

EXAMPLE 1. Let us assume that we are given the following

bundle X = (a, a, a, a, b, c, b, c, b, a, a, a, a, a, a), where n = 15,

d = 1. We illustrate how to find the best summarization to achieve

the minimum cost.

Given a regime X , the most straightforward solution is to con-

sider the whole bundle X as a single segment, and create a single

regime θ that describes all the sequences (we refer to it as “single-

transition (ST)” model), i.e.,

SST = {s1} = {X},ΘST = {θ,∆ = [1.0]},FST = {f1 = 1},

θ = {π =





1
0
0



 ,A =





0.9 0.1 0
0.5 0 0.5
0 1 0



 ,B =





a
b
c



},

where, the model θ starts with ‘aa. . . ’, and then follows transition

matrix A, e.g., ‘bcbc. . . ’.

Our model, MLCM, on the other hand, is much more intuitive.

We create three segments and two regimes, i.e.,

SMLCM = {s1, s2, s3} = {{a, a, a, a}, {b, c, b, c, b}, {a, a, · · · , a}},

ΘMLCM = {θ1,θ2,∆ =

[

0.9 0.1
0.2 0.8

]

},FMLCM = {1, 2, 1},



θ1 = {π = [1.0],A = [1.0],B = [a]},

θ2 = {π =

[

1
0

]

,A =

[

0 1
1 0

]

,B =

[

b
c

]

},

where, regime θ1 is the infinite Markov chain that gives ‘a’ forever,

and regime θ2 strictly alternates between emitting ‘b’ and ‘c’.

We now compare the costs of two candidate segmentations and

regime-memberships. From Equation 6, we have

(a) CostM (ΘST ) = 612, CostC(X|ΘST ) = 8,

CostT (X;m = 1, r = 1,SST ,ΘST ,FST ) = 632.

(b) CostM (ΘMLCM) = 580, CostC(X|ΘMLCM) = 8,

CostT (X;m = 3, r = 2,SMLCM,ΘMLCM,FMLCM) = 619.

Consequently, even in this small, toy example, the second alterna-

tive (i.e., MLCM) gives better cost.

5. OPTIMIZATION ALGORITHM
In the previous section, we have seen how we can estimate the

goodness of the segmentation and summarization, if we are given a
candidate solution C = {m, r,S,Θ,F}. Now, the question is how

to find an optimal solution? This is exactly the focus of this section.

5.1 Overview
We employ our model to automatically select the number of seg-

ments and regimes. It follows the assumption that the more we can
compress the data, the more we can learn about its underlying pat-
terns. The optimal solution corresponds to the number of segments
m, the number of regimes r, a set of segments S, model parame-
ters Θ, and their membership F , such that the total resulting coding
cost, namely, CostT (X;m, r,S,Θ,F) is minimized. Equation 6
provides a strong theoretical foundation, and it can point out the
best candidate among many for segmentation.

So how can we find good candidates? For simplicity, let’s focus
on a simple step first, where we assume that (1) we are given two
regimes with fixed model parameters. We then (2) estimate the
regime parameters, and even (3) the number of regimes. We divide
the question into three steps:

1. CutPointSearch (inner-most loop): Find good cut points
to create two sets of segments, S1 and S2, when given the
number of regimes (r = 2) and regime model parameters.

2. RegimeSplit (inner loop): Estimate good regime parameters
(θ1, θ2, and ∆), for a fixed number of regimes r = 2.

3. AutoPlait (outer loop): Search for the best number of regimes
(r = 2, 3, 4, . . . ).

Among all possible r values, and all possible cut point locations,
our algorithm picks the arrangement with the smallest total com-
pression cost, as suggested by our cost model.

Figure 4 provides an overview of AUTOPLAIT involving the seg-
mentation and segment-menbership of regimes. Starting with r =
2 (at iteration 1), our method successively increases r and m, and
finds progressively better representations of the bundle X . During
the splitting of regimes and segments, the cost is greatly reduced
(see the cost curve, Figure 4 (d)).

5.2 Cut-point search (inner-most loop)
Let’s begin with the simplest case. We assume that we are given a

bundle X , and also, the model parameters of two regimes {θ1,θ2,∆}.
Our first goal is to detect the switching positions (i.e., cut points)
of regimes according to the model parameters, efficiently with only
a single scan. Figure 5 shows the single cut-point case, where we
switch from the blue regime θ1 to the red regime θ2. More specif-
ically, we want to find multiple cut points, that divide X into two

f
1
= 2

X

θ
1

θ
2

f
2
=1 f

3
= 2 f

4
=1

(a) Iteration 1 (regimes : r = 2, segments : m = 4)

θ
1

θ
3

θ
2

X

f
1
= 2 f

2
= 3 f

3
=1 f

4
= 2 f

5
= 3 f

6
=1

(b) Iteration 2 (regimes : r = 3, segments : m = 6)

X

θ
1

θ
3

θ
4

θ
2

f
1
= 2 f

2
= 4 f

3
= 3 f

4
=1 f

5
= 2 f

6
= 4 f

7
= 3 f

8
=1

(c) Iteration 4 (regimes : r = 4, segments : m = 8)

0 1 2 3 4 5 6 7

7000

8000

9000

Iteration

C
os

t T

(c) Splitting (r=4)
(b) Splitting (r=3)

(a) Splitting (r=2)

(d) Total cost per iteration.

Figure 4: Overview of the workflow of AUTOPLAIT: (a)-(c)

starting with bundle X , it iteratively finds the segment groups

(i.e., regimes), and their segments (grey boxes). (d) At each it-

eration, new regimes are created by splitting an existing regime

to improve the coding cost. Note that at iteration 3 (red circle

in (d)), the cost stays the same as at iteration 2, because of the

unsuccessful attempt (θ1 is not split at iteration 3).

sets of segments (i.e., S1 and S2) so that we minimize the sum of
the cost (i.e., in Equation 5). Clearly the two sets of segments al-
ternate: the odd ones belong to one regime, and the even ones to
the other. For example, at iteration #1 in Figure 4, S1 = {s2, s4}
belong to θ1, S2 = {s1, s3} to θ2.

How do we go about finding multiple cut points? An elementary
concept that we need to introduce is a multi-level transition dia-
gram, specifically a two-level transition diagram over the time do-
main. We are given two regimes θ1 and θ2. We then connect their
transition diagrams (see Figure 5), and compare these regimes in
terms of coding cost. To compute the coding cost CostC(X|Θ) =
− lnP (X|Θ), we present a dynamic programming approach and
show how to exploit the two-level transition diagram.

5.2.1 Algorithm

Formally, given a bundle X , two regimes θ1 = {π1,A1,B1},
θ2 = {π2,A2,B2}, and a regime transition matrix ∆ ={δ11, δ12,
δ21, δ22}, the likelihood value P (X|Θ) is computed as follows:



...

...

...

...

...

state 1
 

state 2
 

state 3
 

state 2
 

state 1
 

t = 3 t = 4 t = 5 t = 6

X

t =1 t = 2
...

L
2;1
(3) = {3}

L
2;2
(5) = {3}

L
2;1
(4) = {3} L

2;1
(5) = {4}

L
2;2
(6) = {4}

δ
12

L
2;2
(4) = {4}

δ
12

θ
1

θ
2

L
1;1
(1) = φ

L
1;3
(2) = φ

L
1;1
(3) = φ

Figure 5: Illustration of CutPointSearch. Given a bundle X

and two models θ1, θ2 (here, duration n = 6), our algorithm

requires only a single scan to detect the regime cut point (i.e., at

time-tick t = 4). Note that the colored cells indicate the optimal

states (i.e., Viterbi path). At time-tick t = 3 and 4 in the red

regime, the algorithm finds L2;1(3) = {3} and L2;2(4) = {4}
as the first and second cut-point candidates. and at time-tick

t = 6, L2;2(6) = {4} is chosen as the optimal cut point.

P (X|Θ) = max

{

max1≤i≤k1
{p1;i(n)} // regime θ1

max1≤u≤k2
{p2;u(n)} // regime θ2

(7)

p1;i(t) = max















δ21 ·maxv{p2;v(t− 1)} · π1;i · b1;i(xt)
// regime switch from θ2 to θ1

δ11 ·maxj{p1;j(t− 1) · a1;ji} · b1;i(xt)
// staying at regime θ1

(8)

p2;u(t) = max















δ12 ·maxj{p1;j(t− 1)} · π2;u · b2;u(xt)
// regime switch from θ1 to θ2

δ22 ·maxv{p2;v(t− 1) · a2;vu} · b2;u(xt)
// staying at regime θ2

(9)

where p1;i(t) is the maximum probability of state i of regime θ1 at
time t, and p2;u(t) is that of state u of θ2 at time t. As an initial
setting, at time t = 1, the probability for each regime is set at:

p1;i(1) = δ11 · π1;i · b1;i(x1)
p2;u(1) = δ22 · π2;u · b2;u(x1)

(10)

In Equation 8, the first row shows the probability for the case of
regime switch (i.e., from regime θ2 to regime θ1), and the second
row shows the case of state transition in regime θ1, where:

• δ21: regime transition probability from θ2 to θ1,
• maxv{p2;v(t−1)}: probability of the best state of θ2 at time

t− 1,
• π1;i: initial probability of state i of θ1,
• b1;i(xt): output probability of xt for state i of θ1,
• a1;ji: transition probability from state j to state i in θ1.

Equation 9 also shows the maximum probability of regime θ2, which
can be computed similarly.

The above approach is a good first step that can tell us the coding
cost with respect to the two regimes. Our next question is how to
identify the cut point of each segment. We thus propose keeping
track of candidate cut points during the likelihood computation.

Let L = {l1, l2, . . . , lm−1} be the set of cut point locations,
where m is the number of segments, and li is the i-th cut point,
i.e., 1 ≤ li ≤ n. Our idea is that we retain a candidate cut-point set
for every state of the two regimes. Specifically,

L1;i(t) =

{

L2;v(t− 1) ∪ {t} // switch from θ2 to θ1

L1;j(t− 1) // staying at regime θ1
(11)

L2;u(t) =

{

L1;j(t− 1) ∪ {t} // switch from θ1 to θ2

L2;v(t− 1) // staying at regime θ2
(12)

where L1;i(t) shows the candidate cut point location(s) for state i
of θ1 at time-tick t, and L2;u(t) shows the candidate(s) for state u
of θ2, which are updated according to the likelihood computation
in Equations 8 and 9. We add time t as a candidate to the cut-point
set if the regime is switched to the other. Algorithm 1 shows the
overall procedure for the cut-point search. The cut-point set L is
transmitted as a message through the optimal path of the diagram.
At time t = n, we choose the best cut-point set Lbest, from L1;i(n)
and L2;u(n) of all states i and u, so as to maximize P (X|Θ).

Algorithm 1 CutPointSearch (X,θ1,θ2,∆)

1: Input: Bundle X , model parameters of two regimes {θ1,θ2,∆}
2: Output: (a) Number of segments assigned to each regime, m1,m2

3: (b) Segment sets of two regimes S1,S2

4: /* Compute p1;i(t) and p2;u(t) */
5: for t = 1 : n do
6: Compute p1;i(t) for state i = 1, . . . , k1; /* Equations 8 and 10 */
7: Compute p2;u(t) for state u = 1, . . . , k2; /* Equations 9 and 10 */
8: Update L1;i(t) for state i = 1, . . . , k1; /* Equation 11 */
9: Update L2;u(t) for state u = 1, . . . , k2; /* Equation 12 */

10: end for
11: /* Divide into two sets of segments S1,S2 */
12: Choose the best cut-point set Lbest;
13: ts = 1; /* Starting position of first segment */
14: for each cut point li in Lbest do
15: Create segment si = {ts, li};
16: if i is odd then
17: Add si into S1; m1 = m1 + 1;
18: else
19: Add si into S2; m2 = m2 + 1;
20: end if
21: ts = li;
22: end for

23: return {m1, m2, S1, S2};

EXAMPLE 2. We illustrate how this is done using Figure 5. At

time t = 1 and t = 2, the algorithm shows that p1;1(1) and p1;3(2)
in θ1 provide the highest probabilities. At t = 3, it finds a can-

didate cut point from p1;3(2) to p2;1(3) (i.e., the first green ar-

row from θ1 to θ2) and then retains the position L2;1(3) = {3}
as a candidate cut point. Similarly, it finds the second candidate

point, and retains L2;2(4) = {4}. At t = 6, the algorithm shows

that p2;2(6) provides the maximum probability, thus determines

L2;2(6) = {4} should be the best position of the regime switch.

5.2.2 Theoretical analysis

LEMMA 1. The CutPointSearch algorithm takes O(ndk2) time.

PROOF. The CutPointSearch algorithm needs to compute O(dk2)
numbers per time tick. The algorithm requires only a single scan to
find cut points. Thus, the time complexity is O(ndk2).

LEMMA 2. For the given model Θ = {θ1, . . . ,θr,∆}, Cut-

PointSearch guarantees the output of the optimal cut points.

PROOF. We are now given r regimes each with k states. Let us
assume that each state is linked to all k× r states of the r regimes,
and δ′u,i;v,j is the transition probability from state i of regime u to
state j of regime v. This is equivalent to the case that we have k×r
states of a single regime. The optimal path with the minimum cost
can be found by using a dynamic programming approach. In the
two-level transition of our model, regime u is linked to regime v,



thus transition probability can be considered as δuv = δ′u,i;v,j for
any possible combinations of states i and j.

Therefore, our algorithm provides the optimal path and optimal
cut points with the minimum cost.

5.3 Regime parameter estimation (inner loop)
Until now, we have assumed that the model parameters of two

regimes (i.e., {θ1,θ2, ∆}) were given. Next, we tackle an impor-
tant and challenging question, namely, how can we estimate model
parameters that describe these regime patterns? We would like to
(a) estimate the model parameters of two regimes and (b) find the
locations of all cut points, simultaneously.

The goal is to obtain parameters that minimize the cost of model-
ing the whole bundle X , as described in Equation 6. However, it is
difficult to minimize the modeling cost directly. We thus propose an
iterative optimization algorithm (see Algorithm 2). Our algorithm
searches for the optimal solution using a two-phase approach, i.e.,

• Phase 1: Find the cut points of segments according to the
coding cost, (using Algorithm 1), and split the segments into
two segment groups {S1,S2}.

• Phase 2: Estimate the model parameters of two regimes
{θ1,θ2, ∆} based on the new segmentation. Here, we use
the Baum-Welch algorithm to infer the HMM parameters.

Algorithm 2 RegimeSplit (X)

1: Input: Bundle X

2: Output: (a) Number of segments assigned to each regime, m1,m2

3: (b) Segment sets of two regimes, S1,S2

4: (c) Model parameters of two regimes {θ1,θ2,∆}
5: Initialize models θ1, θ2; /* Equation 13 */
6: while improving the cost do
7: /* Find segments (phase 1) */
8: {m1,m2,S1,S2} = CutPointSearch (X, θ1,θ2,∆);
9: /* Update model parameters (phase 2) */

10: θ1 = BaumWelch (X[S1]);
11: θ2 = BaumWelch (X[S2]);
12: Update regime transitions ∆; /* Equation 14 */
13: end while

14: return {m1,m2, S1,S2, θ1,θ2,∆};

Model initialization. Before we start the iterations, we need to
initialize the model parameters {θ1,θ2} to some random values.
Simplest solution would be to estimate the initial models using
randomly-selected subsequences of X (i.e., use randomly-chosen
starting/ending points). However, this approach might converge to
a local minimum of the cost function, depending on the initial val-
ues. Thus, we propose a sampling-based approach to avoid this is-
sue. We uniformly take several sample segments from the original
data X . For each sample segment s, we estimate the model param-
eters θs. We then compute the coding cost of all possible pairs of
{θs1 ,θs2}, and choose the most appropriate pair {θ1,θ2}.

{θ1,θ2} = arg min
θs1

,θs2
|s1,s2∈X

CostC(X|θs1 ,θs2), (13)

where X = {s1, s2, . . . } is a set of samples taken from X .

Model estimation. Note that the Baum-Welch algorithm requires
the number of hidden states k for each model θ, and it is hard to
set a reasonable k by hand. When we use a very small number
for k, the model provides a poor fit to the data, and the algorithm
might fail to find optimal segments. By contrast, when we use a
much larger number for k, the models would give a very poor rep-
resentation, known as over-fitting. So how can we determine the
optimal number for k? We thus vary k = 1, 2, 3, . . . , and deter-
mine appropriate models so as to minimize the cost function, i.e.,
CostM (θ) + CostC(X[S]|θ).

We also need to minimize the coding cost with respect to the
regime transition probabilities ∆. We treat the cut points of seg-
ments {S1,S2} and the model parameters {θ1,θ2} as constant,
and then compute ∆ = {δ11, δ12, δ21, δ22} using appropriate La-
grange multipliers with the results as follows:

δ11 =

∑

s∈S1
|s| −N12

∑

s∈S1
|s| , δ12 =

N12
∑

s∈S1
|s| , (14)

where
∑

s∈S1
|s| shows the total length of segments that belongs

to regime θ1, and N12 indicates the regime-switch count from θ1

to θ2. We compute δ21, δ22 similarly, but we omit the details.

5.4 AutoPlait (outer loop)
Thus far, we have discussed how to find segments and their cut

points given two models/regimes (i.e., r = 2). Our final goal is
to find multiple patterns in a large bundle without any user inter-
vention (described in Problem 1). So how should we decide the
number of segments m and regimes r? How can we assign the
segments to their proper regimes?

5.4.1 Algorithm

We introduce a stack-based algorithm, namely AUTOPLAIT, for
fully-automatic mining. The idea is to use a greedy approach, split-
ting a bundle into segments, and introducing new regimes, as long
as the coding cost (Equation 6) keeps decreasing. The detailed AU-
TOPLAIT algorithm is shown in Algorithm 3.

Algorithm 3 AUTOPLAIT (X)

1: Input: Bundle X

2: Output: Complete set of parameters C, i.e.,
3: (a) Number of segments, m
4: (b) Number of regimes, r
5: (c) Segment set, S = {s1, . . . , sm}
6: (d) Model parameters of regimes, Θ = {θ1, . . . , θr;∆}
7: (e) Segment membership, F = {f1, . . . , fm}
8: Q = ∅; /* Q: stack for number of segments, segment set, regime */
9: S = ∅; m = 0; r = 0; S0 = {1, n}; m0 = 1;

10: θ0 = BaumWelch (X[S0]); /* Estimate model θ0 of S0 */
11: Push an entry {m0,S0,θ0} into Q;
12: while stack Q 6= ∅ do
13: Pop an entry {m0,S0,θ0} from Q;
14: /* Try to refine a regime */
15: {m1,m2,S1,S2,θ1,θ2,∆} = RegimeSplit (X[S0]);
16: /* Compare single regime θ0 v.s. regime pair θ1 and θ2 */
17: if CostT (X;S0,θ0) > CostT (X;S1,S2,θ1,θ2) then
18: /* Regime pair win - split regime */
19: Push entries {m1,S1,θ1}, {m2,S2, θ2} into Q;
20: else
21: /* Single regime win - no more split, leave it out of the stack */
22: S = S ∪ S0; Θ = Θ ∪ θ0; r = r + 1;
23: Update ∆r×r ; /* Equation 14 */
24: fi = r (i = m+ 1, . . . ,m0); m = m+m0;
25: end if
26: end while

27: return C = {m, r,S,Θ,F};

At each step, the algorithm first pops an entry {θ0,m0,S0} from
the stack Q. It then tries to refine the current regime θ0, that is, it
finds new candidate regime pair {θ1,θ2}, and their segment sets
{S1,S2} for a given segment set S0. If the coding cost of the new
candidate regimes is less than the cost of the current regime, (i.e.,
the candidate regime pair wins), the algorithm pushes the candi-
date pair into the stack Q. Otherwise, it leaves the regime out of
the stack, and report {θ0,m0,S0} as the output. This process is
repeated until the holding stack is empty.



200 400 600 800 1000 1200
0

0.5

1
1

2
3

4

left/right
legs  

left/right
arms

beaks
wings

tail feathers
claps

beaks
wings

tail feathers
claps

(a) AUTOPLAIT (no user defined parameters)

m=2

m=4

m=8 lag lag lag

(b) DynaMMo (need “user-defined” m = 2, 4, 8 )

1
2

3
4

5
6

7

(c-1) pHMM (need “user-defined”: ǫr = 0.1, ǫc = 0.8)

1
2

3
4

5
6

(c-2) pHMM (need “user-defined”: ǫr = 1.0, ǫc = 0.8)

1
2

3
4

(c-3) pHMM (need “user-defined”: ǫr = 0.1, ǫc = 4.0)

Figure 6: AUTOPLAIT is fully automatic: it finds the right

cuts automatically: (a) result of AUTOPLAIT, (b) three sets of

results (r,m = 2, 4, 8) for DynaMMo, (c) three sets of results

(ǫr = 0.1, 1.0, ǫc = 0.8, 4.0) for pHMM. Note that AUTOPLAIT

finds the correct count and location of the cuts, while its com-

petitors are very sensitive to user-defined parameters.

5.4.2 Theoretical analysis

LEMMA 3. The computation time of AUTOPLAIT is linear on

the duration of the bundle, n.

PROOF. For each iteration, CutPointSearch and RegimeSplit re-
quire O(ndk2) time to compute the coding cost and estimate the
model parameters, where d is the number of dimensions, and k
is the maximum number of hidden states in the regimes {θi}ri=1,
(i.e., k = max{k1, k2, . . . , kr}), Thus, the time complexity is
O(#iter · ndk2). Note that the number of iterations #iter, the
number of hidden states k and dimensions d are small constant val-
ues that are negligible. Thus, the complexity is O(n).

6. EXPERIMENTS
In this section we demonstrate the effectiveness of AUTOPLAIT

on real datasets. To ensure the repeatability of our results, we used
publicly available datasets. These experiments were designed to
answer the following questions:

Q1 Sense-making: Can our method help us understand the given
input bundle?

Q2 Accuracy: How well does our method find cut-points and
regimes?

1000 2000 3000 4000 5000 6000 7000 8000
0

0.5

1

1
2

3
4

5
6

7

left/right
legs

left/right
arms

walk run walkjump kick jump
(right)

jump
(left)

wave hands

walk

(a) AUTOPLAIT (no user defined parameters)

m=9
lag lag lag

(b) DynaMMo (need “user-defined” m = 9 )

1
2

3
4

5
6

7
8

9
10

(c) pHMM (need “user-defined”: ǫr = 0.1, ǫc = 0.8)

Figure 7: AUTOPLAIT can detect un-repeated regimes: (a) It

captures all distinct motions (walking, running, etc), while (b)

DynaMMo was not completely successful in finding optimal cut

points, (c) pHMM cannot find high-level motion patterns.

Q3 Scalability: How does our method scale in terms of compu-
tational time?

Our experiments were conducted on an Intel Core 2 Duo 3.50GHz
with 32GB of memory, running Linux. We performed our exper-
iments on the following real datasets. We normalized the values
of each dataset so that they had the same mean and variance (i.e.,
z-normalization).

• MoCap: The dataset was obtained from the CMU motion
capture database6. In this dataset, every motion is repre-
sented as a sequence of hundreds of frames. It consists of
sequences of 64-dimensional vectors, and we chose four di-
mensions (left-right legs and arms).

• WebClick: This consists of the web-click records of 2,582,252
anonymous users, obtained over one month, (from 1st to 30th
April 2007). It contains one billion records with 67 GB of
storage, each of which has three attributes: URL, user and
the time stamp of the click.

• GoogleTrend: This dataset consists of the volume of searches
for various queries (i.e., words) on Google7. Each query
represents the search volumes related to keywords over time
(over nine years, on a weekly basis).

6.1 Sense-making
We carried out experiments on real motion capture datasets to

demonstrate the effectiveness of AUTOPLAIT in finding optimal
segments and regimes. We compared our method with scalable and
state-of-the-art methods, namely, DynaMMo [18] and pHMM [34].

6http://mocap.cs.cmu.edu/
7http://www.google.com/trends/



0.2 0.4 0.6 0.8 1

0.7

0.8

0.9

1

Precision

R
ec

al
l

Ideal

AutoPlait

pHMM

DynaMMo

AutoPlait pHMM
0

0.2

0.4

0.6

0.8

E
nt

ro
py

 (
C

E
)

DynaMMo:
N/A

(a) Precision and recall (higher is better) (b) CE score (lower is better)

Figure 8: Accuracy of AUTOPLAIT: it consistently outperforms

two alternative methods with respect to precision, recall and en-

tropy. (a) Segmentation accuracy: it achieves 97% for precision

and 95% for recall. (b) Clustering accuracy: it shows the condi-

tional entropy (CE) of the confusion matrix between true labels

and outputs. Note that DynaMMo cannot find clusters.

10
4

10
5

10
6

10
7

10
2

10
3

10
4

Length of bundle

W
al

l c
lo

ck
 T

im
e 

(s
)

 

 

AutoPlait
DynaMMo
pHMM

y=xy=x2

Figure 9: AUTOPLAIT scales linearly: wall clock

time vs. datasize n. Our method and DynaMMo are

linear (i.e., slope = 1 in log-log scale), while pHMM

is at least quadratic (i.e., slope ≈ 2). AUTOPLAIT is

472 times faster than pHMM at n = 105.

One of our results was already presented in section 1 (see Figure 1).
Figure 6 shows the results for another “chicken dance”. Similar to
the previous result, AUTOPLAIT successfully detected m = 8 seg-
ments, and r = 4 different steps of the dance. Figure 6 (b) shows
the result obtained with DynaMMo, which requires a user-defined
parameter: the number of segments m. We tried m = 2, 4, 8.
In Figure 6 (b), the vertical dotted lines are the ground truth of
the segmentation. DynaMMo was not completely successful in de-
tecting the correct cut points, even though we provided the correct
number of segments m = 8. Also note that DynaMMo is not capa-
ble of finding clusters/regimes. Figure 6 (c1)-(c3) shows the result
obtained with pHMM. It required two parameters, ǫr, ǫc, which
corresponded to the thresholds of the fitting errors. For example,
in Figure 6 (c1), pHMM finds 36 segments, then each segment is
assigned to one of 7 clusters. Since pHMM captures only line-like
patterns, it cannot recognize high-level/long-term patterns. Also, as
shown in Figure 6 (c1)-(c3), it is very sensitive to the user-defined
parameters.

Figure 7 shows a more complicated case. This motion consists
of multiple distinct motions, such as walking, jumping and kicking.
Every motion appears only once, except for the walking motion.
One of the strong points of AUTOPLAIT is that, unlike the typi-
cal clustering method, it can detect “un-repeated” trends. Actually,
in Figure 7 (a), AUTOPLAIT successfully captures unrepeated mo-
tions such as running and jumping, as well as frequently-appearing
motions (i.e., walking). Figure 7 (b), (c) show the results obtained
with DynaMMo and pHMM. Similar to the results shown in Figure 6,
they failed to capture distinct high-level patterns.

6.2 Accuracy
In this subsection, we discuss the quality of AUTOPLAIT in terms

of segmentation and clustering accuracy.

Segmentation accuracy. We compared the segmentation accu-
racy of AUTOPLAIT and two competitors with respect to the preci-
sion/recall framework. Figure 8 (a) shows the precision and recall
scores for the three methods on MoCap dataset. We used a set of 20
bundles, containing about m = 20× 10 segments. In total, bundle
consists of approximately n = 20 × 10, 000 motion frames. Note
that precision is defined as the ratio of reported correct cuts versus
the total number of reported cuts. Recall is defined as the ratio of
reported correct cuts versus the total number of correct cuts. The
closer precision and recall are to 1, the more accurate the method
is. In Figure 8 (a), AUTOPLAIT is described as a point, since our
method does not need any parameters. Our method is very close
to the ideal point (more than 95%), that is, there are very few false

alarms and false dismissals. As mentioned in Figure 6, DynaMMo
requires user-defined numbers m. We varied the number of seg-
ments m = 2, 4, 6, . . . , 30. For pHMM, the accuracy threshold ǫr
varied from 0.1 to 10.0. The result implies that there is a trade-off
between precision and recall with both DynaMMo and pHMM.

Clustering accuracy. Next, we show how accurately AUTOPLAIT

can find regimes. Since we know the true labels of each motion,
we evaluate our method in terms of a clustering problem. Specif-
ically, we adopt a standard measure of conditional entropy (CE)
from the confusion matrix (CM) of prediction regime labels against
true regime labels to evaluate the clustering quality. The CE score
shows the difference between two clusters using the following equa-

tion: CE = −∑
i,j

CMij∑
ij CMij

log
CMij∑
j CMij

. Note that the ideal

confusion matrix will be diagonal, in which case CE = 0. Figure 8
(b) shows the average CE scores of AUTOPLAIT and pHMM. Our
method identified almost all regimes correctly, while pHMM failed
to find groups. Note that DynaMMo is not capable of finding clus-
ters.

6.3 Scalability
We performed experiments to evaluate the efficiency and to ver-

ify the complexity of AUTOPLAIT, which we discussed in section 5.
Figure 9 compares AUTOPLAIT and the two comparison methods
in terms of computation time for varying durations n. The plots
were generated using MoCap. We used k = 4 hidden variables for
DynaMMo, and ǫr = 0.1, ǫc = 0.8 for pHMM. AUTOPLAIT and
DynaMMo are linear with respect to data size (i.e., slope = 1.0
in log-log scale). Unlike AUTOPLAIT and DynaMMo, which re-
quire O(n), pHMM needs O(n2), to find optimal segments (i.e.,
slope ≈ 2.0 in the figure). In fact, AUTOPLAIT is up to 472 times
faster than pHMM at n = 100, 000.

7. AUTOPLAIT - AT WORK
Our proposed method is capable of various applications. Here,

we provide some examples of the usefulness of our approach.

7.1 Model analysis
We demonstrate how effectively AUTOPLAIT can learn regimes

using WebClick data. Specifically, Figure 10 (a) shows the access
count of five major URLs (blog, news, etc.) every 10 minutes for
one month. AUTOPLAIT detects two regimes, weekday and week-
end. There is one anomaly point at the end of the month, and this
is because of a national holiday (see the red rectangle in the fig-
ure). Figure 10 (b)-(e) provide the details for two estimated models



500 1000 1500 2000 2500 3000 3500 4000
0

5

10

C
ou

nt
M

on
-F

ri

Sat
-S

un
Holiday

1;2! 1;1!

1;3!

1;6!

1;4! 1;5!

2;2!

2;1!

2;3!

2;4!

(a) One month pattern of five URLs (b) State transition A1 (c) State transition A2

(blog, news, dictionary, Q&A, and mail) (weekday, k1 = 6) (weekend, k2 = 4)

2am 8am 10am 11am 12pm 3pm 7pm 9pm
0

5

10

Time

C
ou

nt

 

 

blogdictionary

news

state (1;1) -> (1;3) -> (1;6) -> (1;5) -> (1;4)  ->  (1;6)  ->  (1;3)  ->  (1;2)

4am 8am 12pm 9pm
0

5

10

Time

C
ou

nt

 

 

blog
news
dictionary
Q&A
mail

Q & A
mail

blog
state (2;4) -> (2;2) -> (2;1) -> (2;3) 

(d) Output probability B1 (weekday regime) (e) Output probability B2 (weekend regime)

Figure 10: Sense-making - AUTOPLAIT results match intuition: (a) five time-sequences (blog, news, dictionary, etc.) over a month,

every 10 minutes on WebClick data (top), and the result of AUTOPLAIT (bottom). It consists of two regimes (the blue regime, which

perfectly maps weekdays, and the green regime, mapping weekends (and holidays - see last day); (b, d) details of the weekday

regime: state (1; 1) is low volume (and it occurs around 2am - sleeping times), state (1; 6) accrues at 10am and 3pm - students use the

online-dictionary; (c, e) details of the weekend regime: all states include weekend activities (blog, mail, Q&A) in varying magnitudes.

that describe the weekday and weekend regimes. More specifically,
figure (b), (c) describe the Markov chains of the models (i.e., tran-
sition of hidden states), and (d), (e) show the output probability of
five URLs, in each time range. For example, neither regime shows
much activity during sleeping time, then the access count increases
toward a peak at 9pm. Here we report some observations regarding
these models.

• Working hard every weekday: For the weekday regime, states
(1; 5), (1; 6) appear at 10am-3pm. From this observation, we
can recognize that (1) most users visit the news site during
their lunch break; (2) college students (or business profes-
sionals) frequently use the online-dictionary in the daytime.

• No more work on weekends: Most users visit social media
sites on the weekend for non-business purposes. By contrast,
news and dictionary sites are accessed less often on week-
ends. We also observed that on weekdays users visit blog
and mail sites at night.

7.2 Event discovery
Since AUTOPLAIT has the ability to detect unknown patterns

and regimes without any user interaction, the most natural and im-
portant application would be automatic event detection. Here, we
introduce some of our discoveries as regards GoogleTrend data.

Anomaly detection. Figure 11 (a) shows a d = 4 dimensional
bundle consisting of four flu-related keywords (e.g., "flu fever",
"flu symptom") and covering nine years. There is a clear yearly
periodicity. Starting in October, it slowly increases toward its peak
point (in February), and then decays over time. The only exception
is in 2009, (regime #1, blue box in the figure). In regime #1, there
are two spikes in April and October, since that was when the swine
flu pandemic spread around the world.

Turning-point detection. Figure 11 (b) shows another observa-
tion. The figure shows a bundle related to a seasonal-sweets topic
(e.g., “ice cream”, “hot cocoa”). Each keyword has a yearly cycle
with a different phase; there are peaks in July for “ice cream” and

“milk shakes”, while there are peaks in December for “hot cocoa”
and “gingerbread”. However, the trend suddenly changed in Dec
2010. This was caused by the release of the android OS, called
“Gingerbread”, “Ice Cream Sandwich”.

Trend discovery. Figure 11 (c) shows co-evolving sequences, re-
lated to the game industry, (e.g., “xbox”, “wii”). There is a yearly
periodicity, with a peak every December. Recently, the video-game
industry has been facing increasing competition. AUTOPLAIT de-
tects r = 3 regimes in the game console war over the last nine
years; (1) Xbox and Playstation were sold worldwide, and then (2)
Wii outsold its competitors after its 2006 launch. However, (3) Wii
and other console sales fell considerably in 2010, probably because
of the increased popularity of mobile and social games.

8. CONCLUSIONS
We focused on the problem of the automatic mining of co-evolving

time sequences, with the aim of automatically determining the num-
ber and type of “regimes” (= patterns), as well as the transition (=
discontinuity) points. Our proposed AUTOPLAIT indeed exhibits
all the desirable properties we listed in the introduction:

• It is effective: our experiments with diverse datasets (mo-
cap data, web-hit counts) show that AUTOPLAIT discovers
regimes that agree with human intuition, and correctly spots
the transition points. More importantly, our algorithm guar-
antees to find the optimal location of each regime transition.

• It is sense-making: thanks to our modeling framework, it
can help with sense-making. It provides a high-level sum-
mary (e.g., “beaks” and “wings” in Figure 1) as opposes to a
large number of low-level states that a human cannot inter-
pret easily.

• It is fully automatic: AUTOPLAIT needs no training set,
no domain expertise, and no hint regarding the number of
regimes or transition points. Thanks to our novel coding
scheme, it determines all of the above automatically.

• It is scalable: both the computation time and the memory
requirements are linear for the duration n of the sequences.



50 100 150 200 250 300 350 400 450
0

5

10
V

al
ue

Time (per week)

 

 "flu fever"
"flu symptom"
"flu headache"
"flu medicine"

Oct 2009
   "Swine flu 

vaccine"

April 2009
"Swine flu
outbreak"

1
2

(a) Flu-related topics (regimes r = 2)

50 100 150 200 250 300 350 400 450

0

2

4

6

Time (per week)

V
al

ue

 

 "ice cream"
"milk shake"
"hot cocoa"
"gingerbread"

Dec 2010
   "new android 

OS released"

1
2

(b) Seasonal sweets topics (regimes r = 2)

50 100 150 200 250 300 350 400 450
0

5

10

15

20

Time (per week)

V
al

ue

 

 "xbox" "ps2, ps3" "wii" "android"

Nov 2006
wii launches

2. wii

Dec 2011

Dec 
2009

3. mobile
games

1. xbox,
playstation

1
2

3

(c) Game-related topics (regimes r = 3)

Figure 11: Sense-making: AUTOPLAIT automatically spots

meaningful discontinuities on GoogleTrend data: (a) flu-related

keywords for nine years: it detects one unusual pattern in

2009 (i.e., swine flu); (b) sweets-related keywords: it finds that

the trend suddenly changed in 2010, because of the release

of the android OS; (c) game-related keywords: it discovers

three phases of “game console war” (e.g., regime #1: Xbox and

PlayStation, #2: Wii’s golden age, #3: mobile games appeared).

Acknowledgement. This work was supported by JSPS KAKENHI
Grant-in-Aid for Scientific Research Number 24500138, Grant-in-Aid for
JSPS Fellows Number 25·7946. This material is based upon work sup-
ported by the National Science Foundation under Grants No. IIS-1247489
CNS-1314632 and by the U.S. Army Research Office (ARO) and DARPA
under Contract Number W911NF-11-C-0088. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science
Foundation, or other funding parties. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes notwithstanding
any copyright notation here on.

9. REFERENCES
[1] D. Agarwal, B.-C. Chen, and P. Elango. Spatio-temporal models for estimating

click-through rate. In WWW, pages 21–30, 2009.

[2] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science

and Statistics). Springer, 2006.

[3] C. Böhm, C. Faloutsos, and C. Plant. Outlier-robust clustering using

independent components. In SIGMOD, pages 185–198, 2008.

[4] G. E. Box, G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting

and Control. Prentice Hall, Englewood Cliffs, NJ, 3rd edition, 1994.

[5] D. Chakrabarti, S. Papadimitriou, D. S. Modha, and C. Faloutsos. Fully

automatic cross-associations. In KDD, pages 79–88, 2004.

[6] H. Chen, W.-S. Ku, H. Wang, and M.-T. Sun. Leveraging spatio-temporal

redundancy for rfid data cleansing. In SIGMOD, pages 51–62, 2010.

[7] L. Chen and R. T. Ng. On the marriage of lp-norms and edit distance. In VLDB,

pages 792–803, 2004.

[8] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Biological sequence

analysis: probabilistic models of proteins and nucleic acids. Cambridge

University Press, 1999.

[9] S. Fine, Y. Singer, and N. Tishby. The hierarchical hidden markov model:

Analysis and applications. Machine Learning, 32(1):41–62, 1998.

[10] E. Fox, E. Sudderth, M. Jordan, and A. Willsky. Bayesian Nonparametric

Methods for Learning Markov Switching Processes. Signal Processing

Magazine, IEEE, 27(6):43–54, 2010.

[11] E. B. Fox, E. B. Sudderth, M. I. Jordan, and A. S. Willsky. Sharing features

among dynamical systems with beta processes. In NIPS, pages 549–557, 2009.

[12] Y. Fujiwara, Y. Sakurai, and M. Yamamuro. Spiral: efficient and exact model

identification for hidden markov models. In KDD, pages 247–255, 2008.

[13] A. Jain, E. Y. Chang, and Y.-F. Wang. Adaptive stream resource management

using kalman filters. In SIGMOD, pages 11–22, 2004.

[14] E. J. Keogh, S. Chu, D. Hart, and M. J. Pazzani. An online algorithm for

segmenting time series. In ICDM, pages 289–296, 2001.

[15] J.-G. Lee, J. Han, and K.-Y. Whang. Trajectory clustering: a

partition-and-group framework. In SIGMOD Conference, pages 593–604, 2007.

[16] J. Letchner, C. Ré, M. Balazinska, and M. Philipose. Access methods for

markovian streams. In ICDE, pages 246–257, 2009.

[17] L. Li, C.-J. M. Liang, J. Liu, S. Nath, A. Terzis, and C. Faloutsos. Thermocast:

A cyber-physical forecasting model for data centers. In KDD, 2011.

[18] L. Li, J. McCann, N. Pollard, and C. Faloutsos. Dynammo: Mining and

summarization of coevolving sequences with missing values. In KDD, 2009.

[19] L. Li, B. A. Prakash, and C. Faloutsos. Parsimonious linear fingerprinting for

time series. PVLDB, 3(1):385–396, 2010.

[20] Y. Matsubara, Y. Sakurai, C. Faloutsos, T. Iwata, and M. Yoshikawa. Fast

mining and forecasting of complex time-stamped events. In KDD, pages

271–279, 2012.

[21] Y. Matsubara, Y. Sakurai, B. A. Prakash, L. Li, and C. Faloutsos. Rise and fall

patterns of information diffusion: model and implications. In KDD, pages 6–14,

2012.

[22] A. Mueen and E. J. Keogh. Online discovery and maintenance of time series

motifs. In KDD, pages 1089–1098, 2010.

[23] R. T. Ng and J. Han. Clarans: A method for clustering objects for spatial data

mining. IEEE Trans. Knowl. Data Eng., 14(5):1003–1016, 2002.

[24] T. Palpanas, M. Vlachos, E. Keogh, and D. Gunopulos. Streaming time series

summarization using user-defined amnesic functions. IEEE Transactions on

Knowledge and Data Engineering, 20(7):992–1006, 2008.

[25] S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming pattern discovery in

multiple time-series. In Proceedings of VLDB, pages 697–708, Trondheim,

Norway, August-September 2005.

[26] T. Rakthanmanon, B. J. L. Campana, A. Mueen, G. E. A. P. A. Batista, M. B.

Westover, Q. Zhu, J. Zakaria, and E. J. Keogh. Searching and mining trillions of

time series subsequences under dynamic time warping. In KDD, pages

262–270, 2012.

[27] J. Rissanen. A Universal Prior for Integers and Estimation by Minimum

Description Length. Ann. of Statist., 11(2):416–431, 1983.

[28] Y. Sakurai, C. Faloutsos, and M. Yamamuro. Stream monitoring under the time

warping distance. In ICDE, pages 1046–1055, 2007.

[29] Y. Sakurai, S. Papadimitriou, and C. Faloutsos. Braid: Stream mining through

group lag correlations. In SIGMOD, pages 599–610, 2005.

[30] V. Shnayder, B.-r. Chen, K. Lorincz, T. R. F. F. Jones, and M. Welsh. Sensor

networks for medical care. In SenSys, pages 314–314, 2005.

[31] Y. Tao, C. Faloutsos, D. Papadias, and B. Liu. Prediction and indexing of

moving objects with unknown motion patterns. In Proceedings of ACM

SIGMOD, pages 611–622, 2004.

[32] N. Tatti and J. Vreeken. The long and the short of it: summarising event

sequences with serial episodes. In KDD, pages 462–470, 2012.

[33] M. Toyoda, Y. Sakurai, and Y. Ishikawa. Pattern discovery in data streams under

the time warping distance. VLDB J., 22(3):295–318, 2013.

[34] P. Wang, H. Wang, and W. Wang. Finding semantics in time series. In SIGMOD

Conference, pages 385–396, 2011.

[35] J. G. Wilpon, L. R. Rabiner, C. H. Lee, and E. R. Goldman. Automatic

recognition of keywords in unconstrained speech using hidden Markov models.

IEEE Transactions on Acoustics, Speech, and Signal Processing,

38(11):1870–1878, 1990.

[36] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: an efficient data clustering

method for very large databases. In SIGMOD, pages 103–114. ACM, 1996.


	Introduction
	Importance of fully-automatic mining
	Contrast with competitors
	Running examples
	Contributions

	Background
	Related work
	Review of HMM

	Problem formulation
	Data compression and summarization
	MLCM: multi-level chain model
	What is a good description?
	Model description cost
	Coding cost of whole bundle
	Putting it all together


	Optimization Algorithm
	Overview
	Cut-point search (inner-most loop)
	Algorithm
	Theoretical analysis

	Regime parameter estimation (inner loop)
	AutoPlait (outer loop)
	Algorithm
	Theoretical analysis


	Experiments
	Sense-making
	Accuracy
	Scalability

	AutoPlait - at work
	Model analysis
	Event discovery

	Conclusions
	References

