
WindMine: Fast and Effective Mining of Web-click Sequences

Yasushi Sakurai
NTT Communication Science Labs

yasushi.sakurai@acm.org

Lei Li
Carnegie Mellon University

leili@cs.cmu.edu

Yasuko Matsubara
Kyoto University

y.matsubara@db.soc.i.kyoto-u.ac.jp

Christos Faloutsos
Carnegie Mellon University

christos@cs.cmu.edu

Abstract

Given a large stream of users clicking on web sites, how
can we find trends, patterns and anomalies? We have
developed a novel method, WindMine, and its fine-tuning
sibling, WindMine-part, to find patterns and anomalies in
such datasets. Our approach has the following advantages:
(a) it is effective in discovering meaningful “building blocks”
and patterns such as the lunch-break trend and anomalies,
(b) it automatically determines suitable window sizes, and
(c) it is fast, with its wall clock time linear on the duration
of sequences. Moreover, it can be made sub-quadratic on
the number of sequences (WindMine-part), with little loss of
accuracy.

We examine the effectiveness and scalability by per-
forming experiments on 67 GB of real data (one billion
clicks for 30 days). Our proposed WindMine does produce
concise, informative and interesting patterns. We also show
that WindMine-part can be easily implemented in a parallel
or distributed setting, and that, even in a single-machine set-
ting, it can be an order of magnitude faster (up to 70 times)
than the plain version.

1 Introduction

Many real applications generate log data at different time
stamps, such as web click logs and network packet logs.
At every time stamp, we might observe a set of logs, each
consisting of a set of events, or time stamped tuples. In
many applications the logging rate has increased greatly
with the advancement of hardware and storage technology.
One big challenge when analyzing these logs is to handle
such large volumes of data at a very high logging rate. For
example, a search web could generate millions of logging
entries every minute, with information of users and URLs.
As an illustration, we will use the web-click data as a running
target scenario, however, our proposed method will work for
general datasets as we demonstrate experimentally.

There has been much recent work on summarization and
pattern discovery for web-click data. We formulate the web-
click data as a collection of time stamped entries, i.e. 〈user-
id, url, timestamp〉. The goal is to find anomalies, patterns,
and periodicity for such datasets in a systematic and scalable
way. Analyzing click sequences can help practitioners in
many fields: (a) ISPs would like to undertake provisioning,
capacity planning and abuse detection by analyzing histori-
cal traffic data; (b) web masters and web-site owners would
like to detect intrusions or target designed advertisements by
investigating the user-click patterns.

A common approach to analyzing the web-click tuples
is to view them as multiple event sequences, one for each
common URL. For example, one event sequence could be
{〈Alice, 1〉, 〈Bob, 2〉, . . . }, i.e., Alice hits url1 at time 1 sec.,
and Bob at 2 sec. Instead of studying this at the individual
click level, our approach is designed to find patterns at the
aggregation level to allow us to detect common behavior
or repeated trends. Formally, these event sequences are
aggregated into multiple time series for m websites (or
URLs). Each of them counts the number of hits (clicks)
per Δt = 1 minute and has an aligned duration of n.
Given such a dataset with multiple time series, we would
like to develop a method to find interesting patterns and
anomalies. For example, the leftmost plot in Figure 1 shows
the web-click records from a business news site. The desired
patterns for this particular data include (a) the adaptive cycles
(e.g., at a daily or a weekly level); (b) the spikes in the
morning and at lunch time that some sequences exhibit;
and (c) the fact that these spikes are only found on week-
days. For a few number of sequences (e.g. m = 5), a
human could eye-ball them, and derive the above patterns.
The mining task is even more challenging if the number of
sequences increases tremendously. How can we accomplish
this task automatically for thousands or even million of
sequences? We will show later that our proposed system can

0 1 2 3 4

x 10
4

0

50

100

150

Time

V
al

ue

0 2000 4000 6000 8000 10000
0

1

2

3

4

5

Time

V
al

ue

Monday

0 500 1000

0

1

2

3

4

5

Time

V
al

ue

3:00pm8:30am
Noon

0 500 1000

−2

0

2

4

6

Time

V
al

ue

9:00pm

Web-click sequence Weekly component Weekday component Weekend component

Figure 1: Illustration of trend discovery. (a) Original web-click sequence (access count from a business news site). (b)
Weekly trend, which shows high activity on weekdays for business purposes. (c) Weekday trend, which increases from
morning to night and reaches peaks at 8:30 am, noon, and 3:00 pm. (d) Weekend trend, which is different from the weekday
trend pattern.

automatically identify these patterns all at once, and how it
solves scalably.

Contributions Our main contribution is the proposal of
WindMine, which is a novel method for finding patterns in a
large collection of click-sequence data. WindMine automat-
ically detects daily periodicity (unsurprisingly), huge lunch-
time spikes for news-sites as shown in Figure 1 (reasonable,
in retrospect), as well as additional, surprising patterns. Ad-
ditional contributions are as follows:

1. Effective: We apply WindMine to several real datasets,
spanning 67 GB. Our method finds both expected and
surprising patterns, completely on its own.

2. Adaptive: We propose a criterion that allows us to
choose the best window size of trend patterns from the
sequence dataset. The choice of window sizes is data-
driven and fully automatic.

3. Scalable: The careful design of WindMine makes it
linear on the number of time-ticks in terms of wall clock
time. In fact, it is readily parallelizable, which means
that it can also scale well with a large number of sites
m.

The rest of the paper is organized as follows: Section 2
discusses related work. Section 3 introduces preliminary
concepts that are relevant to an understanding of this paper.
Sections 4 presents our proposed method, and Section 5
introduces some useful applications of our method, and
evaluates our algorithms based on extensive experiments.
Section 6 concludes the paper.

2 Related work

There are several pieces of work related to our approach, in-
cluding (a) dimensionality reduction; (b) time series index-
ing; (c) pattern/trend discovery and outlier detection.

Dimensionality reduction for time-series data: Sin-
gular value decomposition (SVD) and principal component
analysis (PCA) [7, 28] are commonly used tools to discover
hidden variables and low rank patterns from high dimen-
sional data. In contrast to the traditional SVD for batch data,
Yi et al. [30] proposed an online autoregressive model to
handle multiple sequences. Gilbert et al. [4] used wavelets
to compress the data into a fixed amount of memory by
keeping track of the largest Haar wavelet coefficients. Pa-
padimitriou et al. [17] proposed the SPIRIT method to dis-
cover linearly correlated patterns for data streams, where the
main idea was to calculate the SVD incrementally. Sun et
al. [23] took a step forward by extending SPIRIT to handle
data from distributed sources, so that each node or sensor
device could calculate local patterns/hidden variables, which
are then summarized later at a center node. Our proposed
WindMine is related to a scheme for partitioning the data,
calculating them individually and finally integrating them in
the end. Moreover, our method could detect patterns and
anomalies even more effectively.

Indexing and representation: Our work is also re-
lated to the theories and methods for time-series representa-
tion [15, 14, 22], and indexing [8, 21, 9, 2]. Various methods
have been proposed for representing time-series data using
shapes, including velocity and shape information for seg-
menting trajectory [15]; symbolic aggregate approximation
(SAX) [14] and its generalized version for indexing mas-
sive amounts of data (iSAX) [22]. Keogh [8] proposed a
search method for dynamic time warping (DTW). [21] pro-
posed the FTW method with successive approximations, re-
finements and additional optimizations, to accelerate “whole
sequence” matching under the DTW distance. Keogh et al.
used uniform scaling to create an index for large human
motion databases [9]. [2] presented SPIRAL, a fast search
method for HMM datasets. To reduce the search cost, the

method efficiently prunes a significant number of search can-
didates by applying upper bounding approximations when
estimating likelihood. Tensor analysis is yet another tool
for modeling multiple streams. Related work includes scal-
able tensor decomposition [10] and incremental tensor anal-
ysis [25, 24, 26].

Pattern/trend discovery: Papadimitriou et al. [18]
proposed an algorithm for discovering optimal local patterns,
which concisely describe the multi-scale main trends. [20]
proposed BRAID, which efficiently finds lag correlations be-
tween multiple sequences. SPRING [19] efficiently and ac-
curately detects similar subsequences without determining
window size. Kalman filters are also used in tracking pat-
terns for trajectory and time series data [27, 13]. Other re-
motely related work includes the classification and clustering
of time-series data and outlier detection. Gao et al. [3] pro-
posed an ensemble model to classify time-series data with
skewed class distributions, by undersampling the dominat-
ing class and oversampling or repeating the rare class. Lee
et al. [12] proposed the TRAOD algorithm for identifying
outliers in a trajectory database. In their approach, they first
partition the trajectories into small segments and then use
both distance and density to detect abnormal sub-trajectories.
This paper mainly focuses on web-click mining as an appli-
cation of our method, thus, our work is also related to topic
discovery for web mining. There has been a large body of
work on statistical topic models [5, 1, 16, 29], which uses
a multinomial word distribution to represent a topic. These
techniques are also useful for web-click event analysis while
our focus is to find local components/trends in multiple nu-
merical sequences.

3 Background

In this section we briefly introduce some necessary back-
ground material. Table 1 is a list of symbols and their defini-
tions.

3.1 Principal component analysis Given a collection of
n-dimensional vectors xi ∈ R

n, i = 1, 2, . . . ,m, the first
principal direction b1 ∈ R

n is the vector that minimizes the
sum of squared residuals, i.e.,

b1 := arg min||b||=1

m∑

i=1

||xi − (bbT)xi||2.(3.1)

The projection of xi on b1 is the first principal component
(PC) yi,1 := b1

T xi, i = 1, . . . , m. Note that, since ||b1|| =
1, we have (b1b1

T)xi = (b1
T xi)b1 = yi,1b1 := x̂i,

where x̂i is the projection of yi,1 back into the original n-D
space. That is, x̂i is a reconstruction of the original mea-
surements from the first PC yi,1. More generally, PCA will

Table 1: Symbols and definitions.

Symbol Definition
n Duration: number of time-ticks
m Number of sequences
w Window size
M Number of subsequences
k Number of components
X Data sequence of length n

xt Value of X at time t = 1, . . . , n

X̂ Window matrix of X

A = [ai,j] Mixing matrix
B Independent component
Cw CEM score of w

produce k vectors b1,b2, . . . ,bk, such that, if we represent
each n-D data point xi := [xi,1 . . . xi,n] with k-D projection
yi = [bT

1 xi . . .bT
k xi]T , then this representation minimizes

the squared error
∑

i ||xi − x̂i||2. Furthermore, the princi-
pal directions are orthogonal, so the principal components
yi,1,, 1 ≤ j ≤ k are, by construction, uncorrelated, i.e., if
y(j) := [y1,j , . . . , yi,j]T is the sequence of the j-th principal
component, then (y(j))T y(k) = 0 if j �= k.

3.2 Independent component analysis To find the direc-
tions of minimal entropy the well known fastICA algo-
rithm [6] requires us to transform the dataset into white
space, i.e., the dataset must be centered and normalized so
that it has unit variance in all directions. This may be achieve
from the eigenvalue decomposition of the covariance matrix
(i.e., V ·Λ ·V T := Σ where V is an orthonormal matrix con-
sisting of the eigen vectors, and Λ is a diagonal matrix(Λ =
diag(λ1, . . . , λd)). The matrix Λ−1/2 is a diagonal matrix
with the elements Λ−1/2 = diag(

√
1/λi, . . . ,

√
1/λd). The

fastICA algorithm then determines a matrix B that contains
the independent components. This matrix is orthonormal in
white space but not in the original space. FastICA is an iter-
ative method that finds B = (b1, . . . , bd) by optimizing the
vectors bi using the following updating rule:

bi := E{y · g(bT
i · y)} − E{g′(bT

i · y)} · bi(3.2)

where g(s) is a non-linear contrast function (such as
tanh(s)) and g′(s) = d

dsg(s) is its derivative. We denote
the expected value with E{. . . }. After each application of
the update rule to bi, . . . , bd, the matrix B is orthonormal-
ized. This is repeated until convergence. The de-mixing ma-
trix A−1, which describes the overall transformation from
the original data space to the independent components, can

be determined as

A−1 = BT Λ−1/2 · V T , A = V · Λ+1/2 · B(3.3)

and, since V and B are orthonormal matrices, the determi-
nant of A−1 is simply the determinant of Λ−1/2, i.e,

det(A−1) =
∏

1≤i≤d

√
1/λi.(3.4)

4 Proposed Method

4.1 Problem definition Web-log data consist of tuples of
the form (user-id, url, timestamp) . We turn them into
sequences X1, . . ., Xm, one for each URL of interest. We
compute the number of hits per Δt= 1 minute (or second),
and thus we have m sequences of duration n. One of the
sequences, X , is a discrete sequence of numbers { x1, . . .,
xt, . . ., xn }, where xn is the most recent value.

Our goal is to extract the main components of click
sequences, to discover common trends, hidden patterns,
and anomalies. As well as the components of the entire
sequences, we focus on components of length w to capture
local trends. We now define the problems we are trying to
solve and some fundamental concepts.

PROBLEM 1. (LOCAL COMPONENT ANALYSIS) Given m

sequences of duration n and window size w, find the sub-
sequence patterns of length w that represent the main com-
ponents of the sequences.

The window size w is given in Problem 1. However,
with real data, w for the component analysis is not typically
known in advance. Thus the solution has to handle subse-
quences of multiple window sizes. This gives rise to an
important question: whenever the main components of the
‘best’ window size are extracted from the sequences, we ex-
pect there to be many other components of multi-scale win-
dows, which could potentially flood the user with useless in-
formation. How do we find the best window size automati-
cally? The full problem that we want to solve is as follows:

PROBLEM 2. (CHOICE OF BEST WINDOW SIZE) Given m

sequences of duration n, find the best window size w and
the subsequence patterns of length w that represent the main
components of the sequences.

An additional question relates to what we can do in the
highly likely case that the users need an efficient solution
while in practice they require high accuracy. Thus, our
final challenge is to present a scalable algorithm for the
component analysis.

1PC

2PC

1IC

2IC

PCA ICA

Figure 2: PCA vs ICA. Note that PCA vectors go through
empty space; ICA/WindMine components snap on the natu-
ral lines (leading to sparse encoding).

4.2 Multi-scale local component analysis For a few time
sequences, a human could eye-ball them, and derive the
above patterns. But, how can we accomplish this automat-
ically for thousands of sequences? The first idea would be
to perform principal component analysis (PCA) [7], as em-
ployed in [11]. However, PCA and singular value decom-
position (SVD) have pitfalls. Given a cloud of n-D points
(sequences with n time-ticks), PCA will find the best line
that goes through that cloud; and then the second best line
(orthogonal to the first), and so on. Figure 2 highlights this
pitfall: If the cloud of points looks like a pair of scissors,
then the first principal component will go in the empty area
marked ”PC1”, and the second principal component will be
on the equally empty area that is perpendicular to the first
PC.

APPROACH 1. We introduce independent component analy-
sis (ICA) for data mining of numerical sequences.

Instead of using PCA, we propose employing ICA [6],
also known as blind source separation. ICA will find the
directions marked IC1 and IC2 in Figure 2 exactly, because
it does not require orthogonality, but needs a stronger con-
dition, namely, independence. Equivalently, this condition
results in sparse encoding: the points of our initial cloud
will have a sparse representation in the new set of (non-
orthogonal) axes, that is, they will have several zeros.

EXAMPLE 1. Figure 3 shows an example of component
analysis. The sample dataset includes three sequences:
(1) sinusoidal waves with white noise, (2) large spikes
with noise, and (3) a combined sequence. We compute
three components each for PCA and ICA, from the three
original sequences. Unlike PCA, which is confused by
these components, ICA recognizes them successfully and
separately.

0 100 200 300 400 500 600 700 800 900 1000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time

V
al

ue

0 100 200 300 400 500 600 700 800 900 1000
−1

0

1

2

3

4

5

6

7

8

9

Time

V
al

ue

0 100 200 300 400 500 600 700 800 900 1000
−1.5

−1

−0.5

0

0.5

1

1.5

2

Time

V
al

ue

Source #1 Source #2 Source #3

0 100 200 300 400 500 600 700 800 900 1000
−3

−2

−1

0

1

2

3

Time

V
al

ue

0 100 200 300 400 500 600 700 800 900 1000
−2

0

2

4

6

8

10

Time

V
al

ue

0 100 200 300 400 500 600 700 800 900 1000
−4

−2

0

2

4

6

8

10

Time

V
al

ue

Sequence #1 Sequence #2 Sequence #3
(Sources #1 & #3) (Sources #2 & #3) (Mix of all 3 sources)

0 100 200 300 400 500 600 700 800 900 1000
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Time

V
al

ue

0 100 200 300 400 500 600 700 800 900 1000

−0.15

−0.1

−0.05

0

0.05

0.1

Time

V
al

ue

0 100 200 300 400 500 600 700 800 900 1000

−0.1

−0.05

0

0.05

0.1

Time

V
al

ue

PC1 PC2 PC3

0 100 200 300 400 500 600 700 800 900 1000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time

V
al

ue

0 100 200 300 400 500 600 700 800 900 1000
−1

0

1

2

3

4

5

6

7

8

9

Time

V
al

ue

0 100 200 300 400 500 600 700 800 900 1000
−1.5

−1

−0.5

0

0.5

1

1.5

2

Time

V
al

ue

IC1 IC2 IC3

Figure 3: Example of PCA and ICA components. Top row:
sources; second row: sequences that are linear combinations
of the three sources; 3rd row: the sources recovered by PCA;
4th row: the sources recovered by ICA. Notice how much
more clear is the separation of sources that ICA achieves.
PCA suffers from the ’PCA confusion’ phenomenon.

In the preceding discussion we introduced ICA and
showed how to analyze entire full length sequences to obtain
their ‘global’ components. We then describe how to find the
local components using ICA.

APPROACH 2. We propose applying a short-window ap-
proach to ICA, which is a more powerful and flexible ap-
proach for component analysis.

DEFINITION 1. (WINDOW MATRIX) Given a sequence X

= { x1, . . ., xn } and a window size w, the window matrix
of X , X̂ , is a �n/w� × w matrix, in which the i-th row is {
x(i−1)w+1, . . ., xiw }.

When we have m sequences, we can locally analyze
their common independent components using the short-

window approach. We propose WindMine for local compo-
nent analysis.

DEFINITION 2. (WindMine) Given m sequences of dura-
tion n, and a window size w, the local independent com-
ponents are computed from the M ×w window matrix of the
m sequences, where M = m · �n/w�.

The size of the local components typically depends on
the given datasets. Our method, WindMine, handles multi-
scale windows to analyze the properties of the sequences.

APPROACH 3. We introduce a framework based on multi-
scale windows to discover local components.

Starting with the original sequences { X1, . . ., Xm },
we divide each one into subsequences of length w, construct
their window matrix X̂w, and then compute the local compo-
nents from X̂w. We vary the window size w, and repeatedly
extract the local components Bw with the mixing matrix Aw

for various window sizes w.

EXAMPLE 2. Figure 4 illustrates multi-scale local compo-
nent analysis using WindMine. The total duration of a se-
quence X is m = 8. We have four disjoint windows each of
length w = 2, thus X̂2 is a 4×2 matrix. We extract two local
components for w = 2 in this figure.

4.3 CEM criterion: best window size selection Thus far,
we have assumed that the window size was given. The
question we address here is how to estimate a good window
size automatically when we have multiple sequences. We
would like to obtain a criterion that will operate on the
collection of subsequences, and dictate a good number of
subsequence length w for the local component analysis. This
criterion should exhibit a spike (or dip) at the “correct” value
of w. Intuitively, our observation is that if there is a trend of
length w that frequently appears in the given sequences, the
computed local component is widely used to represent their
window matrix X̂w. We want to find the “sweet spot” for w.

We therefore propose using the mixing matrix Aw to
compute the criterion for selecting the window size. Notice
that straightforward approaches are unsuitable, because they
are greatly affected by specific, unpopular components. For
example, if we summed up the weight values of each column
of the mixing matrix and then chose the component with the
highest value, the component would be used to represent
a limited number of subsequences. Our goal boils down
to the following question: What function of w reaches an
extreme value when we hit the ’optimal’ number of window
sizes wopt? It turns out that ‘popular’ (i.e., widely used)

time

2=w

X

local components

X̂ B

window matrix original sequence

a b c d e f g h

a b c d e f g h

a b
c d

e f
g h

Figure 4: Illustration of WindMine for window size w = 2. It creates a window matrix of 4 disjoint windows, and then finds
their two major trends/components.

components are suitable for selection as local components
that capture the local trends of the sequence set.

APPROACH 4. We introduce a criterion for window size
selection, which we compute from the entropy of the weight
values of each component in the mixing matrix.

We propose a criterion for estimating the optimal num-
ber of w for a given sequence set. The idea is to compute the
probability histogram of the weight parameters of each com-
ponent in the mixing matrix, and then compute the entropy
of each component.

The details are as follows: For a window size w, we pro-
vide the mixing matrix Aw = [ai,j] (i = 1,. . .,M ; j = 1,. . .,k)
of given sequences, where k is the number of components
and M is the number of subsequences. Optionally, we nor-
malize the weight values for each subsequence.

a′
i,j = ai,j/

∑

j

a2
i,j .(4.5)

We then compute the probability histogram Pj =
{p1,j , . . . , pM,j} for the j-th component.

pi,j = ‖a′
i,j‖/

∑

i

‖a′
i,j‖.(4.6)

Intuitively, Pj shows the size of the j-th component’s contri-
bution to each subsequence. Since we need the most popular
component among k components, we propose using the en-
tropy of the probability histogram for each component.

Therefore, our proposed criterion, which we call com-
ponent entropy maximization (CEM), or the CEM score, is
given by

Cw,j = − 1√
w

∑

i

pi,j log pi,j ,(4.7)

where Cw,j is the CEM score of the j-th component for the
window size w. We want the best local component of length
w that maximizes the CEM score, that is, Cw = maxj Cw,j .

Once we obtain Cw for every window size, the final step
is to choose wopt. Thus, we propose

wopt = arg max
w

Cw.(4.8)

4.4 Scalable algorithm: WindMine-part In this sub-
section we tackle an important and challenging question,
namely how do we efficiently extract the best local compo-
nent from large sequence sets? In Section 4.2 we present our
first approach for multi-scale local component analysis. We
call this approach WindMine-plain1.

Algorithm 1 WindMine-part(w, {X1, . . . , Xm})
for each sequence Xi do

Divide Xi by �m/w� subsequences
Append the subsequences to the window matrix X̂

end for
for level h = 1 to H do

Initialize X̂new

Divide the subsequence set of X̂ into �M/g� groups
for group number j = 1 to �M/g� do

Create the j-th submatrix Sj of X̂

Compute the local components of Sj with their mixing
matrix A

Compute the CEM score of each component from A

Append the best local component(s) to X̂new

end for
X̂ = X̂new

M = �M/g�
end for
Report the best local component(s) in X̂

Although important, this approach is insufficient to
provide scalable processing. What can we do in the highly
likely case that the users need an efficient solution for
large datasets while in practice they require high accuracy?
To reduce the time needed for local component analysis

1We use ‘WindMine’ as a general term for our method and its variants.

and overcome the scalability problem, we present a new
algorithm, WindMine-part.

APPROACH 5. We introduce a partitioning approach for
analyzing a large number of subsequences hierarchically,
which yields a dramatic reduction in the computation cost.

Specifically, instead of computing local components di-
rectly from the entire set of subsequences, we propose par-
titioning the original window matrix into submatrices, and
then extracting local components each from the submatrices.

DEFINITION 3. (MATRIX PARTITIONING) Given a window
matrix X̂ , and an integer g for partitioning, the j-th sub-
matrix of X̂ is formed by taking rows from (j − 1)g + 1 to
jg.

Our partitioning approach is hierarchical, which means
that we reuse the local components of the lower level for
local component analysis on the current level.

DEFINITION 4. (WindMine-part) Given a window matrix
on the h-th level, we extract k local components from each
submatrix that has g local components of the (h − 1)-th
level. Thus, the window matrix on the h-th level includes
M · (k/g)h−1 local components (i.e., M · (k/g)h−1 rows).

After extracting the local components from the original
window matrix on the first level h = 1, we create a new
window matrix from the components of h = 1 on the second
level (h = 2), and then compute the local components of
h = 2. We repeatedly iterate this procedure for the upper
levels. Algorithm 1 provides a high-level description of
WindMine-part.

5 Experimental Results

To evaluate the effectiveness of WindMine, we carried out
experiments on real datasets. We conducted our experiments
on an Intel Core 2 Duo 1.86GHz with 4GB of memory,
and running Linux. Note that all components/patterns pre-
sented in this section are generated by the scalable version,
WindMine-part, while both versions provide useful results
for the applications.

The experiments were designed to answer the following
questions:

1. How successful is WindMine in local component analy-
sis?

2. Does WindMine correctly find the best window size for
mining locally patterns?

3. How does WindMine scale with the number of subse-
quences m in terms of computational time?

5.1 Effectiveness

5.1.1 Mining Web-click sequences In this subsection we
describe some of the applications for which WindMine
proves useful. We present case studies of real web-click
datasets to demonstrate the effectiveness of our approach in
discovering the common trends for each sequence.

Ondemand TV This dataset is from the Ondemand TV ser-
vice of 13,231 programs that users viewed in a 6-month pe-
riod (from May 14th to November 15th, 2007). The data
record the use of Ondemand TV by 109,474 anonymous
users. It contains a list of attributes (e.g., content ID, the
date the user watched the content, and the ID of the user
who watched the content).

Figure 5 (a) shows the original sequence on the Onde-
mand TV dataset. It exhibits a cyclic daily pattern. There are
anomaly spikes each day at about lunch time. Figure 5 (b)-
(c) show that WindMine successfully captures the weekly
and daily patterns from the dataset. It can be easily used
to capture information for arbitrary time scales. For com-
parison, Figure 5 (d)-(e) show the best local patterns using
the PCA technique. As shown in these figures, it is not ro-
bust against noise and anomaly spikes, and it cannot produce
good results.

WebClick This dataset consists of the web-click records
from www.goo.ne.jp, obtained over one month (from April
1st to 30th, 2007). It contains one billion records with 67 GB
of storage. Each record has 3 attributes: user ID (2,582,252
anonymous users), URL group ID (1,797 groups), and the
time stamp of the click. There are various types of URLs,
such as “blog”, “news”, “health”, and “kids”.

Figures 6, 7 and 8 show the effectiveness of our method.
Specifically, Figures 6 and 7 show the local components
of the Q & A site and job-seeking site. The left, middle
and right columns in Figure 6 show the weekly, daily, and
weekend patterns, respectively. Our method identifies the
daily period, which increases from morning to night and
reaches a peak. This trend appears strongly, especially on
weekends. In contrast, Figure 7 describes “business” trends.
Starting from Monday, the daily access decreases as the
weekend approaches. At 9:00 am, workers arrive at their
office, and they look at the job-seeking website during a short
break. Additionally, the right figure shows that there is a
large spike during the lunch break.

Figure 8 shows the local patterns of other websites. We
can observe interesting daily trends according to various
lifestyles.

(a) Dictionary: Figure 8 (a) shows the daily trend of the

0 1 2 3 4

x 10
4

0

100

200

300

400

500

600

Time

V
al

ue

0 2000 4000 6000 8000 10000
0

1

2

3

4

5

6

Time

V
al

ue

Sunday

0 200 400 600 800 1000 1200 1400
0

1

2

3

4

5

Time

V
al

ue

11:00am
5:00pm

(a) Original sequence (b) Weekly pattern (WindMine) (c) Daily pattern (WindMine)

0 2000 4000 6000 8000 10000
−0.05

0

0.05

Time

V
al

ue

0 200 400 600 800 1000 1200 1400

−0.05

0

0.05

Time

V
al

ue

(d) Weekly pattern (PCA) (e) Daily pattern (PCA)

Figure 5: Original sequence and weekly and daily components for Ondemand TV. (b) Note the daily periodicity, with NO
distinction between weekdays and weekends. (c) The main daily pattern agrees with our intuition: peaks in the morning
and larger peaks in the evening, with low activity during the night. In contrast, PCA discovers trends that are not as clear,
which suffer from the ’PCA confusion’ phenomenon.

dictionary site. The access count increases from 8:00
am and decreases from 11:00 pm. We consider this
site to be used for business purposes since this trend
is strong on weekdays.

(b) Kids: Our method discovered a clear trend from an
educational site for children. From this figure, we can
recognize that they visit this site after school at 3:00 pm.

(c) Baby: This figure shows the daily pattern of the website
as regards pregnancy and baby nursery resources. The
access pattern shows the presence of several peaks until
late evening, which is very different from the kids site.
This is probably because the kids site is visited by
elementary school children whereas the main users of
the baby site will be their parents, rather than babies!

(d) Weather news: This website provides official weather
observations, weather forecasts and climate informa-
tion. We observed that the users typically check this
site three times a day. We can recognize a pattern of
behavior. They visit this site in the early morning and
at noon before going outside. In the early evening, they
check their local weather for the following day.

(e) Health: This is the main result of the healthcare site.
The result shows that the users rarely visit website late
in the evening, which is indeed good for their health.

(f) Diet: This is the main daily pattern of an on-line
magazine site that provides information about diet,
nutrition and fitness. The access count increases rapidly
after meal times. We also observed that the count is still
high in the middle of the night. We think that perhaps a
healthy diet should include an earlier bed time.

5.1.2 Generalization of WindMine We demonstrate the
effectiveness of our approach in discovering the trends for
other types of sequences.

Automobile This dataset consists of automobile traffic count
for a large, west coast interstate. The top row of Figure 9 (a)
exhibits a clear daily periodicity. The main trend repeats at a
window of approximately 4000 timestamps. Also, during
each day there is another distinct pattern of morning and
afternoon rush hours. However, these peaks have distinctly
different shapes: the evening peak is more spread out, the
morning peak is more concentrated and slightly sharper.

0 2000 4000 6000 8000 10000
0

1

2

3

4

Time

V
al

ue

Sunday

0 200 400 600 800 1000 1200 1400

0

0.5

1

1.5

2

2.5

3

3.5

Time

V
al

ue

8:30am

0 200 400 600 800 1000 1200 1400
−2

−1

0

1

2

3

4

5

Time

V
al

ue

9:30pm

(a) Weekly pattern (b) Daily pattern (c) Weekend pattern

Figure 6: Frequently used components for the Q & A site of WebClick. (a) Major weekly trend/component, showing similar
activity during all 7 days of the week. (b) Major daily trend - note the low activity during sleeping time, as well as the dip
at dinner time. (c) Major weekday pattern - note the spike during lunch time.

0 2000 4000 6000 8000 10000
0

1

2

3

4

5

Time

V
al

ue

Monday

0 200 400 600 800 1000 1200 1400
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time

V
al

ue

9:00am

0 200 400 600 800 1000 1200 1400
−3

−2

−1

0

1

2

3

4

5

Time

V
al

ue

1:00pm −
2:00pm

(a) Weekly pattern (b) Daily pattern (c) Weekday additional pattern

Figure 7: Frequently used components for the job-seeking site of WebClick. (a) Major weekly trend, showing high activity
on weekdays. (b) Major daily pattern. (c) Daily pattern, which is mainly applicable to weekdays.

The bottom row of Figure 9 (a) shows the output of
WindMine for the Automobile dataset. The common trend
seen in the figure successfully captures the two peaks and
also their approximate shape.

Temperature We used temperature measurements (degrees
Celsius) in the Critter data set, which comes from small
sensors within several buildings. In this dataset there are
some missing values, and it exhibits a cyclic pattern, with
cycles lasting less than 2000 time ticks. This is the same
dataset that was used in our previous study [20].

Our method correctly captures the right window for the
main trend and also an accurate picture of the typical daily
pattern. As shown in Figure 9 (b), there are similar pat-
terns that fluctuate significantly with the weather conditions
(which range from 17 to 27 degrees). Actually, WindMine
finds the daily trend when the temperature fluctuates between
cool and hot.

Sunspots We know that sunspots appear in cycles. The top
row of Figure 9 (c) indicates the number of sunspots per
day. For example, during one 30-year period within the so-
called “Maunder Minimum”, only about 50 sunspots were
observed, as opposed to the normal 40,000-50,000 spots.
The average number of visible sunspots varies over time,
increasing and decreasing in a regular cycle of between 9.5
and 11 years, averaging about 10.8 years 2.

WindMine can capture bursty sunspot periods and iden-
tify the common trends in the Sunspot dataset. The bottom
row in Figure 9 (c) shows that our method provides an accu-
rate picture of what typically happens within a cycle.

5.2 Choice of best window size We evaluate the accuracy
of the CEM criterion for window size selection. Figure 10
(a) presents the CEM score for Ondemand TV, for various
window sizes. This figure shows that WindMine can deter-

2http://csep10.phys.utk.edu/astr162/lect/sun/sscycle.html

0 200 400 600 800 1000 1200 1400

0

1

2

3

4

Time

V
al

ue

8:00am

11:00pm

0 200 400 600 800 1000 1200 1400
−3

−2

−1

0

1

2

3

4

5

Time

V
al

ue

3:00pm

0 200 400 600 800 1000 1200 1400

−1

0

1

2

3

4

5

Time

V
al

ue

11:30am
8:00pm

(a) Dictionary (b) Kids (c) Baby

0 200 400 600 800 1000 1200 1400
−2

−1

0

1

2

3

4

5

6

Time

V
al

ue

6:30am

Noon 4:30pm

0 200 400 600 800 1000 1200 1400

0

1

2

3

4

Time

V
al

ue
8:00am 10:00pm

0 200 400 600 800 1000 1200 1400
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Time

V
al

ue

9:00am

8:00pm

(d) Weather news (e) Health (f) Diet

Figure 8: Daily components for the dictionary, kids, baby, weather news, health and diet sites of WebClick. WindMine
discovers daily trends according to various lifestyles.

0 0.5 1 1.5 2 2.5 3

x 10
4

0

500

1000

1500

2000

2500

3000

Time

V
al

ue

0 2000 4000 6000 8000 10000

18

20

22

24

26

28

Time

V
al

ue

0 1 2 3 4 5

x 10
4

0

50

100

150

200

250

300

350

400

Time

V
al

ue

0 500 1000 1500 2000 2500 3000 3500
1

2

3

4

5

6

7

Time

V
al

ue

0 500 1000 1500
9

9.5

10

10.5

11

11.5

12

12.5

13

Time

V
al

ue

0 500 1000 1500 2000 2500 3000 3500
−1

0

1

2

3

4

5

Time

V
al

ue

(a) Automobile (b) Temperature (c) Sunspot

Figure 9: Detection of the common trends for Automobile, Temperature and Sunspot. The top and bottom rows show the
original data sequences and the captured trends, respectively.

1000 1200 1400 1600 1800 2000

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

Window size

S
co

re

w = 1430
(1day = 1440)

3000 3500 4000 4500 5000

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Window size

S
co

re

w = 3970

1500 2000 2500
0.94

0.945

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

Window size

S
co

re

w = 1940

2500 3000 3500 4000 4500

0.94

0.945

0.95

0.955

0.96

0.965

0.97

0.975

0.98

Window size

S
co

re

w = 3630

(a) Ondemand TV (b) Automobile (c) Temperature (d) Sunspot

Figure 10: CEM scores for Ondemand TV, Automobile, Temperature and Sunspot.

mine the best window size by using the CEM criterion. As
expected, our method indeed suggests that the best window
is daily periodicity. It identifies w = 1430 as the best win-
dow size, which is close to the one-day duration (w = 1440).
Due to the window size estimation, we can discover the daily
pattern for Ondemand TV (see Figure 5 (c)).

Figure 10 (b)-(d) show the CEM scores per window ele-
ment for Automobile, Temperature and Sunspot, respectively.
Note that the Temperature dataset includes missing values
and the Sunspot dataset has time-varying periodicity. As
shown in these figures, WindMine successfully detects the
best window size for each dataset, which corresponds to the
duration of the main trend (see the figures of the bottom row
in Figure 9).

5.3 Performance We conducted experiments to evaluate
the efficiency of our method. Figure 11 compares WindMine-
plain and the scalable version, WindMine-part, in terms of
computation time for different numbers of subsequences.
The wall clock time is the processing time needed to capture
the trends of subsequences. Note that the vertical axis is
logarithmic. We observed that WindMine-part achieves a
dramatic reduction in computation time that can be up to 70
times faster than the plain method.

Figure 12 shows the wall clock time as a function of
duration n. The plots were generated using WebClick. Al-
though the run-time curves are not so smooth due to the con-
vergence of ICA, they reveal the almost linear dependence
of the duration n. As we expected, WindMine-part identi-
fies the trends of subsequences much faster than WindMine-
plain.

6 Conclusions

We focused on the problem of fast, scalable pattern extrac-
tion and anomaly detection in large web-click sequences.
The main contributions of this work are as follows:

1. We proposed WindMine, a scalable, parallelizable

method for breaking sequences into a few, fundamen-
tal ingredients (e.g., spikes, cycles).

2. We described a partitioning version, which has the same
accuracy, but scales linearly over the sequence duration,
and near-linearly on the number of sequences.

3. We proposed a criterion that allows us to choose the best
window sizes from the data sequences.

4. We applied WindMine to several real sets of sequences
(web-click data, sensor measurements) and showed
how to derive useful information (spikes, differentiation
of weekdays from weekends). WindMine is fast and
practical, and requires only a few minutes to process
67 GB of data on commodity hardware.

References

[1] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet
allocation. Journal of Machine Learning Research, 3:993–
1022, 2003.

[2] Y. Fujiwara, Y. Sakurai, and M. Yamamuro. Spiral: Efficient
and exact model identification for hidden markov models.
In KDD Conference, pages 247–255, Las Vegas, Nevada,
August 2008.

[3] J. Gao, B. Ding, W. Fan, J. Han, and P. S. Yu. Classifying data
streams with skewed class distributions and concept drifts.
Internet Computing, 12(6):37–49, 2008.

[4] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss.
Surfing wavelets on streams: One-pass summaries for approx-
imate aggregate queries. In Proceedings of VLDB, pages 79–
88, Rome, Italy, Sept. 2001.

[5] T. Hofmann. Probabilistic latent semantic indexing. In
SIGIR, pages 50–57, 1999.

[6] A. Hyvärinen and E. Oja. Independent component analysis:
algorithms and applications. Neural Networks, 13(4-5):411–
430, 2000.

[7] I. Jolliffe. Principal Component Analysis. Springer Verlag,
1986.

1000 1500 2000 2500 3000 3500 4000 4500 5000
10

0

10
1

10
2

10
3

of subsequences

W
al

l c
lo

ck
 ti

m
e

(s
ec

.)

WindMine−plain
WindMine−part

1000 1500 2000 2500 3000 3500 4000 4500 5000
10

0

10
1

10
2

10
3

of subsequences

W
al

l c
lo

ck
 ti

m
e

(s
ec

.)

WindMine−plain
WindMine−part

Ondemand TV WebClick

Figure 11: Scalability: wall clock time vs. # of subsequences.

1000 1500 2000 2500 3000 3500 4000
0

5

10

15

20

25

30

35

40

45

Duration

W
al

l c
lo

ck
 ti

m
e

(s
ec

.)

WindMine−plain
WindMine−part

Ondemand TV

Figure 12: Scalability: wall clock time
vs. duration.

[8] E. Keogh. Exact indexing of dynamic time warping. In
VLDB, pages 406–417. VLDB Endowment, 2002.

[9] E. Keogh, T. Palpanas, V. B. Zordan, D. Gunopulos, and
M. Cardle. Indexing large human-motion databases. In
VLDB, pages 780–791. VLDB Endowment, 2004.

[10] T. G. Kolda and J. Sun. Scalable tensor decompositions for
multi-aspect data mining. In Proc. Eighth IEEE International
Conference on Data Mining ICDM ’08, pages 363–372, 2008.

[11] F. Korn, H. Jagadish, and C. Faloutsos. Efficiently supporting
ad hoc queries in large datasets of time sequences. ACM
SIGMOD, pages 289–300, May 13-15 1997.

[12] J.-G. Lee, J. Han, and X. Li. Trajectory outlier detec-
tion: A partition-and-detect framework. IEEE 24th Inter-
national Conference on Data Engineering, pages 140–149,
April 2008.

[13] L. Li, J. McCann, N. Pollard, and C. Faloutsos. Dynammo:
Mining and summarization of coevolving sequences with
missing values. In KDD, New York, NY, USA, 2009. ACM.

[14] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic
representation of time series, with implications for streaming
algorithms. In DMKD ’03: Proceedings of the 8th ACM
SIGMOD workshop on Research issues in data mining and
knowledge discovery, pages 2–11, New York, NY, USA,
2003. ACM.

[15] S. Mehta, S. Parthasarathy, and R. Machiraju. On trajectory
representation for scientific features. In ICDM, pages 997–
1001, 2006.

[16] D. Newman, C. Chemudugunta, and P. Smyth. Statistical
entity-topic models. In KDD Conference, pages 680–686,
Philadelphia, PA, August 2006.

[17] S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming pattern
discovery in multiple time-series. VLDB, 2005.

[18] S. Papadimitriou and P. S. Yu. Optimal multi-scale patterns in
time series streams. In SIGMOD Conference, pages 647–658,
2006.

[19] Y. Sakurai, C. Faloutsos, and M. Yamamuro. Stream mon-
itoring under the time warping distance. In Proceedings of

ICDE, pages 1046–1055, Istanbul, Turkey, April 2007.
[20] Y. Sakurai, S. Papadimitriou, and C. Faloutsos. Braid: Stream

mining through group lag correlations. In Proceedings of
ACM SIGMOD, pages 599–610, Baltimore, Maryland, June
2005.

[21] Y. Sakurai, M. Yoshikawa, and C. Faloutsos. Ftw: Fast simi-
larity search under the time warping distance. In Proceedings
of PODS, pages 326–337, Baltimore, Maryland, June 2005.

[22] J. Shieh and E. Keogh. isax: indexing and mining terabyte
sized time series. In KDD, pages 623–631, New York, NY,
USA, 2008. ACM.

[23] J. Sun, S. Papadimitriou, and C. Faloutsos. Distributed
pattern discovery in multiple streams. PAKDD, pages 713–
718, 2006.

[24] J. Sun, S. Papadimitriou, and P. S. Yu. Window-based tensor
analysis on high-dimensional and multi-aspect streams. In
ICDM, pages 1076–1080, 2006.

[25] J. Sun, D. Tao, and C. Faloutsos. Beyond streams and graphs:
dynamic tensor analysis. KDD, pages 374–383, 2006.

[26] J. Sun, D. Tao, S. Papadimitriou, P. S. Yu, and C. Faloutsos.
Incremental tensor analysis: Theory and applications. ACM
Trans. Knowl. Discov. Data, 2(3):1–37, 2008.

[27] Y. Tao, C. Faloutsos, D. Papadias, and B. Liu. Prediction and
indexing of moving objects with unknown motion patterns. In
SIGMOD, pages 611–622, New York, NY, USA, 2004. ACM
Press.

[28] M. E. Wall, A. Rechtsteiner, and L. M. Rocha. Singular
value decomposition and principal component analysis. In
D. P. Berrar, W. Dubitzky, and M. Granzow, editors, A
Practical Approach to Microarray Data Analysis, pages 91–
109, Norwell, MA, Mar 2003. Kluwel.

[29] X. Wei, J. Sun, and X. Wang. Dynamic mixture models for
multiple time-series. In IJCAI, pages 2909–2914, 2007.

[30] B.-K. Yi, N. Sidiropoulos, T. Johnson, H. Jagadish, C. Falout-
sos, and A. Biliris. Online data mining for co-evolving time
sequences. ICDE, pages 13–22, 2000.

