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information popularity online?
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Audience: Unique users

X-Men Movies via Google+ 4 weeks age
8 The final X-Men trailer is here! How many times have you watched it?
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Audience vs Visits
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The final X-Men trailer is here! How many times have you watched t?
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Measuring both visits and audience
(unique users) have their benefits

* How many users watched my ad?
— Exposure
— Revenue

* How many times was my ad watched?
— Caching
— Sharding and content provisioning

 However...

— Understanding and modeling both effects is still an open
issue



Our Study

* Understanding and modeling revisit behavior in
social media

* Understanding
— Characterization of millions of user activities

— User played/watched/visited a social media object at
a certain time

* Modeling
— The Phoenix-R model for popularity time series



Datasets
* User Activity

— User, Object (song/tweet/video), Time stamp

e All of the datasets range from months to years

Dataset User Activities Description
MMTweet Little over 1 million Tweets declaring
(Million Musical songs which users
Tweets) listen to
Twitter 576 million Hashtags
LastFM 19 million Plays on artists and
songs

YouTube - 3 million daily time

series




Discoveries



Discoveries

e Relationships between audience (unique
users) and revisits

Dataset Median Median % of cases
#Revisits #Revisits HRevisits >

#Audience #Total Visits #Audience

MMTweet 0.68 0.40 33%
Twitter 1.70 0.62 66%
LastFM 25.39 0.96 100%
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Discoveries on Smaller time Scales

* |solate the effect of users coming back to the
datasets after long periods

e Daily Time Windows

Dataset Median
#HRevisits
#Audience
MMTweet 0.83
Twitter 2.50

LastFM 28.0

11



What we know so far

e Users revisit the same object

— On some datasets (LastFM and Twitter) most of visits
are returning users

e Revisits are common on small time scales
— Above results hold
— Complements [Anderson2014]

* Users abandon content but it may take a long
time
— Preying behavior from [Ribeiro2014]
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Users eventually stop visiting

Decay in popularity in one of
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Some objects behave like a sum of
multiple cascades

Multiple cascade (spike) like
VIEWS ..
behavior in a very popular :
339, 8689 339 music song /
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How de we model these time series?
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The Phoenix-R Model!

Table 1: Comparison of PHOENIX-R with other approaches

Revisits Non-Linear Forecasting Multi Cascade
SI[12] v
SpikeM [18] v v
TemporalDynamics [21] v

PHOENIX-R v v v v
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Phoenix-R Explained

* Single shock (cascade) model
* Epidemiology model

Shock 1
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Single Shock

Shock 1

e Starting with some Susceptible

Brs 25 and Infected Individuals
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Single Shock

At the next time tick some

Shock 1 Infected recover
* Some Susceptible are infected by
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Single Shock Equations
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S(t)y=S8(t—1)—BS({t—1)I(t—1)
[(t)=1(t—1)+3S(t—1)I(t—1)—~I(t—1)
R(t)=R(t—1)+~I(t—1)

p(t) = wI(t).
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Multiple Shocks

* Simplifying assumption that each shock is a
new population (set of users)

-

roA
Shock 1 ] p ) Shock n

p(t) = Z pi(t — s;) L[t > s]
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How many shocks to add?

* A perfect model (zero error) can be created by

— Letting each access be a single user which
immediately recovers

— However, lot’s of parameters (cost)

e Using Minimum Description Length (MDL)

Cost(t;P) =log" n + Cost(P) + Cost(t | P)
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How do we fit a time series?

* Step 1:
— |dentify Peaks using Wavelets

— Intuitively, each peak is a candidate shock
(cascade)

— Linear
* Step 2:
— Add each peak sorted by height to the model
— |If the MIDL decreases, accept peak
* Step 3:
— Stop when the MDL stops decreasing
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Linear runtime (time series length)
and parameter free algorithm

Algorithm 1 Fitting the PHOENIX-R model. Only the time series 1s required as input.

. function FITPHOENIXR(t)
e = 0.05
s +— 1}

|

2

3

4. p.s’ + FindPeaks(t) :

5 sl=o0 <€ Find Peaks
6:

5
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s <« append(s’)
P+ {}

min_cost +— o<
fori <~ 1 to |s|do

10 F +— LM(t,s(: 1)) :

11: m <+ PhoenizR(F) € Adding shocks
12: mdl_cost +— Cost(m,t, F)

13: if mdl_cost << min_cost then

14: min_cost +— mdl_cost

15: P+ F

16: end if :
17: if mdl_cost > min_cost * (1 + €) then o Exit
18: break

19: end if

20: end for
21: return P
22: end function
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How good is Phoenix-R?

 Comparing Phoenix-R with two state of the art
alternatives

— RMSE (smaller is better)

PHOENIX-R vs. TemporalDynamics (daily series) PHOENIX-R vs. SpikeM (hourly series)

RMSE RMSE RMSE RMSE
PHOENIX-R TemporalDynamics PHOENIX-R SpikeM
MMTweet  2.93 (£ 0.23) 4.18 (= 0.49)
LastFM 7.09 (£ 0.23) 8.31 (£ 0.32) - -
Twitter 72.05 (4= 6.08) 194.79 (4 20.49) 10.83 (£ 1.61) 9.77 (= 2.24)

YouTube  280.58 (4 29.29) 3429.19 (£ 577.76)

* Phoenix-R is always better or just as good
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How good is Phoenix-R?

 Comparing Phoenix-R with two state of the art
alternatives

— RMSE (smaller is better)

PHOENIX-R vs. TemporalDynamics (daily series) PHOENIX-R vs. SpikeM (hourly series)

RMSE RMSE RMSE RMSE
PHOENIX-R TemporalDynamics PHOENIX-R SpikeM
MMTweet  2.93 (£ 0.23) 4.18 (= 0.49)
LastFM 7.09 (£ 0.23) 8.31 (£ 0.32) - -
Twitter g - U8 0. TO T 26wll 10.83 (£ 1.61) 9.77 (= 2.24)
YouTube - -

* Phoenix-R is always better or just as good
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Phoenix-R is also good at forecasting

« RMSE (smaller is better)
* 1, 7 or 30 days ahead forecasting
* Ties on very linear time series

5% 25% 50%
I 7 30 1 7 30 1 7 30

MMTweet PhoenixR 11.61 12,78 15.15 8.67 6.74 8.82 4.08 6.87 13.58
o TempDynamics 17.07 17.41  16.52 9.63 10.78 14.46 25.19  23.08 30.39
Twitter PhoenixR 53.68 60.78 215.76 132.21 13515 210.30 75.58 229.59 254.93
TempDynamics 104.45 129.36 255.69 643.39 643.83 786.50 420.74 587.86 598.75

LastEM PhoenixR 2.37 3.97 5.71 8.60  12.06 14.66 11.34  15.03 1543
TempDynamics 6.47 7.03 8.00 11.15 1462 17.86 1491 18.15 18.80

YouTube PhoenixR 91.62 106.38 138.88 83.76 113.14 147.04 127.53 9797 115.97
outu TempDynamics 3560.65 3631.09 3661.81 5091.82 5107.82 5143.70 4136.14 4139.73 4169.26
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Examples of Phoenix-R at work
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(d) User Dancing Video (single cascade)

(c) Korean Music Video (single cascade)



Examples of Phoenix-R at work
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Conclusions

Phoenix-R model for revisits and multiple
cascades

Based on discoveries from real data

Scalable linear fitting algorithm

— On time series length

Useful for predictions



