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ABSTRACT
The recent explosion in the adoption of search engines and
new media such as blogs and Twitter have facilitated faster
propagation of news and rumors. How quickly does a piece
of news spread over these media? How does its popular-
ity diminish over time? Does the rising and falling pattern
follow a simple universal law?
In this paper, we propose SpikeM, a concise yet flexible

analytical model for the rise and fall patterns of influence
propagation. Our model has the following advantages: (a)
unification power: it generalizes and explains earlier theo-
retical models and empirical observations; (b) practicality:
it matches the observed behavior of diverse sets of real data;
(c) parsimony: it requires only a handful of parameters; and
(d) usefulness: it enables further analytics tasks such as fore-
casting, spotting anomalies, and interpretation by reverse-
engineering the system parameters of interest (e.g. quality
of news, count of interested bloggers, etc.).
Using SpikeM, we analyzed 7.2GB of real data, most of

which were collected from the public domain. We have
shown that our SpikeM model accurately and succinctly
describes all the patterns of the rise-and-fall spikes in these
real datasets.

Categories and Subject Descriptors: H.2.8 [Database
management]: Database applications–Data mining

General Terms: Algorithms, Experimentation, Theory

Keywords: Information diffusion, Social networks

1. INTRODUCTION
How do spikes behave in social media? Online social me-

dia is spreading news and rumors in new ways and search en-
gines have facilitated such spreading magnificently, creating
bursts and spikes. Some rumors (or memes, hashtags) start
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Figure 1: Modeling power of SpikeM: six types
of spikes (K-SC from [41]) shown as dots, and our
model fit in solid red line. Data sequences span over
120 time-ticks, while SpikeM requires only seven pa-
rameters. The fit is so good, that the red line is often
invisible, due to occlusion.

slowly and linger; others spike early and then decay; others
show more complicated behavior, as we show in Figure 1.

Do real rise-and-fall patterns have any qualitative differ-
ences? Do they form different classes? If yes, how many?
Earlier work on Youtube data claims there are four classes [6].
Empirical work found six classes [41]. How many classes are
there after all?

Our answer is: one. We provide a unifying model, SpikeM,
that requires only a handful of parameters, and we show
that it can generate all patterns found in real data simply
by changing the parameter values.

Figure 1 shows six representative spikes of online media
(memes) from K-SC [41], as gray circles, as well as our fit-
ted model, as a solid red line. Notice that the fitting is very



C-S K-SC SI AR SpikeM
System identification

√ √

Non-linear
√ √

Power law decay
√ √

Periodicity
√ √

Forecasting
√ √

Table 1: Capabilities of approaches. Only our ap-
proach meets all specs.

good, despite the fact that our SpikeM model requires only
seven parameters, and that the time-sequences span 120 in-
tervals.
Informally, the problem we want to solve is to model/predict

an activity (e.g., number of blog postings), as a function of
time, given some breaking-news at a given timetick. We
will use a blogger example for brevity and clarity, but many
other processes could be also modeled (people buying prod-
ucts, computer viruses infecting machines, rumors spreading
over Twitter, etc). Thus, we have:

Informal Problem 1 (what-if). Given a network of
bloggers (/hosts/buyers), a shock (e.g., event) at time nb,
the interest/quality of the event, the count Sb of bloggers
that immediately (= time nb) blog about the event, find how
the blogging activity will evolve over time.

A closely related problem is to develop a parsimonious
model, that can be made to fit several spikes observed in
the past (as we do in Figure 1). That is,

Informal Problem 2 (model design). Given the be-
havior of several spikes in the past, find an equation/model
that can explain them, with as few parameters as possible.

It would be good if the parameters had an intuitive explana-
tion (like, ‘number of bloggers’, ‘quality of news’, etc, as op-
posed to, say, a1, a2 of an autoregressive model (AR/ARIMA)).
In this paper, we propose SpikeM model to solve both of

the aforementioned problems. Our SpikeM has the follow-
ing advantages:

• Unification power: it includes earlier patterns and
models as special cases ([41, 21]),

• Practicality: it matches the behavior of numerous,
diverse, real datasets, including power-law decay

• Parsimony: our model requires only a handful of pa-
rameters

• Usefulness: thanks to the SpikeM model, we can an-
swer ‘what-if’ questions (see subsection 5.1), spot out-
liers, reverse-engineer the system parameters (quality
of news, count of interested bloggers, time-of-day be-
havior of bloggers)

Our SpikeM model is enabled by a careful design to in-
corporate (a) the power-law decay in infectivity, (b) a finite
population, and (c) proper periodicities. Earlier models ig-
nored one or more of the above issues.
Thanks to the practicality of SpikeM, we can make fore-

casting, analysis of ’what-if’ scenarios, and detection of anoma-
lies, as we show in section 4 and section 5. We should high-
light that traditional AR, ARIMA and related linear models
are fundamentally unsuitable, because they are linear (and
can diverge to infinity) and because they lead to exponen-
tial decays (as opposed to the power law that reality seems
to obey). Table 1 illustrates the relative advantages of our
method: the C-S method (Crane and Sornette) [6] assumes

an infinite population of bloggers; the clusters in K-SC [41]
(repeated in Figure 1) are non-parametric and are incapable
of forecasting. The SI model (closely related to the Bass
model [3] of the market penetration of new products) leads
to exponential decay, as opposed to the power-law decay
that we observe in real data.

Outline. The rest of the paper goes as follows: Section 2
presents an overview of the related work and Section 3 the
proposed model. Sections 4 and 5 show our experimental
results on a variety of datasets. We conclude in section 7.

2. BACKGROUND
In this section, we present the fundamental concepts.
Epidemiology fundamentals. The most basic epi-

demic model is the so-called ‘Susceptible-Infected’ (SI) model.
Each object/node is in one of two states - Susceptible (S) or
Infected (I). Each infected node attempts to infect each of its
neighbors independently with probability β, which reflects
the strength of the virus. Once infected, each node stays
infected forever. If we assume that the underlying network
is a clique of N nodes, and use our notation (‘B’ for blogged
= infected) the most basic form of the model is:

dB(t)
dt

= β ∗ (N −B(t))B(t) (1)

where the time t is considered continuous, dB/dt is the
derivative, and the initial condition reflects the external
shock (say, B(0) = b externally infected people). The justi-
fication is as follows: β is the strength of the virus, that is,
the probability that an encounter between an infected person
(‘B’) and an uninfected one, will end up in an infection - and
we have B ∗ (N −B) such encounters. The solution for B()
is the sigmoid, and its derivative is symmetric around the
peak, with an exponential rise and an exponential fall (we
discuss later in Figure 2). There we also show the weakness
of the SI model: real data have a power-law ‘fall’ pattern.

Self-excited Hawkes process. Crane et al. [6] used
a self-excited Hawkes conditional Poisson process [12] to
model YouTube views per day, showing that spikes in the
activity have a power-law rise pattern, and a power-law fall
pattern, depending on the model parameters. Roughly, the
Hawkes process is a Poisson process where the instantaneous
rate is not constant, but depends on the count of previous
events, whose effect drops with the age τ of the event. That
is, if there were a lot of events (viewings/bloggings) recently,
we will have many such events today.

The base model states that the rate of spread of infec-
tion depends on (a) the external source S(t) and (b) self-
excitation, that is, on earlier-infected nodes (i = 1, . . .);
these nodes spread the infection with decaying virus strength
φ(τ), their age τ grows, times some constant µi. The con-
stant µi is equivalent to the degree of the infected node i.

dB(t)
dt

= S(t) +
∑

i,ti≤t

µiφ(t− ti) (2)

The model typically assumes that the µi values are equal,
namely that all nodes have the same degree (‘homogeneous’
graph). It also silently assumes that there are infinite nodes
available for infection, and it may actually diverge to infinity.

Next we present our SpikeM model, which avoids the
shortcomings of the SI and Hawkes models, and has several
more desirable properties.



3. PROPOSED METHOD
In this section we present our proposed method, analyze

it, and we provide the reader with several interesting -at
least in our opinion- observations.
Our model tries to capture the following behaviors, that

we observed with several of our real data

• P1: power-law fall pattern
• P2: periodicities

and at the same time we want to

• P3: avoid the divergence to infinity

that other models may have. To handle P3 (divergence),
we force our model to have a finite population, and adjust
the equations accordingly. To handle P1 (power-law fall pat-
tern), we assume that the infectivity of a node (= popularity
of a blog post) decays with the influence exponent, which
we set at -1.5. The handling of periodicities is discussed in
subsection 3.2.
We describe our model in steps, adding complexity, and

we start with the base model.

Preliminaries. We assume there are N bloggers, and none
of them is yet blogging about the topic of interest. At time
nb, an event happens (such as the 2004 Indonesian tsunami,
or a controversial political speech such as ‘lipstick on a pig’),
and Sb bloggers immediately blog about it. We refer to this
external event as a shock, and nb and Sb are the birth-time
and the initial magnitude of the shock.
Our model needs a few more parameters: the first is the

quality/interestingness of the news, which we refer to as β,
since this is the standard symbol for the infectivity of a virus
in epidemiology literature. If β is zero, nobody cares about
this specific piece of news; the higher the value, the more
bloggers will blog about it.
Finally, we have the decay function f(n), which models

how infective/influential a blog posting is, at age n. Stan-
dard epidemiology models assume that f() is constant (once
sick, you have the same probability of infecting others); re-
cent analysis has shown that the influence drops with age,
following a power law.
The above are the parameters of the base model. Before

we list the equations, we want to briefly mention a derived
quantity, β ∗ N ; this quantity roughly corresponds to the
R0 (‘R-naught’) found in the epidemiology literature. This
tells us the size of the “first burst”: if only one person was
infected, how many would be infected in the next time-tick?1

In summary, the scenario we model is as follows:

• nothing happens, until a news-event appears, at birth-
time nb.

• Sb bloggers immediately blog about it.
• other bloggers visit the initial Sb (or follow-up) blog-

gers, and occasionally get ‘infected’ and blog about the
event, too.

We also assume that

• each blogger blogs at most once about the event
• no other related event occurs - that is, the shock func-

tion S() has only one spike.

1yes, it should be N − 1, but we sacrifice accuracy, for intu-
ition.

Without loss of generality, we also assume that once an un-
informed blogger sees an infected/informed blog, he/she al-
ways blogs about the event (if he/she blogs with probability
ρ < 1, we could absorb ρ in the infectivity factor β)

Our goal is to find an equation to describe the number
∆B(n) of people blogging at time-tick n, as a function of
n and of course the system parameters (total number of
bloggers N , strength of infection β etc).

3.1 Base model - SpikeM-Base

The model we propose has nodes (=bloggers) of two states:

• U: Un-informed of the rumor
• B: informed, and Blogged about it

For those who just got informed at time-tick n, we’ll use
the symbol ∆B(n), and we assume that, once informed, a
person will blog about the rumor immediately.

Let U(n) be the number of un-informed people at time
n, and let ∆B(n) the number of people that just found out
about the rumor at time n, and blogged immediately about
it.

Model 1 (SpikeM-Base). Our base model is governed
by the equations

∆B(n+ 1) = U(n) ·
n∑

t=nb

(
∆B(t) + S(t)

)
· f(n+ 1− t) + ε

(3)

U(n+ 1) = U(n)−∆B(n+ 1) (4)

where

f(τ) = β ∗ τ−1.5 (5)

and initial conditions:

∆B(0) = 0, U(0) = N

In addition, we add an external shock S(n), a spike generated
at birth-time nb. Mathematically, it is defined as follows:

S(n) =

{
0 (n #= nb)
Sb (n = nb)

(6)

Justification of the model. We do it in steps:

• The term ∆B(t) +S(t) captures the count of bloggers
plus external sources, that got activated at time-tick
t; their infectivity is modulated by the f() infectiv-
ity function, since we assume that the infectivity of a
source/blogger decays with time. The summation is
over all past time-ticks since the birth-time nb of the
shock.

• The infectivity function f() exactly follows a power
law with exponent -1.5 as discovered by earlier work
on read data: real bloggers [22], and response to mails
by Einstein and Darwin [2].

• The meaning of the summation is the available stim-
uli at time-tick n; the available targets are the un-
informed bloggers U(n), and the product gives the
number of new infections.

• We add a noise term ε to handle cases such as hashtag
‘egypt’ on Twitter: some people tweet about Egypt
anyway, but a large shock occurred during the events
in Tahrir square. Very often, ε $ 0.



Symbol Definition
N total population of available bloggers
nd duration of sequence
n time-tick (n = 0, . . . , nd)
U(n) count of un-informed bloggers
B(n) count of informed bloggers
∆B(n) delta: count of informed bloggers

at exactly time n
f(n) infectiveness of a blog-post, at age n
β strength of infection
β ∗N “first-burst” size of infection
S(n) volume of external shock at time n
nb starting time of breaking news
Sb strength of external shock at birth (time nb)
ε background noise
Pa strength of periodicity
Pp period
Ps phase shift of periodicity

Table 2: Symbols and definitions

This completes the justification of our base model.
We also mention some facts that our model obeys: by

definition

B(n) =
n∑

t=0

∆B(t)

and of course we have the invariant

B(n) + U(n) = N

where N is the total number of people/bloggers.

3.2 With periodicity - SpikeM
Bloggers may modulate their activity following a daily

cycle (or weekly, or yearly). For example, among the U(n)
uninformed bloggers at time n, a fraction of them are not
paying attention (say, because they are tired or asleep). How
can we reflect this in our equations? We propose an answer
below, and then we provide the justification.

Model 2 (SpikeM). We can capture the periodic be-
havior of bloggers with the following equations:

∆B(n+ 1) = p(n+ 1)·
(
U(n) ·

n∑

t=nb

(
∆B(t) + S(t)

)
· f(n+ 1− t) + ε

)
(7)

p(n) = 1− 1
2Pa

(
sin

(
2π
Pp

(n+ Ps)
)
+ 1

)
(8)

where U(n), S(t) and f(n) are defined in Model 1.

Justification. The model is identical to SpikeM-base, with
the addition of the periodicity factor p(·). This captures the
fact that bloggers tone down their activity, say, during the
night, or even stop it altogether. The idea is that U(·) is
the count of victims available for infection, and the summa-
tion is the number of attacks. Under normal circumstances,
each victim-attack pair would lead to a new victim; however,
since the victims are not paying full attention (tired/asleep),
the attacks are not so successful, and thus we prorate them
by the p() periodic function.
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Figure 2: Fitting results of SpikeM vs. SI for pat-
tern C1 in Figure 1. The original sequence (in gray
circles), and our model (red line) have an exponen-
tial rise and a power-law drop; the SI model (blue
dashed line) is exponential on both and thus unre-
alistic. Top row: full interval; left column: only the
rise part; right column: only the ‘fall’ part.

• Pp stands for the period of the cycle (say, 24 hours).
• Ps stands for the phase shift: if the peak activity is at

noon, and the period is Pp=24 hours, then Ps=18.
• Pa depends on the amplitude of the fluctuation, and

specifically it gives the relative value of the off-time
(say, midnight), versus peak time (say, noon). Thus,
if Pa=0, we have no fluctuation.

3.3 Additional details
Model extensions. We could easily extend our model so
that it has several shocks as opposed to just one as consid-
ered here. We could also extend it to have multiple cycles
(daily, weekly, yearly). We do not elaborate on these ex-
tensions for two reasons: (a) for clarity and (b) because the
current model fits real data very well, anyway.

Learning the parameters. Our model consists of a set
of seven parameters: θ = {N,β, nb, Sb, ε, Pa, Ps}. Given a
real time sequence X(n) of bloggers at time-tick n (n =
1, . . . , nd), we use Levenberg-Marquardt (LM) [23] to min-
imize the sum of the errors: D(X,θ) =

∑nd
n=1(X(n) −

∆B(n))2.

Analysis - exponential rise, power-law fall. It is not
obvious from the equations of our model, but its rise pat-
tern is exponential, while the fall pattern obeys a power
law. This is desirable, because this behavior seem to be
prevailing in real data, as we show in Figure 2. Let nmode

denote the time-tick at which the wave ∆B() reached its
maximum volume. By rise plot we mean the plot of val-



ues from the birth-time nb until nmode (and reversing time
abs(n − nmode)) The fall-plot is defined similarly: activity
∆B() versus delay from the peak n − nmode. Notice that
there is a power law for the fall, and an exponential shape
for the rise. We also show the traditional ‘SI’ model, which,
as expected, exhibits exponential behavior for both rise and
fall.

4. EXPERIMENTS
To evaluate the effectiveness of SpikeM, we carried out

experiments on real datasets. The experiments were de-
signed to answer the following questions:

• Q1: Can we explain the cluster centers of K-SC?
• Q2: How well do we match MemeTracker data?
• Q3: How does it compare with other data?
• Q4: How well do we forecast future patterns?

Dataset description. We performed experiments on the
following three real datasets.

• MemeTracker: This dataset covers three months of
blog activity from August 1 to October 31 20082, It
contains short quoted textual phrases (“memes”), each
of which consists of the number of mentions over time.
We choose 1,000 phrases in blogs with the highest vol-
ume in a 7-day window around their peak volume.

• Twitter: We used more than 7 million Twitter3 posts
covering an 8-month period from June 2011 to January
2012. We selected the 10,000 most frequently used
hashtags.

• GoogleTrends: This dataset consists of the volume of
searches for various queries (i.e., words) on Google4.
Each query represents the search volumes that are re-
lated to keywords over time.

4.1 Q1: Explaining K-SC clusters
The results on this dataset were already presented in section 1

(see Figure 1). Our model correctly captures the six pat-
terns of K-SC. Table 3 gives a further description of the
SpikeM fitting. Our model consists of seven parameters,
each of which describes the behavior of spikes. Note that
the total populations N are almost the same for all patterns,
(around 2,000 to 3,000). This is because these six patterns
are scaled on the y-axis so that they all have a peak volume
of 100. We can see that β ∗N is between 0.7− 1.0 for these
six patterns. We also see that Pattern C3 has an extreme
shock Sb = 114 at time nb = 40, which means that this
spike is strongly affected by the external burst of activity
(see Figure 1 (c)). On the other hand, Patterns C4-C6 have
several peaks about 24 hours apart with a strength Pa $ 0.4.
We also evaluated our fitting accuracy by using the root

mean square error (RMSE) between estimated values and

real values: RMSE =
√

1
nd

∑nd
n (X(n)−∆B(n))2. Table 4

shows the fitting accuracy result for six patterns of K-SC.
We compared SpikeM with SImodel. As discussed in section 3
(see Figure 2), SI cannot model the tail parts of the spikes.
On the other hand, our solution, SpikeM achieves high ac-
curacy for every pattern of K-SC.

2http://memetracker.org/
3http://twitter.com/
4http://www.google.com/insights/search/

C1 C2 C3 C4 C5 C6
N 2407 1283 1466 3079 4183 3435

β ∗N 0.95 1.00 0.86 0.92 0.79 0.69
nb 26 17 40 35 0 34
Sb 4.73 0.06 114.13 23.24 2.58 45.58
ε 0.36 0.01 0.43 1.48 0.32 13.97
Pa 0.18 0.06 0.22 0.38 0.28 0.39
Ps 12 5 7 6 2 2

Table 3: The model parameters of our SpikeM best
fitting on six patterns of K-SC (see Figure 1).

Pattern C1 C2 C3 C4 C5 C6
SpikeM 1.84 1.61 0.97 4.08 3.33 5.89

SI 15.64 6.78 19.65 25.29 20.36 21.76

Table 4: Fitting accuracy of SI vs. SpikeM on six
patterns of K-SC. SpikeM consistently outperforms
SI with respect to accuracy (RMSE) between the
original values and the models.

4.2 Q2: Matching MemeTracker patterns
Figure 3 shows the results of model fitting on the Meme-

Tracker dataset. We selected six typical sequences according
to the K-SC clusters. That is, each sequence corresponds
to each pattern (C1-C6). We show the original sequences
(black dots) and SpikeM fitting, ∆B(n) (red line) in both
linear-linear (top) and log-log (bottom) scales. In the log-
log scale, we also show the count of un-informed bloggers,
U(n). In Figure 3, the bottom table shows the short phrases
(memes) of each sequence. All of the phrases are sourced
from U.S. politics in 2008. We obtained several observations
for each sequence:

• Patterns C1 and C2: almost the same size of popu-
lation, N $ 500, except that C2 has a quicker rise
and fall (i.e., stronger infection, β ∗N = 1.4) than C1
(β ∗N = 0.94).

• Pattern C3: this sequence has a sudden rise and a
power law decay. There is a slight daily periodicity.

• Patterns C4 and C5: there are clearly daily periodic-
ities. Pattern C6, “lipstick on a pig” has the largest
population of all six sequences (i.e., N = 6259).

• Pattern C6: the sequence: “yes we can” consists of
huge spikes around n = 40, and constant periodic
noise. This is because the bloggers mention this phrase
as Barack Obama’s slogan as well as with more gen-
eral meanings. We can also find that there are several
extreme points (i.e., missing values) around n = 120
(see blue circle in log-log scale).

4.3 Q3: Matching other data
We also demonstrate the effectiveness of our model for

other types of spikes.
Fitting on Twitter data. Figure 4 describes our fit-

ting results on the hashtags of Twitter data. In this figure,
we can see that Twitter data behave similarly to Meme-
Tracker data. Due to space limitations, we show only three
major hashtags. Note that the top and bottom rows are
in linear-linear and log-log scales, respectively. Our model
captures the following characteristics: (a) #assange: this
is a topic about Julian Assange, the founder of WikiLeaks.
There are several mentions before the peak point (December
5, 2011). (b) #stevejobs: there is a sudden peak on Octo-
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#109 the most serious financial crisis since the great depression #87 what is required of us now is a new era of responsibility
#34 i love this country too much to let them take over another election #9 you can put lipstick on a pig
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Figure 3: Results of SpikeM fitting on six patterns from MemeTracker dataset. The figures show in both
‘linear-linear’(top) and ‘log-log’(bottom) scales. The bottom table lists the phrase (“meme”) of each patterns.
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Figure 4: Results of SpikeM fitting on three hashtags from Twitter dataset. The top and bottom rows show
in linear-linear scale, and log-log scale, respectively.
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(a) “tsunami” (2005) (b) “Harry Potter” (2007)

Figure 5: SpikeM fitting on GoogleTrends dataset:
the volume of searches for the keyword (in black
dots) and fitting results (in red lines). Note that
the window size is per week.

ber 5, 2011, with a long heavy tail (see Figure 4(b) in log-log
scale). This was caused by the death of Steve Jobs. (c) #ar-
resteddevelopment: this a topic about the movie “Arrested
Development”. There is a clear daily periodicity with a peak
point.
Fitting on GoogleTrend data. We can also observe

influence propagation in queries on internet search engines.
Figure 5 shows two different types of spikes on GoogleTrends.
For an external catastrophic event (a) “tsunami”, we see
that there is a super quick rise immediately after the Indian
Ocean earthquake and tsunami in 2005. In contrast, (b)
“harry potter” has a slower rise, which is because this spike
was generated by “word-of-mouth” activity surrounding the
release of a Harry Potter movie in 2007. SpikeM evidently
captures both types of spikes successfully.

4.4 Q4: Tail-part forecasts
So far we have seen how SpikeM captures the pattern

dynamics for various spikes. Here, we answer a more prac-
tical question: given the first part of the spike, how can we
forecast the future behavior of the tail part? Figure 6 shows
results of our forecasts on MemeTracker data. We selected
two the highest population phrases (#9 and #13 in Fig-
ure 3). We trained our models by using the values obtained
over a period of 54 hours (solid black lines in the figure), and
then forecasted the following days (solid red lines, about five
days). Note that the vertical axis uses a logarithmic scale.
We compared SpikeM with the auto regressive model (AR).
For a fair comparison, we used seven regression coefficients,
which was the same size as our model parameters.
Our method achieves high forecasting accuracy while AR

failed to forecast future patterns. More specifically, the re-
construction errors of SpikeM are RMSE = 9.26 and 8.93
for #9 and #13, while AR has errors of 13.98 and 14.19.
Similar trends are observed in other phrases, however we
omit the results due to space limitations. More importantly,
our model can forecast the rise part of spikes as well as the
tail part (discussed in Section 5).

5. DISCUSSION - SpikeM ATWORK
Our proposed model, SpikeM is capable of various appli-

cations. Here, we describe important applications and show
some usefulness examples of our approach.

5.1 “What-if” forecasting
We have discussed tail-part forecasting in subsection 4.4.

Ideally, we want to forecast not only the tail-part, but also
the rise-part of a spike. This is much more difficult, because
we usually have very few points in the rise-part of a spike.
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Figure 6: Results of tail-part forecasting on Meme-
Tracker data. We train spikes from n = 0 to 54, and
then, start forecasting at time n = 54. Our SpikeM
reflects reality better, while AR quickly converges
to the zero.

However, if this is a repeating event, like, say, the spikes
induced by ‘Harry Potter’ movies releases, can we forecast
future spikes if we know the release date of the next movie?
It turns out that our SpikeM model can help with this (dif-
ficult) task, too.

Thus, the problem we address in Figure 7 is as follows:
we are given (a) the first spike in 2009, “Harry Potter and
the Half-Blood Prince” (n = 185); (b) the release dates of
the two sequel movies (blue text with as arrows pointed at
n = 255 and 289), and (c) the access volume before the
release dates (and specifically from 8 to 2 weeks before).
Can we forecast the rise and fall shapes of upcoming spikes
and their peak points?

Solution and results. SpikeM can predict the po-
tential population N of users who are interested in “Harry
Potter”, and the strength of ‘word-of-mouth’ infection: β.
Our solution is to assume that these values are fixed for all
of the sequel spikes. The only difference is the strength of
the “external shock”, i.e., nb and Sb. Our solution consists
of the following three-step process:

1. Train the parameter set θ by using the first spike (solid
black line in the figure).

2. With the fixed parameters θ, infer the new values of
ñb and S̃b by using the beginning part of the next spike
(blue lines between double arrows at n = 250 and 280).

3. Generate the spikes using θ and ñb and S̃b (red lines).

In conclusion, Figure 7 shows that our model successfully
captures the two sequel spikes and peak points nmode.

5.2 Outlier detection
Since SpikeM has a very high fitting accuracy on real

datasets (described in section 4), another natural applica-
tion would be anomaly detection. Figure 8 shows the fitting
result of Figure 5 (a), in a log-log scale. Note that the
black circles are the original sequence, and the pink line is
our model fitting. We can visually observe that there are
several points that do not overlap the model. For example,
(a) on March 29, there is one spike, since another earth-
quake occurred on March 28. (b) There is a huge spike on
December 26, 2005, which is exactly one year after the In-
dian Ocean earthquake.

5.3 Reverse engineering
Most importantly, our model can provide an intuitive ex-

planation such as the potential number of interested blog-
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Figure 8: Outlier detection on Google-
Trends dataset (in log-log scale). No-
tice that the biggest spike, “world marks
tsunami anniversary” occurred after one
year (i.e., 52 weeks later).

gers, and the quality of news. Here we report our discoveries
on MemeTracker and Twitter datasets (see Figure 9).

Observation 1 (Total population of bloggers).
The total populations of potential bloggers/users N are al-
most same for both datasets (around N = 1, 000− 2, 000).

We also note that they are skewed to the right, i.e., there
is a long tail of larger values.

Observation 2 (Strength of first infection). The
strength of the “first burst” is β ∗N $ 1.0 for each dataset.

The above two observations agree with the intuition: we
can see common behavior for MemeTracker and Twitter,
which means that they have similar characteristics in terms
of social activities.

Observation 3 (Common activity and periodicity).
Typical user behavior is to have a daily periodicity with (a)
phase shift Ps = 0 (small population during early morning,
large population at peak point, 6pm) for MemeTracker, while
(b) more spread in Ps.

Note that more than 90% of all spikes have a daily peri-
odicity in both datasets. The only the difference between
the two datasets is that Twitter has several Ps values. This
is because Twitter has multiple time zones (e.g., US, UK,
Australia, and India).

6. RELATEDWORK
We present the related work, in three areas: time series

analysis, influence propagation, and burst detection.
Time series Analysis. This is an old topic, that has at-

tracted huge interest, and that is dealt with in well-regarded
textbooks [4]. Traditional approaches applied to data min-
ing include Auto-Regression (AR) and variations [24], or
Linear dynamical systems (LDS), Kalman filters (KF) and
variants [13, 25, 26] but they are all linear methods. Non-
linear methods for forecasting tend to be hard to interpret,
because they rely on nearest-neighbor search [5], or artificial
neural networks [39]. Similarity search, indexing and pat-
tern discovery in time sequences have also attracted huge
interest [7, 14, 8, 16, 27, 38, 30, 34, 35, 28], but none of
these methods specifically focused on modeling bursts.
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Figure 9: Reverse engineering: pdf of three pa-
rameters: N,β ∗ N,Ps over 1,000 memes/hashtags.
(a) MemeTracker: total potential bloggers N $ 1, 000,
and strength of “first burst” β ∗N $ 1.0. More than
90% of the memes have clear daily periodicity with
high activities around 6pm (i.e., Ps $ 0). (b) Twitter:
similar trends except more spread in Ps, possibly,
due to multiple time zone. Also see the text for
more observations.

Influence propagation. The canonical text-book for
epidemiological models like SI is Anderson and May [1]. The
power-law decay of influence has been reported in blogs [29],
with a exponent of -1.5. Barabasi and his colleagues re-
ported exponents of -1 and -1.5, for the response time in
correspondence [2]. Analyses of epidemics, blogs, social me-
dia, propagation and the cascades they create have attracted
much interest [21, 40, 18, 33, 32, 15, 37, 9, 10, 11, 20], and
recently the reverse problem (‘find who started it’) [19, 36].

Burst detection. Remotely related to our work are the
efforts to spot bursts. This includes the work of Kleinberg
[17], the algorithm of Zhu and Shasha [42], and the algorithm
of Parikh et al. [31]. None of the above gives a parsimonious
model for describing the activity in a network.

7. CONCLUSIONS
In this paper, we study the rise-and-fall patterns in in-

formation diffusion process through online medias. We pre-
sented SpikeM, a general, accurate and succinct model that
explains the rise-and-fall patterns. Our proposed SpikeM
has the following appealing advantages:



• Unification power: it includes earlier patterns and
models as special cases (K-SC, as well as the SImodel);

• Practicality: it matches the behavior of numerous,
diverse, real datasets, including the power-law decay
and much more beyond;

• Parsimony: our model requires only a handful of pa-
rameters;

• Usefulness: we showed how to use our model to do
‘short-term’ forecasting, to answer what-if scenarios,
to spot outliers, and to learn more about the mecha-
nisms of the spikes.
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