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Abstract—Given a huge stream of multiple co-evolving se-
quences, such as motion capture and web-click logs, how can
we find meaningful patterns and spot anomalies? Our aim is
to monitor data streams statistically, and find subsequences that
have the characteristics of a given hidden Markov model (HMM).
For example, consider an online web-click stream, where massive
amounts of access logs of millions of users are continuously
generated every second. So how can we find meaningful building
blocks and typical access patterns such as weekday/weekend
patterns, and also, detect anomalies and intrusions?

In this paper, we propose StreamScan, a fast and exact
algorithm for monitoring multiple co-evolving data streams. Our
method has the following advantages: (a) it is effective, leading
to novel discoveries and surprising outliers, (b) it is exact, and
we theoretically prove that StreamScan guarantees the exactness
of the output, (c) it is fast, and requires O(1) time and space
per time-tick. Our experiments on 67GB of real data illustrate
that StreamScan does indeed detect the qualifying subsequence
patterns correctly and that it can offer great improvements in
speed (up to 479,000 times) over its competitors.

I. INTRODUCTION

Data streams naturally arise in countless domains, such
as medical analysis [10], online text [7], social activity min-
ing [17], and sensor network monitoring [12]. For example,
consider an online web-click stream, where a huge collection
of logging entries are generated every second, with information
of millions of users and URLs. The web-site owners would like
to detect intrusions or target designed advertisements by inves-
tigating the user-click patterns. In such a situation, the most
fundamental requirement is the efficient monitoring of data
streams. Since the data streams arrive online at high bit rates
and are potentially unbounded in size, the algorithm should
handle ‘big data streams’ of billions (or even trillions [28]) of
entries with fast response times, that is, it cannot afford any
post-processing. And in addition, since the sampling rates of
streams are frequently different and their time periods vary in
practical situations, the mechanism should be robust against
noise and provide scaling of the time axis.

The hidden Markov model (HMM) is a ubiquitous tool
for representing probability distributions over sequences of
observations. Inspired by statistical approaches, a vast amount
of work has been undertaken on HMMs. HMMs have become
the method of choice for modeling stochastic processes and
sequences in applications including speech recognition [31]
and sensor analysis [12].

A. Motivation and challenges

In this paper, we address the problem of efficiently moni-
toring data streams with HMMs. Informally, the problem we
want to solve is defined as follows:

Given a data stream X and a query model Θ, Find the
subsequences that have the characteristics of Θ.

Note that we can also consider a case where we have multiple
queries (i.e., Θ1,Θ2, . . . ). We continue the discussion focus-
ing on a single query for simplicity throughout this paper, our
algorithm however can be applied to multiple queries.

We present the main intuition and motivation with a
real example. Figure 1 shows the original data stream taken
from motion capture data. It is composed of several consec-
utive motions, such as “walking”, “squatting” and “running”
(Figure 1(a)), and each motion consists of four co-evolving
sequences: left/right arms, and left/right legs (Figure 1(b)).
Assume that we have a stream of sequences of these motions,
and we wish to find the specific motions (e.g., “walking”
and “running”) from the stream. Our algorithm is able to
discover subsequences, each of which has the characteristics
of “walking”, “running” and “punching” according to a given
model. Most importantly, our algorithm guarantees the exact-
ness of the results for data stream monitoring, which means
that it perfectly captures the qualifying subsequences and the
locations of their cut points without any loss of accuracy.

B. Contrast with competitors

The HMM is one of the most useful techniques for the
statistical characterization of time-varying dynamic patterns.
Many algorithms have been proposed for monitoring data
streams in an online fashion. However, relatively little attention
has been paid to monitoring data streams through HMMs. For
example, SMM (Wilpon et al. [36]) is capable of finding the
best match of the HMM with a segment of the sequence.
It is based on the sliding window approach, and it takes
O(n2) time to scan the entire sequence with O(n) space,
where n is the sequence length. Silaghi proposed SFR [31],
which is a more efficient algorithm for keyword spotting and
segmentation. It still requires O(m) time and space to find
appropriate subsequences, where m is the length of qualifying
subsequences/segments. Also note that the above methods are
not designed to monitor big data streams in an online fashion.

By contrast, our algorithm not only works continuously in a
streaming fashion, but also provides vastly better performance



(a-1) Query #1 : walking (a-2) Query #2 : running (a-3) Query #3 : punching

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−2

0

2

walkrun walk

jump

drink waterbend
over

punchleft/right
legs  

left/right
arms

squat

walk

(b) Original MoCap stream

Q1. walk

Q2. run

Q3. punch

(c) Result of StreamScan for three queries (i.e., walking, running, punching)

Fig. 1. Illustration of stream monitoring with StreamScan. Given query models (e.g., walking, running and punching motions), StreamScan incrementally
identifies the specific motions, and also finds the locations of all their cut points from the stream.

than the alternative solutions in terms of speed and memory.
The performance of our system does not depend on the past
length of the data stream, or the length of each segment.

C. Contributions

We present a new online method, StreamScan, for sequence
pattern discovery in data streams. Our method has the follow-
ing advantages:

1) Effectiveness: StreamScan operates on a huge collec-
tion of time-series, and detects fruitful subsequences
from data streams.

2) Exactness: we discuss the accuracy of StreamScan
theoretically, and show that it guarantees no false
dismissals (i.e., it does not sacrifice accuracy).

3) Scalability: the computation time and memory con-
sumption do not depend on the length n of data
streams. There is no need to revisit expiring data
streams. We perform extensive experiments with real
data and show that StreamScan can be up to 479,000
times faster than competitors.

D. Outline

The rest of the paper is organized as follows. Section II de-
scribes related work, followed by definitions in Section III. We
then describe our method in Section IV. Section V discusses
the theoretical analysis. Section VI show our experimental
results on a variety of datasets. We conclude in Section VII.

II. RELATED WORK

Related work falls broadly into two categories: (1) hidden
Markov models and (2) pattern discovery in time-series. We
provide a survey of the related literature.

A. Hidden Markov models

Hidden Markov models have recently been used in various
research areas including speech recognition [36], [37], [31].
Wilpon et al. [36], [37] focus on the problem of keyword
spotting in unconstrained speech using HMMs, and presented a
novel method for finding the best match of the keyword model
with a segment of the observation, while Silaghi [31] extended
the work in [36] and proposed a more efficient algorithm,
namely, Segmentation by Filler Re-estimation (SFR). Clearly
their focus is on stored datasets, as opposed to data streams.
Our streaming algorithm guarantees to detect the best subse-
quence without any loss while it achieves a large reduction in
terms of time and space. As regards HMM-based approaches
for large time-evolving sequences, [12] presented a system
for executing event queries over Markovian streams, generated
from RFID sensors, while [5] proposed an exact and efficient
search algorithm for large HMM datasets.Very recently, Wang
et al. [35] presented a pattern-based hidden Markov model
(pHMM), which is a new dynamical model for time-series
segmentation and clustering, while, [19] developed a fully-
automatic mining algorithm for co-evolving time-series. Most
importantly, they are based on the iterative process, that is,
they are not capable of online processing.

B. Pattern discovery in time series

In recent years, there has been an explosion of interest in
mining time series [2], [3], [25], [28], [33], [18]. Traditional
approaches applied to data mining include auto regression
(AR) and variations [13], or linear dynamical systems (LDS),
Kalman filters (KF) and variants [8], [14], [15]. Similarity
search, indexing and pattern discovery in time sequences have
also attracted huge interest [4], [9], [6], [27], [11], [25], [16],
[34], [26], [22]. Although none of the streaming methods
deals with HMMs, we review them here because they examine



TABLE I. SYMBOLS AND DEFINITIONS.

Symbol Definition
n Number of time-ticks
X Data stream of length n
xt d-dimensional vector of X

at time-tick t = 1, . . . , n
X[ts : te] Subsequence of X , including values in

positions ts through te
m Length of X[ts : te], i.e., m = te − ts + 1
k Number of hidden states
Θ Set of parameters governing the model
π={πi} Initial state probability in state i
A={aij} State transition probability from state i to j
B={bi(v)} Probability of symbol v in state i
ε Threshold for finding qualifying subsequences
δ Threshold of subsequence length
P (X,Θ) Likelihood function of X given Θ

pi(t) Probability of element (t, i),
i.e., state i at time-tick t

vi(t) Cumulative likelihood of (t, i)
si(t) Starting position of (t, i)

related topics, such as pattern discovery, summarization, and
lossy compression for data streams. The work in [32] pre-
sented an approach for recursively predicting motion sequence
patterns. For web-click and social analysis, Agarwal et al. [1]
exploit the Gamma-Poisson model to estimate “click-through
rates” in the context of content recommendation, while the
work in [21] studied the rise and fall patterns in information
diffusion process through online social medias. TriMine [20]
is a scalable method for forecasting complex time-series.
Regarding to the stream monitoring, SPIRIT [24] addresses
the problem of capturing correlations and finding hidden
variables corresponding to trends in collections of co-evolving
data streams. Sakurai et al. [30] introduced an approxima-
tion technique, BRAID, proposed BRAID, which efficiently
detects lag correlations between data streams. SPRING [29]
is an efficient algorithm for monitoring multiple numerical
streams under the dynamic time warping (DTW) distance. Very
recently, Mueen et al. studied time series motifs [23], while
Rakthanmanon et al. [28] proposed a novel algorithm designed
to accelerate a similarity search for trillions of time-series
under the DTW distance. However, none of the above methods
examines pattern discovery on streams with the HMMs.

III. PROBLEM FORMULATION

In this section, we define the problems and some funda-
mental concepts.

A. Hidden Markov model

The hidden Markov model (HMM) is a statistical model
where the system being modeled is assumed to be a Markov
process with unknown (i.e., “hidden”) states. An HMM pa-
rameter set, Θ = {π,A, B}, is composed of the following
probabilities:

• Initial state probability: π={πi}ki=1,

• State transition probability: A={aij}ki,j=1,

Θ
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Fig. 2. Illustration of the HMM trellis structure. Given a sequence X and
a model Θ (here, hidden states k = 3, sequence length n = 4), the shaded
states in the structure denote the Viterbi path.

• Output probability: B={bi(x)}ki=1
1.

Given a model Θ and an input sequence X , the likelihood
value P (X,Θ) is computed as follows:

P (X,Θ) = max
1≤i≤k

{pi(n)} (1)

pi(t) =

{

πibi(x1) (t = 1)
max1≤j≤k{pj(t− 1)aji}bi(xt) (2 ≤ t ≤ n)

where pi(t) is the maximum probability of state i at time-tick
t. The likelihood is computed based on the “trellis structure”
shown in Figure 2, where states lie on the vertical axis, and
sequences are aligned along the horizontal axis. The likelihood
is computed using a dynamic programming approach, called
a Viterbi algorithm, which maximizes the probabilities from
previous states (i.e., each state probability is computed using
all previous state probabilities, associating transition probabili-
ties, and output probabilities). The state sequence, which gives
the likelihood, is called the Viterbi path. The Viterbi algorithm
generally requires O(nk2) time since it compares k transitions
to obtain the maximum probability for every state, that is, the
trellis structure consists of (n × k) elements. Note that the
space complexity is O(k) since the algorithm needs only two
columns (i.e., the current and previous columns) of the trellis
structure to compute the likelihood.

Example 1: Assume the following model and sequence.

π =

[

1
0
0

]

,A =

[

0.5 0.5 0
0.5 0.25 0.25
0 0 1

]

,

B =

[

1 0 0
0.75 0.25 0
0 0 1

]

, X = (1, 1, 2, 3).

From the Viterbi algorithm, we have

p1(1)=1, p1(2)=0.5, p1(3)=0, p1(4)=0
p2(1)=0, p2(2)=0.75·0.5, p2(3)=0.52 ·0.25, p2(4)=0
p3(1)=0, p3(2)=0, p3(3)=0, p3(4)=0.52 ·0.252.

The state sequence (u1, u1, u2, u3) gives the maximum prob-
ability. Consequently, we have P (X,Θ) = (0.5)2 · (0.25)2.

1 In this paper, we mainly focus on numerical sequences, and we
assume a Gaussian distribution for the output probability, (i.e., B =
{N (x|µi,σ

2
i )}

k
i=1

). However, our solution, StreamScan can handle any
other types of categorical and numerical distributions. Our algorithm is
completely independent of such choice.



B. Problem definition

A data stream X is a semi-infinite sequence of d-
dimensional vectors, {x1, x2, . . ., xn, . . .}, where xn is the
most recent vector. Let X[ts : te] denote the subsequence
starting from time-tick ts and ending at te (1 ≤ ts ≤ te ≤ n).
Our goal is to find a subsequence X[ts : te] that has a high
likelihood value with respect to a given model Θ. So, what are
the real requirements for monitoring data streams? We need a
one-path algorithm that reports all the qualifying subsequences,
immediately, at any point in time, while discarding redundant
information. In short, the ideal solution would satisfy all the
following requirements.

• Exponential threshold function: The likelihood de-
creases as the subsequence length grows since it is a
multiplication of the state probabilities in the trellis
structure. Therefore, the likelihood threshold should
be an exponential function of the subsequence length
m, and so we set it at εm. More concretely, we
want to identify subsequences that satisfy P (X[ts :
te],Θ) ≥ εm, where m is the length of X[ts : te]
(i.e., m = te − ts + 1).

• Minimum length of subsequence matches: In prac-
tice, we might detect very short and “meaningless”
subsequences. However, this is insufficient for many
real applications. We thus introduce a concept, namely,
the minimum length of subsequence matches, to en-
able us to discard such meaningless subsequences and
to detect the optimal subsequences that satisfy ‘real’
user requirements. Specifically, we want to satisfy
P (X[ts : te],Θ) ≥ εm−δ. Here, the minimum
length δ should be provided by users. We detect
subsequences whose lengths exceed δ.

• Non-overlapping matches: Whenever the query Θ

matches a subsequence of X , we expect there to
be several other matches by subsequences that heav-
ily overlap the “local maximum” best match. These
matches would be doubly harmful: (a) they could
potentially flood the user with redundant informa-
tion and (b) they would slow down the algorithm
by forcing it to keep track of and report all these
useless “solutions”. Thus, we propose adding one
more condition designed to discard all these extra
matches. Specifically, overlapping matches are defined
as subsequences whose Viterbi paths cross, that is,
share at least one element in the trellis structure. We
shall use the term “optimal” subsequence hereafter, to
denote exactly the subsequence that is the local best,
among the set of overlapping subsequences of X .

Consequently, the main problem we propose and solve is as
follows:

Problem 1: Given a stream X , a model Θ, and thresholds
ε and δ, report all subsequences X[ts : te] such that

1) the subsequences are appropriate for Θ; that is,
P (X[ts : te],Θ) ≥ εm−δ

2) among several overlapping matches, report only the
local maximum, i.e.,

P (X[ts : te],Θ) · εδ−m (2)
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Fig. 3. Illustration of subsequence identification with the sliding model
method (SMM). It maintains the trellis structures, starting from every time-tick
(x1, . . . ,xt, . . . ).

is the largest value in the group of overlapping
subsequences that satisfy the first condition.

Our additional challenge is to find a streaming solution, which,
at time n, will process a new value of X and report each match
as early as possible. Also, we mainly focus on a single query
for simplicity, however, our method can be easily applied to
the case of multiple queries.

C. Previous solutions

For Problem 1, if the user requires a theoretical guarantee
(i.e., no loss of accuracy), the most straightforward (and slow-
est) solution would be to consider all the possible subsequences
X[ts : te] (1 ≤ ts ≤ te ≤ n) and compute the likelihood of
each subsequence of X . This method requires O(n2) trellis
structures, thus the time complexity would be O(n3k2) (or
O(n2k2) per time-tick). This method is extremely expensive,
and cannot be extended to the streaming case.

Wilpon et al. [36] proposed a much better solution, namely,
the “sliding model method” (SMM). To find a qualifying
subsequence X[ts : te], it computes the likelihood based on
the trellis structure starting from every time-tick (see Figure 3)
and applies the Viterbi algorithm. We can apply this solution
to our problem. Let ps,i(t) be the probability of the i-th state
at time t in the s-th trellis structure, which starts from time s.
The maximum likelihood of the subsequence matching given
X and Θ can be obtained as follows:

P (X[ts : te],Θ) = max
1≤i≤k

{pts,i(te − ts + 1)} (3)

ps,i(t) =

{

πibi(xt) (t = s)
max1≤j≤k{ps,j(t− 1)aji}bi(xt) (s < t ≤ te),

(s = 1, . . . , n; t = 1, . . . , n− s+ 1; i = 1, . . . , k).

We then determine the appropriate subsequence in which
Equation 2 is the maximum value in each overlapping group.
This solution also guarantees no false dismissal. Since this
solution needs O(n) trellis structures, O(nk2) numbers have
to be computed for each time-tick (also, the total computation
cost is O(n2k2)).

More recently, Silaghi proposed a more efficient algorithm,
SFR [31], which is based on SMM, but it has an implicit filler



state. For each structure, if the likelihood value in Equation 2
is not improved, (i.e., reaches the maximum value), it stops
the computation. SFR requires O(m) trellis structures, because
it needs to retain all possible pairs of overlapping candidate
subsequences.

IV. PROPOSED METHOD

In this section, we provide a new algorithm, namely,
StreamScan, for dealing with Problem 1.

A. Fundamental concept

Our solution is based on the the following ideas.

Approach 1 (Cumulative likelihood function): We
introduce the cumulative likelihood function: V (X[ts : te],Θ)
(see Equation 4), which requires only a single trellis structure
to find the optimal subsequences of X .

Instead of creating a new trellis structure for every time-
tick, which needs O(n) structures, the cumulative likelihood
function requires only a single structure, and thus it greatly
reduces both time and space. As we show later (see Lemma 1),
this function guarantees that we obtain the best subsequences
of X .

Although important, this function is not immediately ap-
plicable to our problems. The cumulative likelihood function
is a good first step, and it can tell us the end position of the
matching subsequence. However, users and applications also
often need the starting time-tick of the match and the likelihood
of the matching subsequence. This is the motivation behind our
second idea.

Approach 2 (Subsequence trellis structure): We propose
keeping the starting position of each subsequence as well as
the probability/likelihood. Our streaming algorithm detects the
qualifying subsequences efficiently by using the subsequence
trellis structure (STS). Thus, we can identify the qualifying
subsequence in a stream fashion.

We augment the trellis structure to have each of its cells record
the starting position of each candidate subsequence. More
specifically, the i-th state at time t of the usual trellis structure
contains the value vi(t), which is the highest cumulative
likelihood to match the t-th value of X with the i-th state
of Θ (i.e., t = 1, . . . , n; i = 1, . . . , k); our proposed STS will
also record si(t), that is, the starting position corresponding to
vi(t). In other words, the values si(t) and vi(t) in the structure
mean that the subsequence from si(t) through t gives vi(t),
which is the best we can achieve for the (t, i) element of
the structure. The technical advantage is the output exactness.
We carefully design our algorithm to detect all qualifying
subsequences and discards information about non-qualifying
subsequences safely and efficiently. Details are described in
the next subsection.

B. StreamScan

We now propose a one-path algorithm for solving the
problems described in Section III-B. Our method, StreamScan,
efficiently detects appropriate subsequences in data streams.
Figure 4 illustrates how this is done. StreamScan uses STS, in
which each element (t, i) (i.e., the t-th value of X and the
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Fig. 4. Illustration of StreamScan. Given a stream X and a model Θ,
StreamScan uses only a single trellis structure to capture all qualifying
subsequences (X[ts : te]).

i-th state of Θ) retains both cumulative likelihood and starting
position. StreamScan reports all qualifying subsequences.

Given a sequence X of length n, we can derive the
cumulative likelihood value V (X[ts : te],Θ) of X[ts : te]
as follows:

V (X[ts : te],Θ) = vbest(te) = max
1≤i≤k

{vi(te)} (4)

vi(t) = max

{

πibi(xt) · ε−1

max1≤j≤k{vj(t− 1)aji}bi(xt) · ε−1

(t = 1, . . . , n; i = 1, . . . , k).

As well as vi(t), the structure contains the starting position:

si(t) =







(t, i) (vi(t) = πibi(xt) · ε−1)
sj(t− 1) (vi(t) %= πibi(xt) · ε−1

∧vj(t− 1) = vbest(t− 1)).
(5)

The optimal path is obtained using the likelihood computation,
and the starting position of the optimal subsequence is propa-
gated through the structure on the path. The likelihood of the
subsequence is obtained from the cumulative likelihood and
the subsequence length as follows:

P (X[ts : te],Θ) = V (X[ts : te],Θ) · εm, (6)

where m is the subsequence length (i.e., m = te − ts + 1).

Algorithm. We introduce a new algorithm, which we carefully
designed to (a) guarantee no false dismissals for the second
condition of Problem 1 and (b) report each match as early as
possible. As Algorithm 1 illustrates, for each incoming data
point, we first incrementally update the cumulative likelihood
vi(t) and determine the starting position si(t) according to the
computation of vi(t).

The candidate set S includes multiple optimal subse-
quences with different starting positions and retains the in-
formation on each candidate C (i.e., the cumulative likelihood
Cv , the starting position Cs, and the end position Ce). The
idea is to keep track of the maximum value, Cv , among the
cumulative likelihood values of overlapping subsequences. We
report the subsequence that gives Cv when Cs satisfies:

∀i, Cs %= si(t), (7)



Algorithm 1 StreamScan (xt)

Input: a new vector xt at time-tick t
Output: a qualifying subsequence if any
(i.e., Cp: likelihood, Cs: starting position, Ce: end position)
for i = 1 to k do

// Cumulative likelihood derived by Equation (4)
Compute vi(t);
// Starting position derived by Equation (5)
Compute si(t);
ei(t) := (t, i); // End position
if vi(t) ≥ ε−δ then

if si(t) /∈ S then
// Add the subsequence into the candidate set S
Add vi(t), si(t), and ei(t) to S;

else
for each candidate C ∈ S do

// Update the maximum cumulative likelihood and
end position
if si(t) = Cs ∧ vi(t) ≥ Cv then

Cv := vi(t); Ce := ei(t);
end if

end for
end if

end if
end for
// Report the optimal subsequence
for each candidate C ∈ S do

if ∀i, Cs %= si(t) then
// Compute the likelihood of the subsequence, Cp

Cp = Cv · εl;
Report (Cp, Cs, Ce);
Remove C from S;

end if
end for

which means that the captured optimal subsequence cannot
be replaced by the upcoming subsequences. Otherwise, the
upcoming candidate subsequences do not overlap the captured
optimal subsequence. Finally, we compute the likelihood Cp of
the output subsequence and then report it in stream processing.

Example 2: Here, we use Figure 5 to illustrate how the
algorithm works. Assume that ε = 0.1, δ = 3, and the
following model and sequence. 2

π =

[

1
0
0

]

,A =

[

0.5 0.5 0
0.5 0.25 0.25
0 0 1

]

,

B =

[

1 0 0
0.75 0.25 0
0 0 1

]

, X = (3, 1, 1, 2, 3, 3, 3, 1).

The element (t, i) of the score matrix contains vi(t) and si(t).
The shaded elements denote the optimal Viterbi path. At t =
1, the algorithm begins to compute the cumulative likelihood
value for each state. At t = 6, we found candidate subsequence
X[2 : 6] whose likelihood value is v3(6) = 1562.5. Although
the likelihood value is larger than ε−δ , we do not report X[2 :
6] since this can be replaced by the upcoming subsequence.

2 For simplicity, we assume a discrete sequence for X , where the output
probability B is a categorical distribution.

We then capture the optimal subsequence X[2 : 7] at t = 7.
Finally, X[2 : 7] is reported at t = 8 since we now know
that none of the upcoming subsequences is/will be the optimal
subsequence.

V. THEORETICAL ANALYSIS

In this section, we undertake a theoretical analysis to
demonstrate the accuracy and complexity of StreamScan.

A. Accuracy

Lemma 1: Given a sequence X and a model Θ, Problem 1
is equivalent to the following conditions:

1) V (X[ts : te],Θ) ≥ ε−δ

2) V (X[ts : te],Θ) · εδ is the maximum value in each
group of overlapping subsequences.

Proof: Let us assume that the Viterbi path of X[ts : te]
starts from the u-th state at time ts (i.e., the element (ts, u))
in the trellis structure. From Equation 3 and Equation 4, we
obtain

πubu(xts) = pts,u(ts) = vu(ts) · ε.

If the path also includes the elements (te − 1, j) and (te, i),
then we have

aji bi(xte) = pts,i(te)/pts,j(te − 1) = vi(te) · ε/vj(te − 1).

For the i-th state at time te,

pts,i(te) = vi(te) · ε
m.

Thus, we have

vi(te) ≥ ε−δ.

From the second condition of Problem 1, it is obvious that
the optimal path in the trellis structure gives the maximum
cumulative likelihood in each group of subsequences. Thus, we
obtain the two conditions of Lemma 1, which are equivalent
to those of Problem 1.

Lemma 2: StreamScan guarantees the exactness of the
result.

Proof: Let Cs be the starting position of the optimal
subsequence X[ts : te]. For STS, the optimal and overlapping
subsequences start from the same position Cs since their paths
share the same cell. If si(t) %= Cs, the path of the subsequence
does not overlap with the optimal path. Similarly, the upcom-
ing subsequences do not overlap with the subsequence in the
candidate subsequence set if

∀i, Cs %= si(t).

StreamScan reports the subsequence X[ts : te] as the optimal
subsequence only when the above condition is satisfied, which
does not miss the optimal subsequence. Lemma 1 shows that
the likelihood of the optimal subsequence can be computed
from the cumulative likelihood. Thus, StreamScan guarantees
the exactness of the result.
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Fig. 5. Example of StreamScan. The upper number shows the cumulative likelihood value: vi(t), in each element of the score matrix. The number in parentheses
shows the starting position: si(t). The shaded elements denote the optimal Viterbi path. Starting from time-tick t = 1, it incrementally computes likelihood
values vi(t) (i = 1, 2, 3, t = 1, 2, . . . ). At t = 8, we report X[2 : 7] as the qualifying subsequence, since none of the upcoming subsequences will be the
optimal subsequence.

B. Complexity

Let n be the length of an evolving sequence and k be the
number of hidden states. We evaluate the computational com-
plexity to maintain the trellis structure(s) in stream processing.

Lemma 3: SMM requires O(n) and SFR needs O(m)
space and time per time-tick.

Proof: SMM has to maintain O(n) trellis structures,
and computes O(nk2) numbers every time-tick to identify
qualifying subsequences. Thus, it requires O(nk2) time. Since
this solution keeps two arrays of k numbers for each structure,
overall, it needs O(nk) space. Here, since k is a small constant
value compared with n, the complexity can be simplified
to O(n). SFR needs to maintain O(m) structures. For each
structure, if the likelihood reaches the maximum, it stops
the computation, where m is the length of the qualifying
subsequences.

Lemma 4: StreamScan requires O(1) space and time per
time-tick.

Proof: StreamScan maintains a single trellis structure, and
computes O(k2) numbers every time-tick. Thus, StreamScan
requires O(k2) time per time-tick. StreamScan keeps two
arrays of k numbers for the single structure, and it requires
O(k) space. Here, k is a constant value, thus the complexity
is O(1).

VI. EXPERIMENTS

To evaluate the effectiveness of StreamScan, we carried
out experiments on three real datasets. Our experiments were
conducted on an Intel Core i7 2.5GHz with an 8GB memory.
We performed this experiment with k = 10. We set δ at almost
10% of the sequence length for each dataset. The experiments
were designed to answer the following questions:

1) How successful is StreamScan in capturing sequence
patterns?

2) How does it scale with the sequence lengths n in
terms of time and space?

3) How well does it handle diverse data streams?

A. Discovery of sequence patterns

We first demonstrate the effectiveness of our approach
using real motion capture datasets. 3 It consists of sequences of
4-dimensional vectors (left/right legs and arms). Each sequence
is a series of simple motions, such as walking and running. For
each query model, we trained several basic motions, (such as
“walking”, “jumping”, and “twisting”), using the Baum-Welch
algorithm. We set ε = 10−10.

Our approach is useful for identifying human behavior. One
of our results has already been presented in Figure 1. Similarly,
Figure 6 shows how StreamScan detects the qualifying subse-
quences. It is robust against noise, and provides the correct
segmentation and identifies all these specific motions. Note
that StreamScan (and SMM, SFR) guarantees the exactness of
the output, thus we omit the results of the other methods.

B. Scalability

We performed experiments to evaluate the efficiency and
to verify the complexity of StreamScan, which we discussed
in Section V-B. Figure 7 compares StreamScan with two
competitors, SMM and SFR, in terms of computation time for
varying sequence lengths n. Figure 8 shows the amount of
memory space required to maintain the trellis structure(s). The
plots were generated using MoCap. In this dataset, the average
length of qualifying subsequences is m = 1, 000 ∼ 3, 000, thus
we set ε = 10−10 and δ = 1, 000. The wall clock time is the
average processing time needed to update the structure(s) for
each time-tick.

As we expected, StreamScan identifies the qualifying sub-
sequences much faster than the alternative solutions (See
Figure 7). The trend shown in the figure agrees with our theo-
retical discussion in Section V-B. Compared with O(n), which
SMM requires, StreamScan achieves a dramatic reduction in
computation time and space: it requires constant; i.e., it does
not depend on n. Since SFR requires O(m) time and space, our
algorithm is up to 1,383 times faster than SFR. With respect to
the memory space consumption, SFR needs an extra space to
keep track of the candidate subsequence scores, and it depends
on the length of captured data. However, the figure shows that
the space requirement of StreamScan is clearly smaller than
that of the alternative solutions.

3http://mocap.cs.cmu.edu/



0 500 1000 1500 2000 2500 3000 3500 4000

−2

0

2

4
jump

walk walk walk

kick

punch

Q
1

Q
2

(a) MoCap #2 (Query #1: walking, Query #2: jumping)

1000 2000 3000 4000 5000 6000 7000 8000

−2

0

2

4 runjump

walk

move
arms

move
arms

twist twist
walk walk

Q
1

Q
2

Q
3

(b) MoCap #3 (Query #1: walking, Query #2: twisting, Query #3: moving arms)
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C. StreamScan at work

StreamScan is capable of handling various types of data
streams. Here, we describe some useful applications of our
approach.

Social activity monitoring. One of our motivating applica-
tions is monitoring online social activity. Figure 9 shows the
WebClick stream, which consists of 67GB web-click records
of 2,582,252 users, obtained over one month (April, 2007).
There are various types of URLs, such as “blog”, and “news”.
Let us assume that we are given a query model of a specific

activity pattern (e.g., a weekend pattern, learned from the first
day in the stream). StreamScan can monitor the stream, and
identify all weekend patterns according the given model. Also
notice that it identifies one anomaly pattern at the end of the
month (i.e., last Monday), and this is because of a national
holiday (see the red circle).

Extreme detection in keyword stream. Figure 10 shows
another natural and important application on GoogleTrend
stream. This dataset consists of the volume of searches for
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Fig. 10. Extreme detection in the GoogleTrend stream: the top figures show streams of co-evolving keywords, related to “finance”, “flu” and “sweets” topics,
covering nine years. The bottom figures show our discovery: we found several extreme patterns, (white rectangles), i.e., (a) global financial crisis in 2008, (b)
swine flu outbreak in 2009, and (c) android OS (“Gingerbread”, “Ice Cream Sandwich”) released in 2010-2012.

various keywords on Google4. Each sequence represents search
volumes related to keywords over time (over nine years, on a
weekly basis). Consider that we are monitoring the web search
activities. Our algorithm is applicable to finding “extreme”
behavior in these streams. Specifically, Figure 10 shows the
results of extreme monitoring with three different topics (e.g.,
finance, flu, and seasonal sweets). For each stream, we used the
first three years (i.e., X[1 : 156]) as a query, learned model
parameters, then monitored the stream. Here we report our
discoveries.

4http://www.google.com/trends/

• (a) Finance: there is a yearly cyclic pattern, but there
was a temporal change in January 2008, because of
the global financial crisis.

• (b) Flu: there is a clear yearly periodicity; Starting
every October, it slowly increases toward the peak in
February. The only exception is October 2009, since
that was when the swine flu pandemic spread around
the world.

• (c) Seasonal sweets: each keyword has a yearly cycle,
with a different phase; there are peaks in July for “ice



cream” and “milk shake”, while there are peaks in
December for “hot cocoa” and “gingerbread”. How-
ever, the trend suddenly changed in Dec 2010. This
is caused by the release of the android OS, called
“Gingerbread”, “Ice Cream Sandwich”.

VII. CONCLUSIONS

We introduced the problem of subsequence identification
with HMMs over data streams, and we proposed StreamScan,
a new, fast algorithm to solve the problem. In conclusion,
StreamScan has the following characteristics:

• It is effective: our experiments with real datasets show
that StreamScan detects fruitful subsequences from
diverse data streams.

• It is exact: it guarantees no false dismissals.

• It is fast and nimble: StreamScan requires only a
single structure to find the qualifying subsequences,
and only constant space and time per time-tick; that
is, it does not depend on the past length of data stream
X .
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