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Introduction e e X

¥ Main intuition and motivation

Example: Motion capture
The scatter plots of foot kinetic energy values
#1 and #2 are similar and dissimilar distributions, respectively.
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* Our approach can identify Q and #1 as similar distributions
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Problem definition

¥ Problem (Distribution search):

“Given n distributions and query Q,
Find similar distributions from the data set”

e e
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Applications * 2 X

* Distribution search application domains

- Multimedia

- Medical data analysis
- Web service

- E-commerce
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Applications * 2 X

* Multimedia
Example: Motion capture datasets

- Every motion can be represented as a
cloud of hundreds of frames

- For this collection of clouds, we can find
similar motions without using annotations
or other meta-data

%f%%%
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Applications -~

* \Web service
Example: On demand TV

- Discovering clusters and outliers in such
data would help in tasks such as service
design and content targeting

(which groups or communities of users
are associated with each other?)

N 1
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Backgroun

d ¥ F .

¥ Kullback-Leibler divergence

Measures th

e natural distance difference

from one probability distribution P
to another arbitrary probability distribution Q.

dKL(PaQ)=fpx 'log(px )dx

4.

* One undesirable property: d,,(P,Q)=d,,(0,P)

¥ Symmetric K

 -divergence

dSKL(P9Q)=fpx ‘log

ICDM 2009

2\ [, logl 4= \dx = [(p, ~q.)log| 2 v
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Background e e K

¥ Singular value decomposition (SVD)
Every matrix P&RA*be decomposed into

T
P=U2V
A
F, e })l V.
o.' 2‘?\
= Pz1 "
#* The transformed data is given as: Sp = U
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Proposed method e e

* Nalve approach
- Create histogram for each distribution of data
- Compute the KL divergence directly
from histograms p,; and g;
- Use any data m|n|ng method (k-nearest neighbor search)

Kullback-Leibler
— 7  divergence

distribution histogram
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Proposed method e e

¥ D-Search

- Compress histogram P and Q
- Compute the lower bounding KL divergence
- Prune the search candidates (Multi-step sequential scan)

— Q Fﬁjj _ Lower bouding
& i KL divergence
s P Multi-step
ﬁig — Sequential scan
distribution histogram selected buckets
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Proposed method e e

¥ D-Search

- Compress histogram P and Q
- Compute the lower bounding KL divergence

- Prune the search candidates (Multi-step sequential scan)

— Q ;ﬂi _ Lower bouding
B KL divergence
. 4
s P Multi-step
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D-Search e e X

¥ Lower bounding KL divergence
- Create histogram for each distribution

Original
> Al
~—
Dimension : m
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D-Search e e X

¥ Lower bounding KL divergence

- Create histogram for each distribution
- Select the top ¢ most populated buckets

Original Selected buckets
> dilgn

— ~
Dimension : m C
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D-Search e e X

¥ Lower bounding KL divergence
- Compute the KL divergence from the selected buckets

Original Selected buckets
. é{hfﬁ#ﬁ > e —
Lower bounding
_> °
o KL divergence
Original Selected buckets
: ﬁhﬁ#ﬁ = h
m-buckets c-coefficients
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D-Search e e X

¥ Lower bounding KL divergence
- Compute the KL divergence from the selected buckets

)2 _ e
d (P,0) = —q.) log| = . . Positions of
C( 2 iE%(pl ql) g( q; ) ZE[PQ the top c values
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D-Search e e X

¥ Lower bounding KL divergence
- Compute the KL divergence from the selected buckets

)2 _ e
d (P,0)= —q.) log| £ . . Positions of
C( 2 iE%(pl ql) g( q; ) ZE[PQ the top c values

___________________________________________________________________________________

< Lemma 1 ; |
- For any distributions, lower

. bounding KL divergence
dgq (P,Q)=d (P,Q) . canbe computed

Vi, (p,—q,)(log p, —=logg,) =0

ICDM 2009 Y. Matsubara et al. 18



Proposed method e e

¥ D-Search

- Compress histogram P and Q
- Compute the lower bounding KL divergence

- Prune the search candidates (Multi-step sequential scan)

— Q ;ﬂi _ Lower bouding
B KL divergence
. 4
s P Multi-step
ﬁg — Sequential scan
distribution histogram selected buckets
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D-Search e 3

¥ Multi-Step Sequential Scan

- KNN-search approach  based on the lower
bounding distance

- Prune a significant number of search candidates
- Lead to a direct reduction in the search cost

- Guarantee no false dismissals
(i.e., guarantee the exactness of search results)

ICDM 2009 Y. Matsubara et al. 20



D-Search e He

¥ For the first step,

- Compute the lower bounding distance from the
coarsest version of P ( (a) c=4)

- If the distance is greater than D _, (the current k-th
nearest neighbor distance), we can prune P

[Step 1 } (a)c=4 (b) c =8 (c) Original data

Q (query)

P (candidate)
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D-Search e e X

¥ Otherwise,
for the second step,

- Compute the lower bounding distance from the
more accurate version of P ( (b) c=8)

(a)c =4 [Step 2} (b)c =8 (c) Original data

Q (query)

P (candidate)

,,,,,,,,

........
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D-Search e e X

¥ If the lower bounding distance does not exceed D,
for the third step,

- Compute the exact distance of P ( (c¢) Original data )

(a)c =4 (b)c =8 [Step 3} (c) Original data

Q (query)

P (candidate)

¢¢¢¢¢¢¢¢¢¢

B
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D-Search e e X

¥ For the final step,
If the exact distance does not exceed D,

- Update the answer candidate and D,

* Repeat this procedure for every distribution

(a)c =4 (b)c=8 (c) Original data

Q (query)

P (candidate)

;;;;;;;;

v SR S S SR S SR S
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D-Search e 3

¥ Enhanced D-Search

More efficient solution without a theoretical guarantee
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D-Search e 3

¥ Enhanced D-Search

More efficient solution without a theoretical guarantee

# Compute the SVD coefficients of histogram P and Q

# Approximate the KL divergence

ICDM 2009 Y. Matsubara et al. 26



Enhanced D-Search e e X

¥ Approximate KL divergence
- Create histogram for each distribution

Original
)Z
P
~—
Dimension : m
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Enhanced D-Search ¥ e 5

¥ Approximate KL divergence
- Create histogram for each distribution

- Represent each histogram p; Aand log(p,)
as and using SV¥Ps SP;
- Reduce the number of SVDs by selecting top ¢

Original SVD coeffs
ﬁhﬁb » Als  Sp, :ThesvDof P
P —>
H [ H ﬁﬂq SP; : The svD of log(p,)
~— ~

Dimension : m C
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Enhanced D-Search e e X

¥ Approximate KL divergence
- Compute the KL divergence from the SVDs

Original SVD coeffs
SN || fﬂqﬁ% -
. approx1mate
o KL divergence
Original SVD coeffs
o Apen - oy

m-buckets c-coefficients
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Enhanced D-Search

Theorem 1
Let

Sp; and 8¢, be the SVD of p, and g,

Sﬁi and §q'
We have ’

-
________________________________________________________

Approx. KL divergence

~ can be computed from =~

SVD coefficients

|ICDM 2009

e ¥

m: # of buckets of a histogram
c. # of SVD coefficients
(m >> ¢)

resp.

be the SVD of log piandlog g. resp.

-
P 4 *\

-
-’ *\

1§ [(Spl—sq,)
il

— (Spi =3P, )

(Sql- - 3p, )2 )

— (qu' - §CI1' )2
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Enhanced D-Search e e X

¥ Multi-Step Sequential Scan
- SVD-based approx. of distribution from MoCap
- Represented by a 10*10 bucketized histogram
- (Full coefficients c = m = 100)

(a) c = (b) c = 16 (c) Original data
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Enhanced D-Search e e X

¥ Gradual refinement of the approximation:
For the first step,

- Compute the approx. distance from the coarsest
version of the distribution ( (a) c=1)

- If the distance is greater than D_, , we can prune it
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Enhanced D-Search e e X

¥ Gradual refinement of the approximation:

Otherwise,

for the second step,

- Compute the approx. distance from the more
accurate version of the distribution ( (b) c=16)

[Step 2}
(a) c = (b) c = 16 (c) Original data
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Enhanced D-Search e e X

¥ Gradual refinement of the approximation:
If the approx. distance does not exceed D,
for the third step,
- Compute the exact distance
from the original distribution ( (c) original data )

[ Step 3 ]
(c) Original data
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Enhanced D-Search e e X

¥ Gradual refinement of the approximation:
For the final step,

If the exact distance does not exceed D,
- Update the answer candidate and D,

¥ Repeat this procedure for every distribution

(a) c = (b) c = 16 (c) Original data
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Time complexity e e

¥ Computation for KL divergence

Naive method D-Search
O(mn) O(n)

n: # of input distributions
m: # of buckets of histogram
c . # of SVD coefficients we use

D-Search :
- requires O(cn)
« Cis a small constant and negligible
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Space complexity e e

* Space for our method

Naive method D-Search

O(mn) O(m + n)

D-Search :
- allocates space to store histogram of m buckets
- allocates O(cn) space for computing the criterion
- We obtain O(m + cn)

* ¢ 1s a small constant and negligible

ICDM 2009 Y. Matsubara et al. 37



Outline e He %

#*  Introduction

#* Background

D-Search

Time-series distribution mining

Experiments

Conclusions

ICDM 2009 Y. Matsubara et al. 38



Time-series distribution mining %

* Problem:

- Given time-series distribution P and query Q,
- Finds similar subsequences

time s
Time-series distribution : P
N A A A )
Query : Q P(o,4) P(4,8) P(8,12) P(12,16)
B
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Time-series distribution mining %%

* Problem:

Example:
We want to find three subsequences : 8-12sec., 12-16sec,,
8-16sec.
‘ —————————————————————————— time >
Time-series distribution : P I I I I
\ A A A )
Query : Q P(o,4) P(4,8) P(8,12) P(12,16)
; g
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Time-series distribution mining  #* %

* Problem:
Example:
We want to find three subsequences : 8-12sec., 12-16sec,,
8-16sec.
————————————————————————————— fime >
Time-series distribution : P 11
N A A A )

Q: How do we efficiently find the similar
subsequences for multiple lengths?
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Time-series distribution mining  #* % x

A: Use hierarchical window sizes

Main idea: Geometric progression of windows sizes

time
>
level 2 w=16 LLIT T T T T T TTTTTTTT]
level 1 W = 8 HEEEEEEN
level 0 W =4 LT T T
Query : Q w=w,2' 1={0123,.]}

#* The size of the window set can be reduced

ICDM 2009 Y. Matsubara et al. 42



Time-series distribution mining %

¥ How to detect similar subsequences
- Example: at the level 0

Distribution : P S | time
Detect as similar S
subsequences

level 2 -~
level 1 l l
level 0
N J N J N ) \ )
Query : Q Fo.) P(4,8) P(8,12) P(12,16)

oL 7
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Time-series distribution mining

¥ How to detect similar subsequences

- Example: at the level1
Detect as a similar

Distribution : P Subsequence time
\\\ \\ — )
level 2 l

level 1

level 0 | | .

N J N J N ) \ )
P
Query : Q (0.4) Flug Fg 1) Flia6)

ICDM 2009 Y. Matsubara et al. 44



Time-series distribution mining

¥ How to detect similar subsequences
- Example: at the level2 |

Don’t detect any
Distribution : P subsequences  time
O )
level 2
level 1
level 0 | | .
N J N J \ J \ J
Query : Q Fo.) P(4,8) P(8,12) P(12,16)
45
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Time-series distribution mining %

¥ How to detect similar subsequences
- Example: at the multiple levels

Distribution : P similar subsequences | time

_____________

\\
N /
4
\\ 4
N, ’I
\, 7
level 2 i
/, /A\ \\
,’ ,’ \\ \\
- . ~o ~
4, »’ ~. ~.
’ ~ N ’ ~ N
. N N ’ VRN N
. . N AN / X4 N N
’ s A ~ / ~ N

level 0 o -
N J N ) X ’ \ j
P
Query ) (0,4) P(4,8) P(8,12) [3(12’16)
A e
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Experimental evaluation

¥ The experiments were designed
to answer the three questions:

1. Effectiveness
How successful is D-Search (enhanced)
in capturing time-series distribution patterns?

2. Speed

How does D-Search scale with the sequence lengths n
in terms of the computational time?

3. Quality

How well does D-Search approximate the KL divergence?

ICDM 2009 Y. Matsubara et al.
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Experimental evaluation ¥ ¥

¥ We carried out experiments on real datasets:

Numerical data Categorical data
e Motion capture e On-demand TV
e [t contains 26 sequences, each e Dataset from the on-demand
of which is a series of simple TV service. It contains a list of
motions such as walking, content ID, Date, user ID
running, jumping e Music store
* EEG e This dataset consists of the
o It is from a large study that purchasing records from an
examined the EEG correlates on-line music store obtained
of alcoholism. There were two over 16 months
subject groups: alcoholic and
control
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Case studies e He %

(1) Motion capture

400.0 T T T T 400.0 T T T T 400.0

300.0 | : 3000 | . 300.0
2000 | . 2000 | ] 200.0
100.0 | . 100.0 | ] 100.0
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Query : jumping #1 : jumping #2 :jogging
ID:14_14 (2-4sec.) ID:14_14 (4-6sec.)

* D-Search can identify similar subsequences
- Query and #1 both correspond to a jumping motion
- #2 corresponds to a jogging motion
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Case studies e He %

(2) EEG (Alcohol or Control)

30.0 — : : : . 30.0 — . : : : 30.0 —
200 | 1 200 1 200 |
) e s P
100 | +# afna Lo ] 10.0 F Fha 1 10.0 | .
*:i»f:;fw i, ‘%}’;’f‘ = Y ;;'
00| :&%&1{&: . ] 00} Ea S ] 00} L
LIS SR A
-100 | ;f}:';fn, o : -10.0 K ﬁ?’* 2 1 4100 "z“*»;gﬁ‘ vy
+ ':: »} A 11”:;‘: f A3,
200 ¢ T 1 -20.0 & . -200 t gyw :
-30.0 L— : : : : -30.0 L— : : : ' -30.0 L— :
400 200 00 200 400 400 200 00 200 400 400 200 00 200 400
Query : alcohol #1 : alcohol #2 . control
co3a (55-56sec.) co2c (74-75sec.)

* Our approach is also useful for classification
Query and #1 are classified into the same group
- #2 goes to another group (it belongs to “control™)
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Case studies e 3

(3) On-demand TV (distribution of users)

10 10 10
8t 8t 8
g 61 g st ] g 6 ]
E ol E" 4 ] g 4 ]
2F 2 . 2 ¥
0 0 2000 4000 6000 8000 10000 0 0 2000 4000 6000 8000 10000 0 0 2000 4000 6000 8000 10000
Query : tennis final #1 : tennis semifinal #2 : cooking

#* D-Search can find similar trends in Q and #1
- “Australian Open Tennis final”
and “Australian Open Tennis semi-final”
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Case studies e He %

(4) Music Store (distribution of purchasers)

MMHHMHWHMHLA E|| ‘HHHHI .H:

0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000

Frequency

o - N w > wm
Frequency

o - N w - (8]

Frequency

o - N w - [&)]

Query : John Lennon #1 : John Lennon #2 : Nat King Cole

* D-Search can find similar purchasers groups

- the songs of the same artist are identified
as the same purchasers’ group
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Computation cost

¥ Compared with the naive approach:

- Naive
use all histogram buckets

- D-Search (basic)
use only selected buckets (largest values),
and use the multi-step sequential scan

- D-Search (enhanced)
use the SVD coefficients,
and use the multi-step sequential scan
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Computation cost

¥ Compared with the naive approach:

100000 _ |
0000 Nawﬁ e ]
i D-Search - — :
n 1 D-Search (enhanced) ——
g | oseeem
PR
—
T
s N
; 3
01F
0.01 . |
100,000 200,000 300,000 200000
Dataset size
MoCap

D-Search provides a reduction in computation time
(up to 2,300 times faster than Naive, 10 times faster than D-Search (basic))
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Computation cost

¥ Compared with the naive approach:

100000 ¢ : 100000 — :
[ Naive s [ Nawﬁ s ]
]mm ; D—Seal'ch memefime== | ]m L D_Searc RS- i
— [ D-Search (enhanced) —— oy i D-Search (enhanced) —— ]
g t0f £ w0l
R e A
£ 100 | E 100 |
g 10 E 10 |
O e ——— O L me——— [T
3 ) S 2 N -
= [ = I
01§ 0.1
0.01 L : L 0.01 L ! :
100,000 200,000 300,000 400,000 100,000 200,000 300,000 400,000
Dataset size Dataset size
EFEG Ondemand TV

D-Search provides a reduction in computation time
(up to 2,300 times faster than Naive, 10 times faster than D-Search (basic))
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Quality of proposed methods * K

Approximation Quality of SVD

- Trade-off between quality and cost

100 pr

- - - Scatter plot of computation
10 ¢ -Search = ] :
D-Search (enhanced) + ] COSt VS. apprOX. qua||ty

Error (%)

' ; - vary the number of c for

01 \ ;| each approx. technique

0.01 0.1 1
Wall clock time (ms.)

Ex. On demand TV

- SVD gives significantly lower approximation error,
for the same computation time
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Quality of proposed methods ¥ n

Effect of the multi-step sequential scan

o D-Search ==z
25§ | D-Search (enhanced) :

100000 f
10000 ¢

1000 ¢

¥ How often each
approximation was used?

100 ¢

Number of computations

10

1 s
100

Coefficients

Ex. On demand TV

D-Search efficiently prunes a large number of candidates,
which leads to a significant reduction in the search cost
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Conclusions e He %

- Addressed the problem of distribution search

- Proposed a fast and effective method to solve it
- Lower bounding KL divergence

- Multi-step sequential scan
- SVD-based approximate KL divergence

- Extended to time-series distribution mining

- Experiments show that our approach is faster
than naive implementation (up to 2,300 times)
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