
Scalable Algorithms for Distribution Search

Yasuko Matsubara
Kyoto University

y.matsubara@db.soc.i.kyoto-u.ac.jp

Yasushi Sakurai
NTT Communication Science Labs

yasushi.sakurai@acm.org

Masatoshi Yoshikawa
Kyoto University

yoshikawa@i.kyoto-u.ac.jp

Abstract

Distribution data naturally arise in countless domains,
such as meteorology, biology, geology, industry and eco-
nomics. However, relatively little attention has been paid
to data mining for large distribution sets. Given n dis-
tributions of multiple categories and a query distribution
Q, we want to find similar clouds (i.e., distributions), to
discover patterns, rules and outlier clouds. For example,
consider the numerical case of sales of items, where, for
each item sold, we record the unit price and quantity; then,
each customer is represented as a distribution of 2-d points
(one for each item he/she bought). We want to find similar
users, e.g., for market segmentation, anomaly/fraud detec-
tion. We propose to address this problem and present D-
Search, which includes fast and effective algorithms for sim-
ilarity search in large distribution datasets. Our main con-
tributions are (1) approximate KL divergence, which can
speed up cloud-similarity computations, (2) multi-step se-
quential scan, which efficiently prunes a significant number
of search candidates and leads to a direct reduction in the
search cost. We also introduce an extended version of D-
Search : (3) time-series distribution mining, which finds
similar subsequences in time-series distribution datasets.
Extensive experiments on real multi-dimensional datasets
show that our solution achieves up to 2,300 faster wall-
clock time over the naive implementation while it does not
sacrifice accuracy.

1 Introduction

Distribution data naturally arise in countless domains,
such as meteorology, biology, geology, industry and eco-
nomics. Although the datasets generated by the correspond-
ing applications continue to grow in size, a common de-
mand is to discover patterns, rules and outliers. However,
relatively little attention has been paid to data mining for
large distribution sets. Here we focus on a less-studied
problem, namely on “distribution search”. Given n distribu-
tions of multiple categories and a query distribution Q, we
want to find similar clouds (i.e., distributions), to meet the
above demand. To solve this problem, we present D-Search,
which includes fast and effective algorithms for similarity
search for large distribution sets.

We will illustrate the main intuition and motivation with

a real example. Figure 1 shows three distributions corre-
sponding to three motions. Specifically, they are the scatter
plots of left and right foot kinetic energy values. Given a
query motion, shown on the left, we would like to discover
similar objects in large distribution datasets. Figure 1 shows
the output of our approach, which successfully identify sim-
ilar distributions. For example, D-Search detects Distribu-
tion #1 similar to the query distribution (in fact, they both
correspond to “running” motions). In contrast, Distribution
#2 is not be found as a similar object (in fact, it corresponds
to a “squatting” motion).

In this paper, we propose efficient algorithms called D-
Search, which can find similar distributions in large distri-
bution datasets. We mainly focus on similarity search for
numerical distribution data to describe our approach. How-
ever, our solution, D-Search can handle categorical distri-
butions as well as numerical ones. Our upcoming algo-
rithms are completely independent of such choice.

1.1 Example domains and applications

There are many distribution search applications. In this
section, we briefly describe application domains and pro-
vide some illustrative, intuitive examples of the usefulness
of D-Search.

• Multimedia : Multimodal data mining in a multime-
dia database is a challenging topic in data mining re-
search [9, 3, 12, 7]. Multimedia data may consist of
data in different modalities, such as digital images, au-
dio, video, and text data. For example, consider mo-
tion capture datasets, which contain a list of numerical
attributes of kinetic energy values. In this case, every
motion can be represented as a cloud of hundreds of
frames, with each frame being a d-dimensional point.
For this collection of clouds, we can find similar mo-
tions without using annotations or other meta-data.

• Medical data analysis : The extraction of meaningful
information from large medical datasets is the central
theme in many medical research problems [16]. For
example, mental task classification using electroen-
cephalograms (EEG) is an approach to understanding
human brain functions. EEG signals are weak volt-
ages resulting from the spatial summation of electrical
potentials in the brain cortex, which can easily be de-

-600.0

-500.0

-400.0

-300.0

-200.0

-100.0

0.0

100.0

200.0

-1000.0-800.0 -600.0 -400.0 -200.0 0.0 200.0
-600.0

-500.0

-400.0

-300.0

-200.0

-100.0

0.0

100.0

200.0

-1000.0-800.0 -600.0 -400.0 -200.0 0.0 200.0
-600.0

-500.0

-400.0

-300.0

-200.0

-100.0

0.0

100.0

200.0

-1000.0-800.0 -600.0 -400.0 -200.0 0.0 200.0

Query (running) Distribution #1 (running) Distribution #2 (squatting)

Figure 1. Three distributions from MoCap data: they all show scatter plots of left and right foot kinetic
energy values, for different motions. The query distribution and Distribution #1 “look” more similar,
while Distribution #2 “looks” different.

tected by electrodes suitably placed on the scalp sur-
face [4, 19].

• Web service : There are numerous, fascinating appli-
cations for Web service mining. Let us assume the
web services such as an Ondemand TV service, which
records the viewing of Ondemand TV on a daily basis
of all users (e.g., the genre of a TV program, the time
the user spent on the service). Discovering clusters and
outliers in such data (which groups or communities of
users are associated with each other?) would help in
tasks such as service design and content targeting.

• E-commerce : Consider an e-commerce setting, where
we wish to find customers according to their purchas-
ing habits. Suppose that for every sale we can obtain
the time the customer spent browsing, the number of
items bought, their genres and sales price. Thus, each
customer is a cloud of 4-d points (one for each pur-
chase). The e-store would like to classify these clouds,
to do market segmentation, rule discovery (is it true
that the highest volume customers spend more time on
our web site?) and spot anomalies (e.g., identity theft).

1.2 Contributions

We introduce an efficient algorithms called D-Search,
which can find similar distributions in large distribution
datasets. The contributions are the following: (a) we exam-
ine the time and space complexity of our solutions and com-
pare them with the complexity of the naive solution. Given
n distributions of a m-bucketized histogram and a query
distribution, our algorithms require only O(n) to compute
KL divergence, instead of O(mn) the naive method re-
quired, and lead to a dramatically reduction in the search
cost. (b) Extensive experiments on real multi-dimensional
datasets shows that our method is significantly faster than
the naive method, while it does not sacrifice accuracy.
We also introduce an extended version of D-Search : (c)
time-series distribution mining, which finds similar subse-
quences in time-series distribution datasets.

The rest of the paper is organized as follows: Section 2
discusses related work. Section 3 introduces preliminary
concepts, describes the proposed method, and identifies the
main tasks of distribution search. We then explain the
techniques and constraints we use to realize efficient KL
divergence calculations. We also describe an extended ver-
sion of D-Search, namely, time-series distribution mining.
Section 4 introduces some of the applications for which our
method proves useful, and evaluates our algorithms by con-
ducting extensive experiments. Finally, Section 5 concludes
the paper.

2 Related Work

Related work falls broadly into two categories. The
first category includes work on similarity functions be-
tween distributions. The other category includes probabilis-
tic queries.

2.1 Comparing two distributions

There are several statistical methods [15] to de-
cide whether two distributions are the same (Chi-square,
Kolmogorov-Smirnoff). However, they do not give a score;
only a yes/no answer; and some of them cannot be easily
generalized for higher dimensions.

Functionals that return a score are motivated from im-
age processing and image comparisons: the so-called earth-
moving distance [17] between two images is the mini-
mum energy (mass times distance) to transform one im-
age into the other, where mass is the gray-scale value of
each pixel. For two clouds of points P and Q (= black-
and-white images), there are several measures of their dis-
tance/similarity: one alternative is the distance of the closest
pair (min-min distance); another is the Hausdorff distance
(max-min - the maximum distance of a set P , to the near-
est point in the set Q); another would be the average of all
pairwise distances among P -Q pairs. Finally, tri-plots [21]
can find patterns across two large, multi-dimensional sets
of points, although they cannot assign a distance score. The

Table 1. Symbols and definitions.

Symbol Definition
n number of distributions
m number of buckets
P, Q two histograms of numerical

and/or categorical distributions
P̂ histogram of the logarithm of P

pi, p̂i i-th bucket of P , P̂
Sp SVD coefficients of P

Ŝp SVD coefficients of P̂
spi i-th coefficient of Sp

D(P, Q) symmetric KL divergence of P and Q
dc(P, Q) lower bounding KL divergence

of P and Q with c histogram buckets
d′

c(P, Q) approximate KL divergence
of P and Q with c SVD coefficients

most suitable idea for our setting is the Kullback-Leibler
(KL) divergence (see Equation (1)), which gives a notion of
distance between two distributions. The KL divergence is
commonly used in several fields to measure the distance be-
tween two PDFs (probability density functions, as in, e.g.,
information theory [22], pattern recognition [18, 10]).

2.2 Probabilistic queries

A remotely related problem is the problem of proba-
bilistic queries. Cheng et al. [5] classifies and evaluates
probabilistic queries over uncertain data based on models
of uncertainty. An indexing method for regular probabilistic
queries is then proposed in [6]. In [20] Tao et al. presents an
algorithm for indexing uncertain data for any type of PDFs.
Distributions for our work can be expressed by PDFs as well
as histograms. However, the main difference between our
study and [5] is that our work focuses on comparing differ-
ences between distributions, while Cheng et al.s’ work fo-
cuses on locating areas in distributions that satisfy a given
threshold.

Distribution search and mining are problems that, to our
knowledge, have not been addressed. The distance func-
tions among clouds that we mentioned earlier either expect
a continuous distribution (like a probability density func-
tion), and/or are too expensive to compute.

3 Proposed Method

We now present our distribution search algorithms. In
this section, we introduce some background concepts, de-
fine the problem of distribution search, and then propose
algorithms for solving it. We also introduce time-series dis-
tribution search, as an extended version of D-Search.

3.1 Preliminaries

Given two distributions P and Q, there are several mea-
sures of their distance/similarity, as we described in the lit-
erature survey section. However, the above distances suffer
from one or more of the following drawbacks: they are ei-
ther too fragile (like the min-min distance); and/or they do
not take all the available data points into account; and/or
they are too expensive to compute. Thus we propose to
use information theory as the basis, and specifically the
Kullback-Leibler (KL) divergence.

Let us assume for a moment that the two clouds of points
P and Q consist of samples from two (continuous) proba-
bility density functions P and Q, respectively. If we knew
P and Q we could apply the continuous version of the KL
divergence; however, we do not. Thus we propose to bucke-
tize all our distributions using a grid with m grid-cells, and
employing the discrete version of the KL divergence, de-
fined as follows:

DKL(P,Q) =
m∑

i=1

pi · log
(

pi

qi

)
(1)

where pi, qi are the i-th buckets of distributions P and Q,
respectively. That is,

∑m
i=1 pi =

∑m
i=1 qi = 1.

The above definition is asymmetric, and thus we propose
to use the symmetric KL divergence DSKL:

DSKL(P,Q) = DKL(P,Q) + DKL(Q,P)

=
m∑

i=1

(pi − qi) · log
(

pi

qi

)
. (2)

In the rest of the paper, we shall simply denote DSKL(P,Q)
as D(P,Q).

There is a subtle point we need to address. The KL diver-
gence expects non-zero values, however, histogram buck-
ets corresponding to sparse area in multi-dimensional space
may take a zero value. To avoid this, we introduce the
Laplace estimator [13, 11]:

pi =
p′i + 1

|P ′| + m
· |P ′|. (3)

where p′i is the original histogram value (i = 1, . . . ,m) and
pi is the estimate of p′i. |P ′| is the total number of points
(i.e., |P ′| =

∑m
i=1 p′i).

Another solution is that we could simply treat empty
cells as if they had “minimum occupancy” of ε. The value
for “minimum occupancy” should be ε << 1/|P ′|. We
chose the former since it provides better search accuracy, al-
though our algorithms are completely independent of such
choices.

3.2 D-Search

The first problem we want to solve is as follows:

Problem 1 (Distribution search) Given n distributions of
an m-bucketized histogram and a query distribution Q, find
the top k distributions that minimize the KL divergence.

This involves the following sub-problems, which we ad-
dress in each of the upcoming subsections. (a) How can
we represent a distribution of histogram compactly, and ac-
celerate distance calculations? (b) How can we prune a sig-
nificant number of search candidates and achieve a direct
reduction in the search cost? (c) What is the space and time
complexity of our method?

3.2.1 Lower bounding KL divergence

We described how to measure the distance between distri-
butions. The first question is how to store the distribution
information, in order to minimize space consumption and
response time. Recall that for each m-bucketized distribu-
tion P , we could keep the fraction of pi that fall into the i-th
bucket.

The naive solution is exactly to maintain an m-
bucketized histogram for each distribution, and to use such
histograms to compute the necessary KL divergences, and
eventually to run the required mining algorithm (e.g., the
nearest neighbor search).

However, this may require too much space, especially
for higher dimensions. One solution would be to use the
top c most populated buckets, in the spirit of ’high end his-
tograms’. The reason against it is that we may ignore some
sparse-populated bins, whose logarithm would be important
for the KL divergence.

For the definition, we compute the KL divergence with c
histogram values, that is, we compute (pi − qi) · log(pi/qi)
if we select either pi or qi, otherwise, we can simply ignore
these values since they are very close to zero. Consider that
the sequence describing the positions of the top c values
of P and Q is denoted as Ipq. We then obtain the lower
bounding KL divergence of P and Q:

dc(P,Q) =
∑

i∈Ipq

(pi − qi) · log
(

pi

qi

)
. (4)

Lemma 1 For any distributions, the following inequality
holds.

D(P,Q) ≥ dc(P,Q). (5)

Proof: From the definition,

D(P,Q) =
m∑

i=1

(pi − qi)(log pi − log qi).

Since ∀i, (pi − qi)(log pi − log qi) ≥ 0, for any c value
(1 ≤ c ≤ m), we have

D(P,Q) = dm(P,Q) ≥ dc(P,Q), (6)

which completes the proof. �

Algorithm 1 D-Search(Q, k)
/* N is the sorted nearest neighbor list */
initialize N
for i := 1 to h do
N = MultiStepScan(N , Q, k, ci)

end for
for all P ∈ database do

compute D(P,Q)
if D(P,Q) ≤ Dcb then

add P to N and update Dcb

end if
end for
return N

Algorithm 2 MultiStepScan(N , Q, k, c)
/* Napp is the sorted nearest neighbor list */
initialize Napp

/* compute approximate KL divergence */
for all P ∈ database do

compute dc(P,Q)
if dc(P,Q) ≤ dcb then

add P to Napp and update dcb

end if
end for
/* compute exact KL divergence */
for all P ∈ Napp do

compute D(P,Q)
if D(P,Q) ≤ Dcb then

add P to N and update Dcb

end if
end for
/* prune the search candidates */
for all P ∈ database do

if dc(P,Q) > Dcb then
remove P from database

end if
end for
return N

3.2.2 Multi-Step Sequential Scan

Instead of operating on lower bounding KL divergence
with c buckets of a single computation, we propose to use
multiple computations, trying to balance to a trade-off be-
tween accuracy and comparison speed. As the number of
buckets c increases, the lower bounding KL divergence be-
comes tighter, but the computation cost also grows. Accord-
ingly, we gradually increase the number of buckets, and thus
improve the accuracy of the approximate distance, during
the course of query processing.

Algorithm 1 shows our proposed method, which uses the
lower bounding KL divergence. In this algorithm N shows
the k-nearest neighbor list, and Dcb shows the exact KL di-
vergence of the current k-th nearest neighbor (i.e., Dcb is
the current best). As the multi-step scan, the algorithm uses
breadth-first traversal, and it prunes unlikely distributions at
each step, as follows:

1. We first obtain the set of k-nearest neighbor candidates
(Napp) based on the approximate KL divergence (i.e.,
the lower bounding KL divergence) with the top c his-
togram buckets.

2. We then compute the exact KL divergence between
candidate distributions (Napp) and the query distribu-
tion. When we find a distribution whose exact KL di-
vergence is smaller than Dcb we update the candidate
(N).

3. For all distributions, if the lower bounding KL diver-
gence is larger than Dcb, we exclude the distribution
since it cannot be one of the k-nearest neighbors.

We compute h steps that form an arithmetic progression:
c = {c1, 2c1, 3c1, ..., h · c1}, or more generally, for steps of
ci := i · c1 for i = 1, 2, ..., h.

The search algorithm gradually enhances the accuracy
of the lower bounding KL divergence and prunes dissimilar
distributions to reduce the computation cost of KL diver-
gence. Finally, we compute the exact KL divergences be-
tween distributions, which are not pruned in any steps, and
the query distribution.

Lemma 2 For any distributions, D-Search guarantees ex-
actness when finding distributions that minimize the KL di-
vergence for the given query distribution.

Proof:
From Lemma 1, we obtain D(P,Q) ≥ dc(P,Q) for any
granularity, for any distribution. For N , Dcb ≥ dc(P,Q)
holds. In the search processing, since Dcb ≤ D(P,Q),
the lower bounding KL divergence of N is less than Dcb.
The algorithm discards P if (and only if) dc(P,Q) > Dcb.
Therefore, the final k-nearest neighbors in N cannot be
pruned during the search processing. �

Although we described only a search algorithm for k-
nearest neighbor queries, D-Search can be applied to range
queries. It utilizes the current k-th nearest neighbor distance
Dcb for k-nearest neighbor queries, and the search range is
used to handle range queries.

3.3 Enhanced D-Search

We described the basic version of D-Search in the pre-
vious subsection, which guarantees the exactness for dis-
tribution search while the algorithm efficiently finds distri-
butions that minimize the KL divergence. The question is
what can we do in the highly likely case that the users need
more efficient solution while they practically require high
accuracy, not a theoretical guarantee. As the enhanced ver-
sion of D-Search, we propose to compress the histograms
using SVD (Singular Value Decomposition), and then keep-
ing some appropriate coefficients. As we show later, this
decision significantly improves both space as well as re-
sponse time, with negligible effects on the mining results.
The only tricky aspect is that if we just keep the top c SVD
coefficients, we might not get good accuracy for the KL di-
vergence. This led us to the design of our method that we

describe next. The main idea behind SVD is to keep the top
c SVD coefficients for the histogram P (m) = (p1, . . . pm),
as well as the top c coefficients for the histogram of the log-
arithms (log p1, . . . log pm). We elaborate next.

Let P̂ = (p̂1, . . . , p̂m) be the histogram of the logarithms
of P = (p1, . . . , pm), i.e., p̂i = log pi. Let Sp and Ŝp be
the SVD coefficients of P and P̂ , respectively. We present
our solution using Sp and Ŝp.
Proposed Solution: We represent each distribution as a
single vector; we compute Sp and Ŝp from P and P̂ for
each distribution, and then we compute the necessary KL
divergences from the SVD coefficients. Finally, we apply
a search algorithm (e.g., the nearest neighbor search) to the
SVD coefficients.

The cornerstone of our method is Theorem 1, which ef-
fectively states that we can compute the symmetric KL di-
vergence using the appropriate SVD coefficients.

Theorem 1 Let Sp = (sp1, . . . , spm) and Ŝp =
(ŝp1, . . . , ŝpm) be the SVD coefficients of P and P̂ , respec-
tively. Then we have

D(P,Q) =
1
2

m∑
i=1

fpq(i) (7)

fpq(i) = (spi − ŝqi)
2 + (sqi − ŝpi)

2

−(spi − ŝpi)
2 − (sqi − ŝqi)

2.

Proof: From the definition,

D(P,Q) =
m∑

i=1

(pi − qi) · log
(

pi

qi

)
.

Then we have

D(P,Q) =
m∑

i=1

(pi − qi) · (log pi − log qi)

=
1
2

m∑
i=1

fpq(i).

In light of Parseval’s theorem, this completes the proof. �
The KL divergence can be obtained from Equation (7)

using the SVD calculated from histogram data. The number
of buckets of a histogram (i.e., m) could be large, especially
for high-dimensional spaces, while the most of buckets may
be empty. The justification of using SVD is that very few
of the SVD coefficients of real datasets are often signifi-
cant and the majority are small, thus, the error is limited
to a very small value. When calculating the SVD from the
original histogram, we select a small number of SVD coef-
ficients (say c coefficients) that have the largest energy from
the original SVD array. This indicates that these coefficients
will yield the lowest error among all SVD.

For Equation (7), we compute the KL divergence with
the top c SVD coefficients, that is, we compute fpq(i) if

0.5
0.0 0.5

0.0

0.02

0.5
0.0 0.5

0.0

0.02

0.5
0.0 0.5

0.0

0.02

(a) c = 1 (b) c = 16 (c) Original data

Figure 2. Approximation of probability distribution from running motion: three probability distribu-
tions are shown here, from running motion of MoCap, which is shown in Figure 1 (Query distribution).
They are approximations of c = 1, c = 16 and the original data, respectively.

we select either spi or sqi (ŝpi or ŝqi), otherwise, we can
simply ignore these coefficients since they are very close to
zero. Thus, we obtain the approximate KL divergence of P
and Q:

d′c(P,Q) =
1
2

c∑
i=1

fpq(i). (8)

Figure 2 shows the SVD-based approximation of prob-
ability distribution from MoCap. It is represented by a
10×10 bucketized histogram (i.e. full coefficients c = m =
100). The numerical rank, however, is much lower. As well
as the basic version of D-Search described in Section 3.2,
the enhanced version also uses the algorithm of multi-step
scan (see Algorithms 1 and 2), which efficiently finds simi-
lar distributions using their SVD-based approximate KL di-
vergences. Figure 2 shows the gradual ‘refinement’ of the
approximation. In Figure 2 (a), we compute the approxi-
mate distance from the coarsest version of a distribution P
as the first step of the refinement. If the distance is greater
than the current k-th nearest neighbor distance (i.e., Dcb),
we can prune P . Otherwise, we compute the distance from
the more accurate version as the second refinement step (see
Figure 2 (b)). We compute the exact distance from the orig-
inal representation of P only if the approximate distance
does not exceed Dcb (see Figure 2 (c)).

3.4 Theoretical Analysis

In this section we examine the time and space complex-
ity of our approach and compare it with the complexity of
the naive solution. Recall that n is the number of input dis-
tributions, m is the number of buckets that we impose on
the address space, and c is the number of buckets or SVD
coefficients that our methods keeps.

3.4.1 Space Complexity

Naive method

Lemma 3 The naive method requires O(mn) space.

Proof: The naive method requires the storage of m-
bucketized histograms of n distributions, hence the com-
plexity is O(mn). �

Proposed Solution (D-Search)

Lemma 4 The proposed algorithms require O(m + n)
space.

Proof: D-Search initially allocates memory to store his-
togram of m buckets. The basic version of D-Search selects
the top c most populated buckets, and keeps them. The en-
hanced version calculates the SVD coefficients and keeps
only the top c coefficients. Then they reduce the number of
buckets (or SVD coefficients) to O(c) and allocate O(cn)
memory for computing the criterion. However, c is nor-
mally a very small constant, which is negligible. We sum
up all the allocated memory and we obtain a space com-
plexity of O(m + n). �

3.4.2 Time Complexity

Naive method

Lemma 5 The naive method requires O(mn) time to com-
pute KL divergence for the k-nearest neighbor search.

Proof: Computing the KL divergence requires O(m) time
for every distribution pair. For n distributions, it would take
O(mn) time. �

Proposed Solution (D-Search)

Lemma 6 The proposed algorithms require O(n) time
to compute approximate KL divergence for the k-nearest
neighbor search.

Proof: The calculation of the nearest neighbor search re-
quires O(cn) time. We handle c histogram values (or SVD
coefficients) for each distribution. This is repeated for n
number of input distributions. Again, since c is a small con-
stant value, the time complexity distribution search can be
simplified to O(n). �

Figure 3. Time-series distribution search
(multiple windows, w0 = 4, W = 2).

3.5 Time-series distribution mining

Many data sources are observations that evolve over time
leading to time-series distribution data. For example, fi-
nancial datasets depict the prices of every stock over time,
which is a common example of time-series distribution data.
Reporting meteorological parameters such as temperature
readings from multiple sensors gives rise to a numerical
distribution sequence. Business warehouses represent time-
series categorical distribution sequences such as the sale of
every commodity over time. Time-series distribution data
depict the trends in the observed pattern over time, and
hence capture valuable information that users may wish to
analyze and understand.

In this section we introduce an extended version of D-
Search, which can find similar subsequences in time-series
distribution datasets. The problem we propose and solve is
as follows:

Problem 2 (Time-series distribution mining) Given
time-series distribution datasets and query distribution Q,
find subsequences whose distribution minimizes the KL
divergence.

Consider the time ordered series distribution of d-
dimensional points. Distributions performed at different
times or by different subjects have different durations, and
data sampling rates can also be different at various times.
We should solve the following question: How do we effi-
ciently find the similar subsequences for multiple windows?
In our approach, we choose a geometric progression of win-
dows sizes [14]: rather than estimating the patterns for win-
dows of lengths w0, w0 +1, w0 +2, w0 +3, ..., we estimate
them for windows of w0, 2w0, 4w0, ..., or, more generally,
for windows of length wl := w0 · W l for l = 0, 1, 2,
Thus, the size of the window set W we need to examine is
dramatically reduced.

The main idea of our approach is shown in Figure 3. We
compute the KL divergence of data points falling within a

window, and organize all the windows hierarchically. In
this case, query distribution in Figure 3 is similar to P(8,12),
P(12,16) at the level 0 (l = 0), and, P(8,16) at the level 1
(l = 1), which are shaded in Figure 3.

With our method, we can also optimally use the sliding
window, which is used as general model in time-series pro-
cessing [23, 8]. By using the sliding window, we can find
similar sequences, which are delayed less than the basic
window time.

4 Experimental Evaluation

To evaluate the effectiveness of D-Search, we carried out
experiments on real datasets. Our experiments were con-
ducted on an Intel Core 2 Duo 1.86GHz with 4GB of mem-
ory, running Linux.

The experiments were designed to answer the following
questions:

1. How successful is D-Search in capturing time-series
distribution patterns?

2. How does it scale with the sequence lengths n in terms
of the computational time?

3. How well does it approximate the KL divergence?

4.1 Pattern discovery in time-series distri-
butions

In this section we describe some of applications where
D-Search proves useful. Figure 4 shows how D-Search
finds similar distributions. Note that, for all experimental
results, the enhanced version perfectly captures all similar
distributions, that is, the output of the enhanced version is
exactly the same as that of the naive method and the basic
version.

MoCap

This dataset is the subject numbers 7, 13, 14, 16 and 86,
taken from the CMU motion capture database [1]. In our
framework, a motion is represented as a distribution of hun-
dreds of frames, with each frame being a d-dimensional
point. It contains 26 sequences, each consisting of approx-
imately 8000 frames. Each sequence is a series of simple
motions. Typical human activities are represented, such as
walking, running, exercising, twisting, jogging and jump-
ing.

The results on this dataset were already presented in Sec-
tion 1. As shown in Figure 1, D-Search can successfully
identify similar distributions.

EEG

This dataset was taken from a large study that examined
the EEG correlates of the genetic predisposition to alco-
holism downloaded from the UCI website [2]. It contains
measurements from 64 electrodes placed on subjects’ scalps

-30.0

-20.0

-10.0

0.0

10.0

20.0

30.0

-40.0 -20.0 0.0 20.0 40.0
-30.0

-20.0

-10.0

0.0

10.0

20.0

30.0

-40.0 -20.0 0.0 20.0 40.0
-30.0

-20.0

-10.0

0.0

10.0

20.0

30.0

-40.0 -20.0 0.0 20.0 40.0

Query (alcoholic) Distribution #1 (alcoholic) Distribution #2 (control)
(a) EEG

 0

 2

 4

 6

 8

 10

 0 2000 4000 6000 8000 10000

F
re

qu
en

cy

User

 0

 2

 4

 6

 8

 10

 0 2000 4000 6000 8000 10000

F
re

qu
en

cy

User

 0

 2

 4

 6

 8

 10

 0 2000 4000 6000 8000 10000

F
re

qu
en

cy

User

Query (tennis final) Distribution #1 (tennis semi-final) Distribution #2 (cooking)
(b) Ondemand TV

 0

 1

 2

 3

 4

 5

 0 10000 20000 30000 40000 50000

F
re

qu
en

cy

User

 0

 1

 2

 3

 4

 5

 0 10000 20000 30000 40000 50000

F
re

qu
en

cy

User

 0

 1

 2

 3

 4

 5

 0 10000 20000 30000 40000 50000

F
re

qu
en

cy

User

Query (John Lennon) Distribution #1 (John Lennon) Distribution #2 (Nat King Cole)
(c) MusicStore

Figure 4. Discovery of subsequences in EEG, Ondemand TV, and MusicStore . We choose window
sizes (i.e., w0) 1 sec., 3 hours, 3 hours on the lowest level for these datasets.

0.01

0.1

1

10

100

1000

10000

100000

400,000300,000200,000100,000

W
al

l c
lo

ck
 ti

m
e

(s
ec

.)

Dataset size

Naive
 D-Search

D-Search (enhanced)

0.01

0.1

1

10

100

1000

10000

100000

400,000300,000200,000100,000

W
al

l c
lo

ck
 ti

m
e

(s
ec

.)

Dataset size

Naive
 D-Search

D-Search (enhanced)

0.01

0.1

1

10

100

1000

10000

100000

400,000300,000200,000100,000

W
al

l c
lo

ck
 ti

m
e

(s
ec

.)

Dataset size

Naive
 D-Search

D-Search (enhanced)

MoCap EEG Ondemand TV

Figure 5. Scalability: wall clock time vs. dataset size n (= number of distributions). D-Search can be
up to 2,300 times faster than the naive implementation.

0.01

0.1

1

10

100

0.01 0.1 1

Er
ro

r (
%

)

Wall clock time (ms.)

 D-Search
D-Search (enhanced)

Figure 6. Approximation quality: relative ap-
proximation error vs. wall clock time.

 1

 10

 100

1000

10000

100000

20015010050

N
um

be
r o

f c
om

pu
ta

tio
ns

Coefficients

 D-Search
D-Search (enhanced)

Figure 7. Frequency of approximation use:
number of computations vs. coefficients.

that were sampled at 256 Hz (3.9-msec epoch) for 1 second,
that is, the length of each sequence is 256. There were two
groups of subjects: alcoholic and control.

Our approach is also useful for classification. Fig-
ure 4 (a) shows that D-Search can classify the query
distribution and Distribution #1, (a subsequence from
co2a0000364 of 36-37sec., and a subsequence from
co3a0000451 of 56-57sec., respectively), into the same
group (in fact, they both corresponded to “alcoholic”). In
contrast, Distribution #2, which is a subsequence from
co2c0000364 of 75-76sec., go to another group (in fact, it
belongs to “control”).

Ondemand TV

This dataset is from the Ondemand TV service of 13,231
programs that users viewed in a 6-month timeframe (from
14th May. 2007 to 15th Nov. 2007). We randomly select
10,000 anonymous users from the dataset. Each distribution
sequence contains a list of attributes (e.g., content ID, the
date the user watched the content, the ID of the user who
watched the content).

As shown in Figure 4 (b), our method can find simi-
lar Ondemand TV content. For example, D-Search found
that Distribution #1 was a similar distribution, and Distri-
bution #2 was a dissimilar distribution to the query distri-
bution. In fact, query distribution, Distribution #1 and Dis-
tribution #2 are “Sports: Australian Open Tennis Champi-
onships 2007 Women’s Final (from 1st Feb. 2007 to 1st
Apr. 2008)”, “Sports: Australian Open 2007 Tennis Cham-
pionships Women’s Semifinal (from 1st Feb. 2007 to 1st
Apr. 2008)”, “Cooking: Oliver’s Twist No.1 (from 23rd
Oct. 2006 1st Aug. 2008”)

MusicStore

This dataset consists of the purchasing records from Music-
Store obtained over 16 months, (from 4th Apr. 2005 to 1st
Jul. 2006). Each record has 3 attributes: user ID (50,000
anonymous, randomly selected users), music ID (43,896
items of music), date of purchase/sale.

Figure 4 (c) shows that D-Search can identify similar
user groups. For example, D-Search found that query distri-
bution was similar to Distribution #1. In fact, the query dis-

tribution and Distribution #1 are histograms of purchasers
of John Lennon’s “Woman”, and John Lennon’s “Love”, re-
spectively. In contrast, Distribution #2 was not found to be
as a similar distribution. In fact, Distribution #2 was a pur-
chaser histogram of Nat King Cole’s “L-O-V-E”.

4.2 Performance

To evaluate the search performance, we compared the
basic version and the enhanced version with the naive ap-
proach. We present experimental results on search perfor-
mance for when the data set size varies.

Figure 5 compares our algorithms with the naive method
in terms of computation cost. Database size varied from
100,000 to 400,000. Note that the y-axis uses logarithmic
scale. We conducted this experiment with a histogram of
m = 10, 000, starting coefficient c1 = 50, and step h = 4.
Each result reported here is the average of 100 trials.

There, we show the wall-clock time versus the database
size n for three datasets. D-Search provides a dramatic
reduction in computation time. Specifically, the enhanced
(basic) version achieves up to 2,300 times (230 times) faster
than the naive implementation in this experiment.

In addition to high-speed processing, our method
achieves high accuracy; the output of the enhanced version
is exactly the same as those of the naive algorithm and the
basic version.

4.3 Analysis of proposed algorithms

D-Search exploits multiple computations for the approx-
imation of KL divergence. In this section we discuss the
approximation quality of each granularity.

Figure 6 shows scatter plots of the computation cost ver-
sus the approximation quality. The x-axis shows the com-
putation cost for KL divergences, and the y-axis shows their
relative approximation error rate. We compare the basic ver-
sion and the enhanced version in the figure. The figure im-
plies a trade-off between quality and cost, but the results
of the enhanced version are close to the lower left for both
datasets, which means that the enhanced version provides
benefit in terms of quality and cost.

Figure 7 shows how often each approximation was used
in the basic version and the enhanced version for a dataset

size of 100,000. As shown in the figure, most of the data
sequences are excluded with the approximations of c =
{50, 100, 150, 200}. The coarser approximation provides
reasonable approximation quality, and its calculation speed
is high. On the other hand, although the approximation with
higher granularity is not very fast, it offers good approx-
imation quality. Accordingly, using approximations with
various granularities offers significant advantages in terms
of approximation quality and calculation speed. Our algo-
rithms, especially the enhanced version efficiently prunes a
large number of search candidates, which leads to a signifi-
cant reduction in the search cost.

5 Conclusion

We introduced the problem of distribution search, and
proposed D-Search, which includes fast and effective algo-
rithms, as its solution. D-Search has all the desired charac-
teristics:

• High-speed search: Instead of O(mn) time the naive
solution requires, our solution needs O(n) time to
compute distance for distribution search.

• Exactness: It guarantees no false dismissals.

• It can be extended to time-series distribution mining,
which can find similar subsequences in time-series dis-
tribution datasets.

Our experimental results reveal that D-Search is signif-
icantly faster than the naive method, and occasionally up
to 2,300 times faster while it perfectly captures all similar
distributions. Furthermore, our algorithms can be extended
to time-series distribution mining. In fact, we present case
studies on real datasets and demonstrate the effectiveness
of our approach in discovering patterns among time-series
distribution datasets. We believe that the addressed prob-
lem and our solution will be of fundamental interest in data
mining.

References

[1] CMU Graphics Lab Motion Capture Database.
http://mocap.cs.cmu.edu/.

[2] UCI Machine Learning Repository.
http://archive.ics.uci.edu/ml/.

[3] J. Barbic, A. Safonova, J.-Y. Pan, C. Faloutsos, J. K. Hod-
gins, and N. S. Pollard. Segmenting motion capture data
into distinct behaviors. In Graphics Interface, pages 185–
194, 2004.

[4] S. D. Bay, D. F. Kibler, M. J. Pazzani, and P. Smyth. The uci
kdd archive of large data sets for data mining research and
experimentation. In SIGKDD Explorations, pages 81–85,
2000.

[5] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Evaluating
probabilistic queries over imprecise data. In Proceedings of
ACM SIGMOD, pages 551–562, San Diego, California, June
2003.

[6] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vitter. Ef-
ficient indexing methods for probabilistic threshold queries
over uncertain data. In Proceedings of VLDB, pages 876–
887, Toronto, Canada, August/September 2004.

[7] S. Fischer, R. Lienhart, and W. Effelsberg. Automatic recog-
nition of film genres. In ACM Multimedia, pages 295–304,
1995.

[8] L. Gao and X. S. Wang. Continuous similarity-based queries
on streaming time series. In IEEE Trans. Knowl. Data Eng.
(TKDE), pages 1320–1332, 2005.

[9] Z. Guo, Z. Zhang, E. P. Xing, and C. Faloutsos. Enhanced
max margin learning on multimodal data mining in a multi-
media database. In KDD, pages 340–349, 2007.

[10] X. Huang, S. Z. Li, and Y. Wang. Jensen-shannon boost-
ing learning for object recognition. In Proceedings of IEEE
Computer Society International Conference on Computer
Vision and Pattern Recognition (CVPR), volume 2, pages
144–149, 2005.

[11] Y. Ishikawa, Y. Machida, and H. Kitagawa. A dynamic
mobility histogram construction method based on markov
chains. In Proceedings of Int. Conf. on Statistical and Sci-
entific Database Management (SSDBM), pages 359–368,
2006.

[12] C. Li, P. Zhai, S.-Q. Zheng, and B. Prabhakaran. Segmenta-
tion and recognition of multi-attribute motion sequences. In
ACM Multimedia, pages 836–843, 2004.

[13] C. D. Manning and H. Schütze. Foundations of Statistical
Natural Language Processing. The MIT Press, 1999.

[14] S. Papadimitriou and P. S. Yu. Optimal multi-scale patterns
in time series streams. In SIGMOD, pages 647–658, 2006.

[15] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery. Numerical Recipes in C. Cambridge University
Press, 2nd edition, 1992.

[16] M. L. Raymer, T. E. Doom, L. A. Kuhn, and W. F. Punch.
Knowledge discovery in medical and biological datasets us-
ing a hybrid bayes classifier/evolutionary algorithm. In
IEEE Transactions on Systems, pages 802–813, 2003.

[17] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s
distance as a metric for image retrieval. Int. J. Comput. Vi-
sion, 40(2):99–121, 2000.

[18] Z. Sun. Adaptation for multiple cue integration. In Pro-
ceedings of IEEE Computer Society International Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
volume 1, pages 440–445, 2003.

[19] P. Sykacek and S. J. Roberts. Adaptive classification by vari-
ational kalman filtering. In NIPS, pages 737–744, 2002.

[20] Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, and
S. Prabhakar. Indexing multi-dimensional uncertain data
with arbitrary probability density functions. In Proceed-
ings of VLDB, pages 922–933, Trondheim, Norway, Au-
gust/September 2005.

[21] A. Traina, C. Traina, S. Papadimitriou, and C. Faloutsos.
Tri-plots: Scalable tools for multidimensional data mining.
KDD, Aug. 2001.

[22] J.-P. Vert. Adaptive context trees and text clustering.
IEEE Transactions on Information Theory, 47(5):1884–
1901, 2001.

[23] Y. Zhu and D. Shasha. Statstream: Statistical monitoring
of thousands of data streams in real time. In VLDB, pages
358–369, 2002.

