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Motivation

« HMM(Hidden Markov Model)

— Mental task classification

e Understand human brain functions with EEG signals
— Biological analysis

* Predict organisms functions with DNA sequences

— Many other applications

* Speech recognition, image processing, etc

e (Goal

— Fast and exact identification of the highest-likelihood
model for large datasets



Mini-introduction to HMM

e Observation sequence X =(x,,x,,---,x,) is a

probabilistic function of states

n

* Consists of the three sets of parameters:
— Initial state probability : z7={r,} (1<i<m)
 State u; at time =1
— State transition probability: g = {aij} (1<i,j<m)
e Transition from state ¥; to Y;
— Symbol probability: b(v)={p.(v)} (1<i<m)

¢ Output symbol v 1n state v,



Mini-introduction to HMM

« HMM types
— Ergodic HMM

* Every state can be reached from every other state

— Left-right HMM

 Transitions to lower number states are prohibited
* Always begin with the first state

 Transition are limited to a small number of states
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Ergodic HMM Left-right HMM




Mini-introduction to HMM (

* Viterbi path 1n the trellis structure

— Trellis structure: states lie on the vertical axis, the
sequence 1s aligned along the horizontal axis

— Viterb1 path: state sequence which gives the likelithood

Viterbi path

Trellis structure



Mini-introduction to HMM (\

* Viterbi algorithm
— Dynamic programming approach
— Maximize the probabilities from the previous states

P =max(p,)
_ glj%)ns(pj(t—l) 'aji)'bi (xz) (2 SEs n)
. 7T 'bz'(xl) (t - 1)

P;; : the maximum probability of state U, at time ¢



Problem Definition (\

* (G1ven

— HMM dataset

— Sequence X = (xl, Xy, xn) of arbitrary length
* Find

— Highest-likelihood model, estimated with respect to X,
from the dataset




Why not ‘Naive’

 Naive solution

1. Compute the likelihood for every model using the Viterbi

algorithm

2. Then choose the highest-likelihood model

But..

— High search cost: O(nmz) time for every model

 Prohibitive for large HMM datasets

m: # of states
n: sequence length of X




Our Solution, SPIRAL (\

* Requirements:

— High-speed search
« Identify the model efficiently

— Exactness

« Accuracy 1s not sacrificed

— No restriction on model type

» Achieve high search performance for any type of models



Likelithood Approximation

Reminder: Naive
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Likelithood Approximation (\

* Create compact models (reduce the model size)
— For given m states and granularity g,
— Create m/g states by merging ‘similar’ states

®)
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m/g
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Likelithood Approximation

» Use the vector F; of state u, for clustering

.bi(vl)’”.9bi(vs))

mi?d

F, :(ﬂi;ailn'”aa'

im?

alij...ja

s: number of symbols

* Merge all the states u, in a cluster C and create a
new state u

* Choose the highest probability among the

probabilities of u, Obtain the upper
T :magc(ﬁ.) dg; = max (al.j) bounding likelihood

i
u;eC,u;¢C

o ' '
a.. = max (a,) a'.= max (a..) b.(v)=max(b.(v))
cc u; u,eC ik /¢ u;eC,u;¢C JI ¢ u;eC :

)
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Likelithood Approximation (\

« Compute approximate likelthood P’ from the
compact model

. {llgiln)q('(p;(”) -a;.l.)- bl(x,) (2<t<n)
YAl ba) (t=1) . maximum probability of states
* Upper bounding likelithood
— For approximate likelihood P, P'> P holds

— Exploit this property to guarantee exactness in search
processing

\
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Likelithood Approximation

Advantages
* The best model can not be pruned

— The approximation gives the upper bounding
likelithood of the original model

* Support any model type

— Any probabilistic constraint 1s not applied to the
approximation

)
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Multi-granularities

* The likelithood approximation has the trade-off
between accuracy and computation time

— As the model size increases, accuracy improves

— But the likelihood computation cost increases

* Q: How to choose granularity g ?

)
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Multi-granularities

* The likelithood approximation has the trade-off
between accuracy and computation time

— As the model size increases, accuracy improves

— But the likelihood computation cost increases
* Q: How to choose granularity g ?

* A: Use multiple granularities

— h+1 (h = \_log2 mj ) distinct granularities that form a
geometric progression g.=2' (i=0,1,2,...,h)

—=Geometrically increase the model size
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Multi-granularities {

« Compute the approximate likelihood P’ from the
coarsest model as the first step

— Coarsest model has |m/2" |(=1) states

e Prune the model if P’ < 8, otherwise
@ : threshold
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Multi-granularities \

« Compute the approximate likelihood P’ from the
second coarsest model

— Second coarsest model has|m/2"" | states
* Prune the model if P' <6

O O O O
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Multi-granularities \

e Threshold &

— Exploit the fact that we have found a good model of
high likelihood

0 : exact likelihood of the best-so-far candidate during
search processing

— @ is updated and increases when promising model is
found

— Use @ for model pruning

\
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Multi-granularities

« Compute the approximate likelihood P’ from the

second coarsest model

— Second coarsest model has|m/2"" | states

e Prune the model if P' <6 , otherwise
— @ : exact likelihood of the best-so-far candidate

@
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Multi-granularities \

« Compute the likelihood P’ from more accurate
model

e Prune the model if P' <8
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Multi-granularities

* Repeat until the finest granularity (the original
model)

» Update the answer candidate and best-so-far
likelihood if P =6

s

\
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Multi-granularities

* Optimize the trade-off between accuracy and
computation time

— Low-likelihood models are pruned by coarse-grained
models

— Fine-grained approximation is applied only to high-
likelthood models
 Efficiently find the best model for a large dataset

— The exact likelihood computations are limited to the
minimum number of necessary
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Transition Pruning

* Trellis structure has too many transitions
* Q: How to exclude unlikely paths
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Transition Pruning (

* Trellis structure has too many transitions
* Q: How to exclude unlikely paths
e A: Use the two properties

— Likelihood 1s monotone non-increasing (likelihood computation)

— Threshold 1s monotone non-decreasing (search processing)
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Transition Pruning .

4

 In likelihood computation, compute the estimate e,

e, =1 pit.(amaX)n_t.ﬁbmax(xj) (létén—l)

it Jj=t+1

\pin (t = n)

where a.. = max (a.. ) , bmax (v) = max bl. (v)

1<i,j<m Y 1<i<m

— e, . conservative estimate of the likelthood p,, of state
u; at time ¢

* If ¢, <@, prune all paths that pass through u; at ¢
— @ : exact likelihood of the best-so-far candidate
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Transition Pruning

e Terminate the likelithood computation

if all the paths are excluded
 Efficient especially for long sequences
* Applicable to approximate likelihood computation

)
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Accuracy and Complexity (

 SPIRAL needs the same order of memory space,
while can be up to m*times faster

Complexity
Accuracy ——
Memory Space Computation time
Viterbi O(nmz)
Guarantee exactness O(m2 + ms)
At least O(n)
SPIRAL
At most O(nmz)




Experimental Evaluation (\

e Setup
— Intel Core 2 1.66GHz, 2GB memory

e Datasets
— EEG, Chromosome, Traffic

e Evaluation
— Mainly computation time
— Ergodic HMM
— Compared the Viterbi algorithm and Beam search

~» Beam search: popular technique, but does not guarantee
exactness

\
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Experimental Evaluation

» Evaluation
— Wall clock time versus number of states
— Wall clock time versus number of models
— Effect of likelihood approximation

— Effect of transition pruning
— SPIRAL vs Beam search
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Experimental Evaluation

 Wall clock time versus number of states

— EEG: up to 200 times faster
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Experimental Evaluation

 Wall clock time versus number of states

— Chromosome: up to 150 times faster
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Experimental Evaluation

 Wall clock time versus number of states

— Traffic: up to 500 times faster
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Experimental Evaluation

» Evaluation
— Wall clock time versus number of states
— Wall clock time versus number of models
— Effect of likelihood approximation

— Effect of transition pruning
— SPIRAL vs Beam search
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Experimental Evaluation

« Wall clock time versus number of models
— EEG: up to 200 times faster
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Experimental Evaluation

» Evaluation
— Wall clock time versus number of states
— Wall clock time versus number of models
— Effect of likelihood approximation

— Effect of transition pruning
— SPIRAL vs Beam search
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Experimental Evaluation \

 Effect of likelihood approximation

— Most of models are pruned by coarser approximations
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Experimental Evaluation

» Evaluation
— Wall clock time versus number of states
— Wall clock time versus number of models
— Effect of likelihood approximation

— Effect of transition pruning
— SPIRAL vs Beam search
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Experimental Evaluation

o\
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 Effect of transition pruning

— SPIRAL find the highest-likelihood model more
efficiently by transition pruning
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Experimental Evaluation

» Evaluation
— Wall clock time versus number of states
— Wall clock time versus number of models
— Effect of likelihood approximation

— Effect of transition pruning
— SPIRAL vs Beam search
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Experimental Evaluation '

* SPIRAL vs Beam search
— SPIRAL 1s significantly faster while 1t guarantees

exactness
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Note: SPIRAL gives no error SPIRAL 1s up to 27 times faster
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Conclusion

* Design goals:
— High-speed search
« SPIRAL is significantly (up to 500 times) faster
— Exactness

« We prove that it guarantees exactness

— No restriction on model type
* It can handle any HMM model type

 SPIRAL achieves all the goals

)
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