

SPIRAL: Efficient and Exact Model Identification for Hidden Markov Models

Yasuhiro Fujiwara (NTT Cyber Space Labs) Yasushi Sakurai (NTT Communication Science Labs) Masashi Yamamuro (NTT Cyber Space Labs)

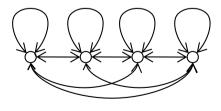
Speaker: Yasushi Sakurai

Motivation

- HMM(Hidden Markov Model)
 - Mental task classification
 - Understand human brain functions with EEG signals
 - Biological analysis
 - Predict organisms functions with DNA sequences
 - Many other applications
 - Speech recognition, image processing, etc
- Goal
 - Fast and exact identification of the highest-likelihood model for large datasets

- Observation sequence $X = (x_1, x_2, \dots, x_n)$ is a probabilistic function of states
- Consists of the three sets of parameters:
 - Initial state probability : $\pi = \{\pi_i\} \quad (1 \le i \le m)$
 - State u_i at time t = 1
 - State transition probability: $a = \{a_{ij}\} \ (1 \le i, j \le m)$
 - Transition from state u_i to u_j
 - Symbol probability: $b(v) = \{b_i(v)\} \ (1 \le i \le m)$
 - Output symbol v in state u_i

- HMM types
 - Ergodic HMM
 - Every state can be reached from every other state
 - Left-right HMM
 - Transitions to lower number states are prohibited
 - Always begin with the first state
 - Transition are limited to a small number of states

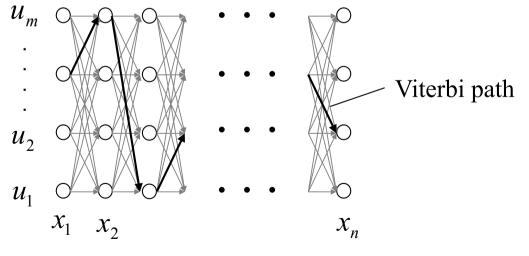




Ergodic HMM

Left-right HMM

- Viterbi path in the trellis structure
 - Trellis structure: states lie on the vertical axis, the sequence is aligned along the horizontal axis
 - Viterbi path: state sequence which gives the likelihood



Trellis structure

- Viterbi algorithm
 - Dynamic programming approach
 - Maximize the probabilities from the previous states

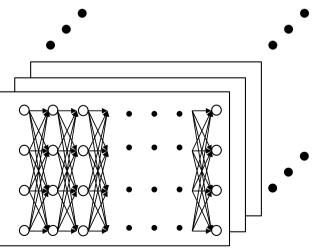
$$P = \max_{1 \le i \le m} (p_{in})$$

$$p_{it} = \begin{cases} \max_{1 \le j \le m} (p_{j(t-1)} \cdot a_{ji}) \cdot b_i(x_t) & (2 \le t \le n) \\ \pi_i \cdot b_i(x_1) & (t = 1) \end{cases}$$

 p_{it} : the maximum probability of state u_i at time t

Problem Definition

- Given
 - HMM dataset
 - Sequence $X = (x_1, x_2, \dots, x_n)$ of arbitrary length
- Find
 - Highest-likelihood model, estimated with respect to *X*, from the dataset

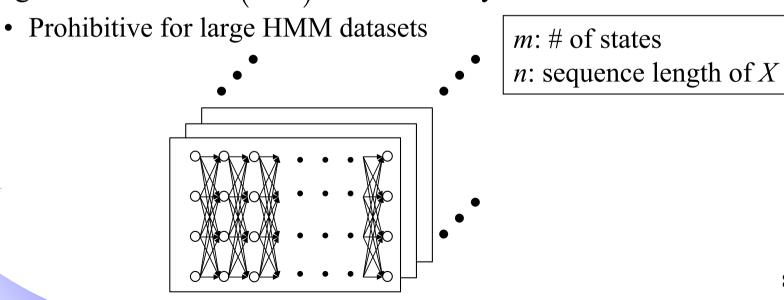


Why not 'Naive'

- Naïve solution
 - 1. Compute the likelihood for every model using the Viterbi algorithm
 - 2. Then choose the highest-likelihood model

But..

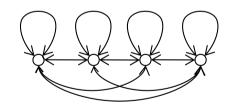
- High search cost: $O(nm^2)$ time for every model

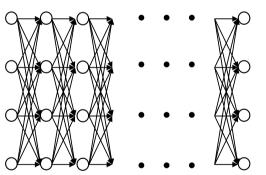


Our Solution, SPIRAL

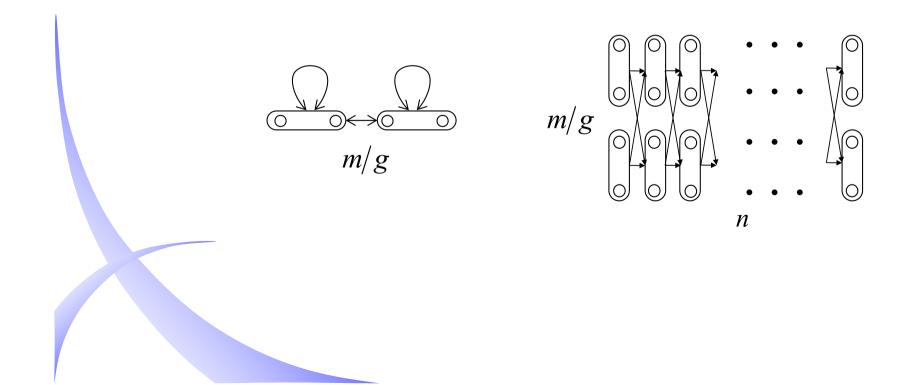
- Requirements:
 - High-speed search
 - Identify the model efficiently
 - Exactness
 - Accuracy is not sacrificed
 - No restriction on model type
 - Achieve high search performance for any type of models

Reminder: Naive





- Create compact models (reduce the model size)
 - For given m states and granularity g,
 - Create m/g states by merging 'similar' states



11

• Use the vector F_i of state u_i for clustering

 $F_{i} = (\pi_{i}; a_{i1}, \dots, a_{im}, a_{1i}, \dots, a_{mi}; b_{i}(v_{1}), \dots, b_{i}(v_{s}))$

s: number of symbols

- Merge all the states u_i in a cluster C and create a new state u_C
- Choose the highest probability among the probabilities of u_i $\pi'_C = \max_{u_i \in C} (\pi_i) \quad a'_{Cj} = \max_{u_i \in C, u_j \notin C} (a_{ij})$ $a'_{CC} = \max_{u_i, u_k \in C} (a_{ik}) \quad a'_{jC} = \max_{u_i \in C, u_j \notin C} (a_{ji}) \quad b'_C(v) = \max_{u_i \in C} (b_i(v))$

• Compute approximate likelihood P' from the compact model

$$P' = \max_{1 \le i \le m'} (p'_{in})$$

$$p'_{it} = \begin{cases} \max_{1 \le j \le m'} (p'_{j(t-1)} \cdot a'_{ji}) \cdot b'_i(x_t) & (2 \le t \le n) \\ \pi'_i \cdot b'_i(x_1) & (t = 1) \\ \pi'_i \cdot b'_i(x_1) & (t = 1) \end{cases} p'_{it} : \text{maximum probability of states}$$

- Upper bounding likelihood
 - For approximate likelihood P', $P' \ge P$ holds
 - Exploit this property to guarantee exactness in search processing

Advantages

- The best model can not be pruned
 - The approximation gives the upper bounding likelihood of the original model
- Support any model type
 - Any probabilistic constraint is not applied to the approximation

- The likelihood approximation has the trade-off between accuracy and computation time
 - As the model size increases, accuracy improves
 - But the likelihood computation cost increases
- Q: How to choose granularity g?

- The likelihood approximation has the trade-off between accuracy and computation time
 - As the model size increases, accuracy improves
 - But the likelihood computation cost increases
- Q: How to choose granularity g?
- A: Use multiple granularities
 - $h+1(h=\lfloor \log_2 m \rfloor)$ distinct granularities that form a geometric progression $g_i=2^i$ (*i*=0,1,2,...,*h*)

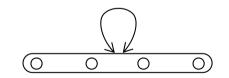
- Geometrically increase the model size

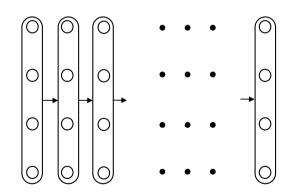
• Compute the approximate likelihood P' from the coarsest model as the first step

- Coarsest model has $\lfloor m/2^h \rfloor (=1)$ states

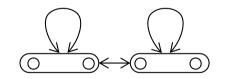
• Prune the model if $P' < \theta$, otherwise

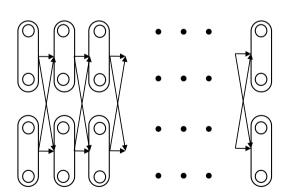
 θ : threshold





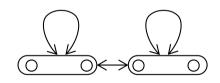
- Compute the approximate likelihood P' from the second coarsest model
 - Second coarsest model has $\lfloor m/2^{h-1} \rfloor$ states
- Prune the model if $P' < \theta$

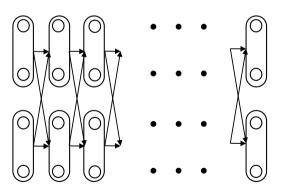




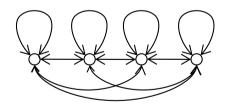
- Threshold θ
 - Exploit the fact that we have found a good model of high likelihood
 - θ : exact likelihood of the best-so-far candidate during search processing
 - θ is updated and increases when promising model is found
 - Use θ for model pruning

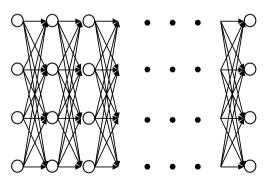
- Compute the approximate likelihood P' from the second coarsest model
 - Second coarsest model has $\lfloor m/2^{h-1} \rfloor$ states
- Prune the model if $P' < \theta$, otherwise
 - $-\theta$: exact likelihood of the best-so-far candidate



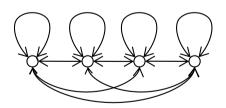


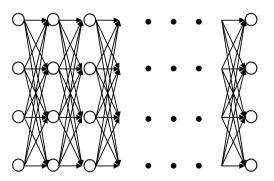
- Compute the likelihood *P*′ from more accurate model
- Prune the model if $P' < \theta$





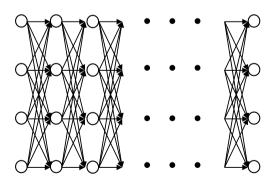
- Repeat until the finest granularity (the original model)
- Update the answer candidate and best-so-far likelihood if $P \ge \theta$



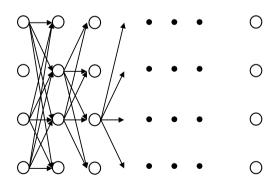


- Optimize the trade-off between accuracy and computation time
 - Low-likelihood models are pruned by coarse-grained models
 - Fine-grained approximation is applied only to highlikelihood models
- Efficiently find the best model for a large dataset
 - The exact likelihood computations are limited to the minimum number of necessary

- Trellis structure has too many transitions
- Q: How to exclude unlikely paths



- Trellis structure has too many transitions
- Q: How to exclude unlikely paths
- A: Use the two properties
 - Likelihood is monotone non-increasing (likelihood computation)
 - Threshold is monotone non-decreasing (search processing)



• In likelihood computation, compute the estimate e_{it}

$$e_{it} = \begin{cases} p_{it} \cdot (a_{\max})^{n-t} \cdot \prod_{j=t+1}^{n} b_{\max}(x_j) & (1 \le t \le n-1) \\ p_{in} & (t=n) \end{cases}$$

where $a_{\max} = \max_{1 \le i, j \le m} (a_{ij}), \quad b_{\max}(v) = \max_{1 \le i \le m} b_i(v)$

- $-e_{it}$: conservative estimate of the likelihood p_{it} of state u_i at time t
- If $e_{it} < \theta$, prune all paths that pass through u_i at $t \theta$: exact likelihood of the best-so-far candidate

• Terminate the likelihood computation

if all the paths are excluded

- Efficient especially for long sequences
- Applicable to approximate likelihood computation

Accuracy and Complexity

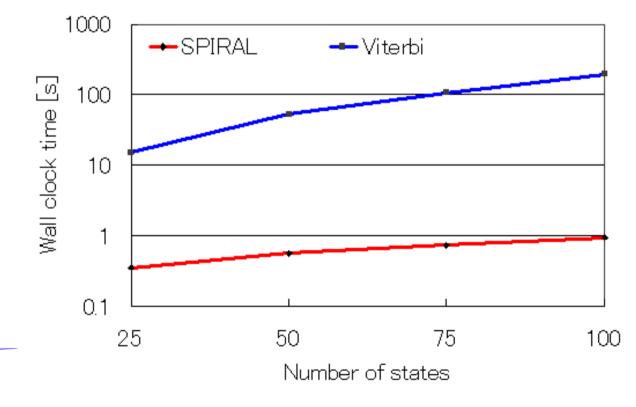
• SPIRAL needs the same order of memory space, while can be up to m^2 times faster

	Accuracy	Complexity	
		Memory Space	Computation time
Viterbi	Guarantee exactness	$O(m^2 + ms)$	$O(nm^2)$
SPIRAL			At least $O(n)$ At most $O(nm^2)$

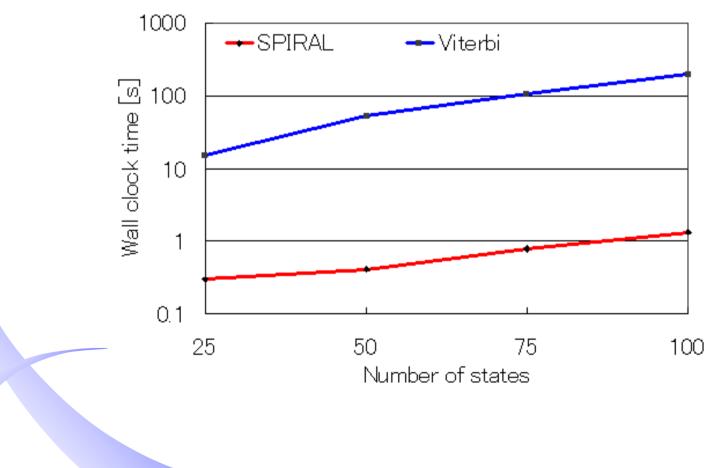
- Intel Core 2 1.66GHz, 2GB memory
- Datasets
 - EEG, Chromosome, Traffic
- Evaluation
 - Mainly computation time
 - Ergodic HMM
 - Compared the Viterbi algorithm and Beam search
 - Beam search: popular technique, but does not guarantee exactness

- Evaluation
 - Wall clock time versus number of states
 - Wall clock time versus number of models
 - Effect of likelihood approximation
 - Effect of transition pruning
 - SPIRAL vs Beam search

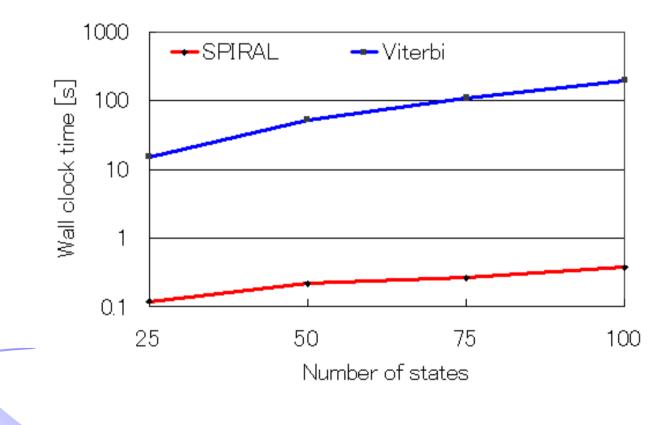
- EEG: up to 200 times faster



- Wall clock time versus number of states
 - Chromosome: up to 150 times faster

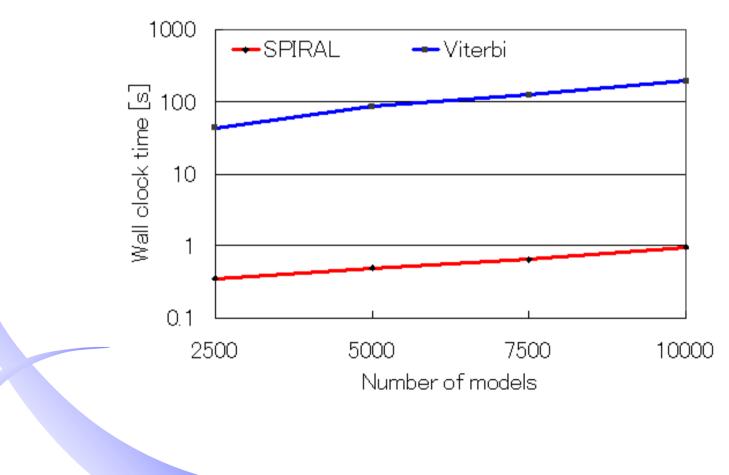


- Traffic: up to 500 times faster



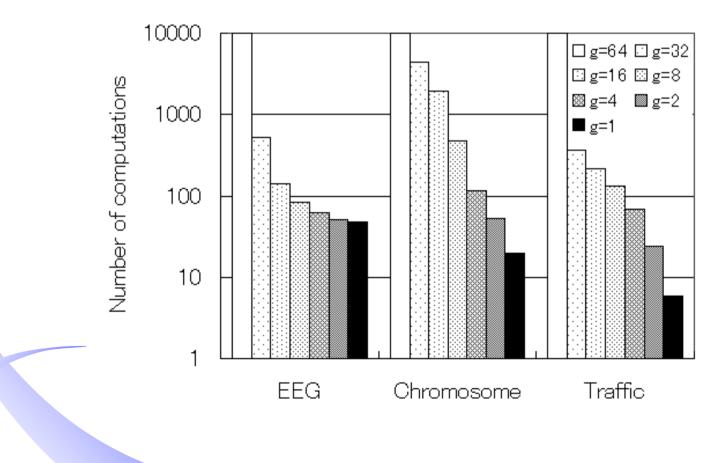
- Evaluation
 - Wall clock time versus number of states
 - Wall clock time versus number of models
 - Effect of likelihood approximation
 - Effect of transition pruning
 - SPIRAL vs Beam search

- Wall clock time versus number of models
 - EEG: up to 200 times faster



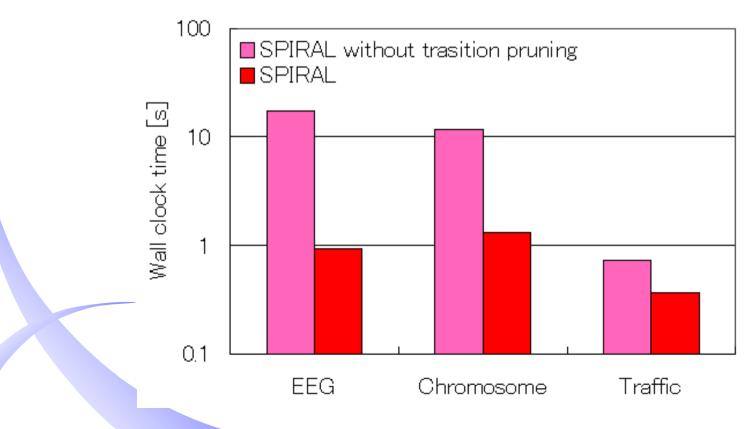
- Evaluation
 - Wall clock time versus number of states
 - Wall clock time versus number of models
 - Effect of likelihood approximation
 - Effect of transition pruning
 - SPIRAL vs Beam search

- Effect of likelihood approximation
 - Most of models are pruned by coarser approximations



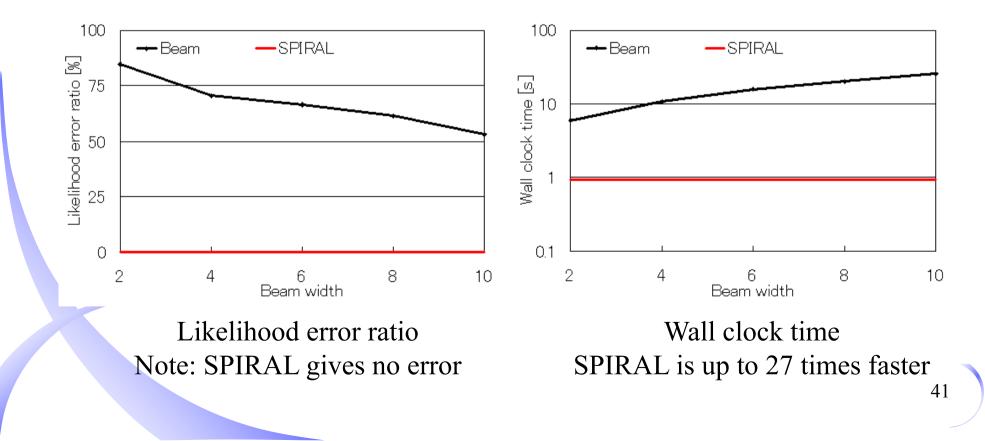
- Evaluation
 - Wall clock time versus number of states
 - Wall clock time versus number of models
 - Effect of likelihood approximation
 - Effect of transition pruning
 - SPIRAL vs Beam search

- Effect of transition pruning
 - SPIRAL find the highest-likelihood model more efficiently by transition pruning



- Evaluation
 - Wall clock time versus number of states
 - Wall clock time versus number of models
 - Effect of likelihood approximation
 - Effect of transition pruning
 - SPIRAL vs Beam search

- SPIRAL vs Beam search
 - SPIRAL is significantly faster while it guarantees exactness



Conclusion

- Design goals:
 - High-speed search
 - SPIRAL is significantly (up to 500 times) faster
 - Exactness
 - We prove that it guarantees exactness
 - No restriction on model type
 - It can handle any HMM model type
- SPIRAL achieves all the goals