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Motivation

• HMM(Hidden Markov Model)
– Mental task classification

• Understand human brain functions with EEG signals

– Biological analysis
• Predict organisms functions with DNA sequences

– Many other applications
• Speech recognition, image processing, etc

• Goal
– Fast and exact identification of the highest-likelihood 

model for large datasets
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Mini-introduction to HMM

• Observation sequence                            is a 
probabilistic function of states

• Consists of the three sets of parameters:
– Initial state probability :

• State      at time

– State transition probability:
• Transition from state      to

– Symbol probability:
• Output symbol       in state
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Mini-introduction to HMM

• HMM types
– Ergodic HMM

• Every state can be reached from every other state

– Left-right HMM
• Transitions to lower number states are prohibited
• Always begin with the first state
• Transition are limited to a small number of states

4

Ergodic HMM Left-right HMM



Mini-introduction to HMM
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• Viterbi path in the trellis structure
– Trellis structure: states lie on the vertical axis, the 

sequence is aligned along the horizontal axis
– Viterbi path: state sequence which gives the likelihood

Viterbi path
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Mini-introduction to HMM

• Viterbi algorithm
– Dynamic programming approach
– Maximize the probabilities from the previous states
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Problem Definition

• Given
– HMM dataset
– Sequence                                of arbitrary length

• Find
– Highest-likelihood model, estimated with respect to X,

from the dataset
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Why not ‘Naive’

• Naïve solution
1. Compute the likelihood for every model using the Viterbi 

algorithm
2. Then choose the highest-likelihood model

But..
– High search cost:                time for every model

• Prohibitive for large HMM datasets
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Our Solution, SPIRAL 

• Requirements:
– High-speed search

• Identify the model efficiently

– Exactness
• Accuracy is not sacrificed

– No restriction on model type
• Achieve high search performance for any type of models
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Likelihood Approximation
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Reminder: Naive



Likelihood Approximation

• Create compact models (reduce the model size)
– For given m states and granularity g,
– Create m/g states by merging ‘similar’ states
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Likelihood Approximation

• Use the vector Fi of state ui for clustering

• Merge all the states ui in a cluster C and create a 
new state uC

• Choose the highest probability among the 
probabilities of ui
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Likelihood Approximation

• Compute approximate likelihood       from the 
compact model

• Upper bounding likelihood
– For approximate likelihood     ,               holds
– Exploit this property to guarantee exactness in search 

processing
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Likelihood Approximation

Advantages
• The best model can not be pruned

– The approximation gives the upper bounding 
likelihood of the original model

• Support any model type
– Any probabilistic constraint is not applied to the 

approximation
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Multi-granularities

• The likelihood approximation has the trade-off 
between accuracy and computation time
– As the model size increases, accuracy improves
– But the likelihood computation cost increases

• Q: How to choose granularity    ?
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Multi-granularities

• The likelihood approximation has the trade-off 
between accuracy and computation time
– As the model size increases, accuracy improves
– But the likelihood computation cost increases

• Q: How to choose granularity    ?
• A: Use multiple granularities

– distinct granularities that form a 
geometric progression  gi =2i (i=0,1,2,…,h)

– Geometrically increase the model size
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Multi-granularities

• Compute the approximate likelihood      from the 
coarsest model as the first step
– Coarsest model has                   states

• Prune the model if             , otherwise
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Multi-granularities

• Compute the approximate likelihood       from the 
second coarsest model
– Second coarsest model has              states

• Prune the model if
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Multi-granularities

• Threshold
– Exploit the fact that we have found a good model of 

high likelihood 
• : exact likelihood of the best-so-far candidate during 

search processing

– is updated and increases when promising model is 
found

– Use       for model pruning
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Multi-granularities

• Compute the approximate likelihood       from the 
second coarsest model
– Second coarsest model has              states

• Prune the model if               , otherwise
– : exact likelihood of the best-so-far candidate
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Multi-granularities

• Compute the likelihood       from more accurate 
model

• Prune the model if
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Multi-granularities

• Repeat until the finest granularity (the original 
model)

• Update the answer candidate and best-so-far 
likelihood if 
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Multi-granularities

• Optimize the trade-off between accuracy and 
computation time
– Low-likelihood models are pruned by coarse-grained 

models
– Fine-grained approximation is applied only to high-

likelihood models
• Efficiently find the best model for a large dataset

– The exact likelihood computations are limited to the 
minimum number of necessary
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Transition Pruning

• Trellis structure has too many transitions
• Q: How to exclude unlikely paths

24



Transition Pruning

• Trellis structure has too many transitions
• Q: How to exclude unlikely paths
• A: Use the two properties 

– Likelihood is monotone non-increasing (likelihood computation)
– Threshold is monotone non-decreasing (search processing)
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Transition Pruning

• In likelihood computation, compute the estimate   

– eit : conservative estimate of the likelihood pit  of state 
ui at time t

• If            , prune all paths that pass through ui at t
– : exact likelihood of the best-so-far candidate
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Transition Pruning

• Terminate the likelihood computation 
if all the paths are excluded

• Efficient especially for long sequences
• Applicable to approximate likelihood computation
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Accuracy and Complexity

28

• SPIRAL needs the same order of memory space, 
while can be up to      times faster2m

Accuracy
Complexity

Memory Space Computation time

Viterbi

Guarantee exactness

SPIRAL
At least

At most
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Experimental Evaluation

• Setup
– Intel Core 2 1.66GHz, 2GB memory

• Datasets
– EEG, Chromosome, Traffic

• Evaluation
– Mainly computation time
– Ergodic HMM
– Compared the Viterbi algorithm and Beam search

• Beam search: popular technique, but does not guarantee 
exactness
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Experimental Evaluation

• Evaluation
– Wall clock time versus number of states
– Wall clock time versus number of models
– Effect of likelihood approximation
– Effect of transition pruning
– SPIRAL vs Beam search
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Experimental Evaluation

• Wall clock time versus number of states
– EEG: up to 200 times faster
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Experimental Evaluation

• Wall clock time versus number of states
– Chromosome: up to 150 times faster
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Experimental Evaluation

• Wall clock time versus number of states
– Traffic: up to 500 times faster
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Experimental Evaluation

• Evaluation
– Wall clock time versus number of states
– Wall clock time versus number of models
– Effect of likelihood approximation
– Effect of transition pruning
– SPIRAL vs Beam search
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Experimental Evaluation

• Wall clock time versus number of models
– EEG: up to 200 times faster

35



Experimental Evaluation

• Evaluation
– Wall clock time versus number of states
– Wall clock time versus number of models
– Effect of likelihood approximation
– Effect of transition pruning
– SPIRAL vs Beam search
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Experimental Evaluation

• Effect of likelihood approximation
– Most of models are pruned by coarser approximations
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Experimental Evaluation

• Evaluation
– Wall clock time versus number of states
– Wall clock time versus number of models
– Effect of likelihood approximation
– Effect of transition pruning
– SPIRAL vs Beam search
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Experimental Evaluation

• Effect of transition pruning
– SPIRAL find the highest-likelihood model more 

efficiently by transition pruning
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Experimental Evaluation

• Evaluation
– Wall clock time versus number of states
– Wall clock time versus number of models
– Effect of likelihood approximation
– Effect of transition pruning
– SPIRAL vs Beam search
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Experimental Evaluation

• SPIRAL vs Beam search
– SPIRAL is significantly faster while it guarantees 

exactness
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Wall clock time
SPIRAL is up to 27 times faster

Likelihood error ratio
Note: SPIRAL gives no error



Conclusion
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• Design goals:
– High-speed search

• SPIRAL is significantly (up to 500 times) faster

– Exactness
• We prove that it guarantees exactness

– No restriction on model type
• It can handle any HMM model type

• SPIRAL achieves all the goals


