
FTW: Fast Similarity Search under 
the Time Warping Distance

Yasushi Sakurai (NTT Cyber Space Labs)
Masatoshi Yoshikawa (Nagoya Univ.)
Christos Faloutsos (Carnegie Mellon Univ.)



PODS 2005 Y. Sakurai et al 2

Motivation

n Time-series data
q many applications

n computational biology, astrophysics, geology,  
meteorology, multimedia, economics

n Similarity search
q Euclidean distance
q DTW (Dynamic Time Warping)

n Useful for different sequence lengths
n Different sampling rates
n scaling along the time axis
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Mini-introduction to DTW
n DTW allows sequences to be stretched along the 

time axis
q Minimize the distance of sequences
q Insert ‘stutters’ into a sequence
q THEN compute the (Euclidean) distance

‘stutters’:original
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Mini-introduction to DTW
n DTW is computed by dynamic programming

q Warping path: set of grid cells in the time warping 
matrix

data sequence P of length 
N

query sequence Q of length M
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Mini-introduction to DTW
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n DTW is computed by dynamic programming
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Mini-introduction to DTW
n Global constraints limit the warping scope

q Warping scope: area that the warping path is allowed to 
visit
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Mini-introduction to DTW
n Width of the warping scope W is user-defined
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Motivation

n Similarity search for time-series data
q DTW (Dynamic Time Warping)

n scaling along the time axis
But…
n High search cost O(NM)
n prohibitive for long sequences
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Our Solution, FTW

n Requirements: 
1. Fast
2. No false dismissals
3. No restriction on the sequence length

n It should handle data sequences of different lengths
4. Support for any, as well as for no restriction on 

“warping scope”
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Problem Definition

n Given
q S time-series data sequences of unequal lengths 

{P1, P2, …, PS}, 
q a query sequence Q, 
q an integer k, 
q (optionally) a warping scope W, 

n Find the k-nearest neighbors of Q from the 
data sequence set by using DTW with W
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Overview

n Introduction
n Related work
n Main ideas
n Experimental results
n Conclusions
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Related Work

n Sequence indexing
q Agrawal et al. (FODO 1998)
q Keogh et al. (SIGMOD 2001)
q …

n Subsequence matching
q Faloutsos et al. (SIGMOD 1994)
q Moon et al. (SIGMOD 2002)
q …
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Related Work

n Fast sequence matching for DTW
q Yi et al. (ICDE 1998)
q Kim et al. (ICDE 2001)
q Chu et al. (SDM 2002)
q Keogh (VLDB 2002)
q Zhu et al. (SIGMOD 2003)
q …

n None of the existing methods for DTW fulfills all 
the requirements
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Overview

n Introduction
n Related work
n Main ideas
n Experimental results
n Conclusions
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Main Idea (1)  - LBS 

n LBS (Lower Bounding distance measure with 
Segmentation)

n PA : Approximate sequences
q : segment range
q : upper value
q : lower value

q t: length of time intervals*
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Main Idea (1)  - LBS
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Main Idea (1)  - LBS

n Compute lower bounding distance
q Distance of the two ranges        and      : 

distance of their two closest points
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Main Idea (1)  - LBS
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n Exact DTW distance
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Main Idea (1)  - LBS

n Compute lower bounding distance from PA and QA

n Use a dynamic programming approach
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Main Idea (1)  - LBS

n Compute lower bounding distance from PA and QA

n Use a dynamic programming approach
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Main Idea (2)  - EarlyStopping

n Exploit the fact that we have found k-near neighbors 
at distance dcb
q dcb: k-nearest neighbor distance (the Current Best)

the exact distance of the best k candidates so far
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Main Idea (2)  - EarlyStopping
n Exclude useless warping paths by using 

q Omit g(1,3) if
q Omit g(4,1) if
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Main Idea (3)  - Refinement

n Q: How to choose t (length of time intervals)?
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Main Idea (3)  - Refinement

n Q: How to choose t (length of intervals)?
n A: Use multiple granularities, as follows:
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Main Idea (3)  - Refinement

n Compute the lower bounding distance from the 
coarsest sequences as the first refinement step

n Ignore P if                            , otherwise:  
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Main Idea (3)  - Refinement

n … compute the distance from more accurate 
sequences as the second refinement step

n … repeat
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Main Idea (3)  - Refinement

n … until the finest granularity
n Update the list of k-nearest neighbors if
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Overview

n Introduction
n Related work
n Main ideas
n Experimental results
n Conclusions
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Experimental results

n Setup
q Intel Xeon 2.8GHz, 1GB memory, Linux
q Datasets: 

Temperature, Fintime, RandomWalk
q Four different time intervals (for n=2048)

t1=2, t2=8, t3=32, t4=128 

n Evaluation
q Compared FTW with LB_PAA (the best so far)
q Mainly computation time
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Outline of  experiments

n Speed vs db size
n Speed vs warping scope W
n Effect of filtering
n Effect of varying-length data sequences
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Search Performance

n Itakura Parallelogram
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Search Performance

n Wall clock time as a function of data set size
n Temperature FTW is up 

to 50 times 
faster!
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Search Performance

n Wall clock time as a function of data set size
n Fintime FTW is up 

to 40 times 
faster!
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Search Performance

n Wall clock time as a function of data set size
n RandomWalk FTW is up 

to 40 times 
faster!

More effective 
as the size 

grows
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Outline of  experiments

n Speed vs db size
n Speed vs warping scope W
n Effect of filtering
n Effect of varying-length data sequences
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Search Performance

n Sakoe-Chiba Band
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Search Performance

n Wall clock time as a function of warping scope
n Temperature FTW is up 

to 220 times 
faster!
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Search Performance

n Wall clock time as a function of warping scope
n Fintime FTW is up 

to 70 times 
faster!
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Search Performance

n Wall clock time as a function of warping scope
n RandomWalk FTW is up 

to 100 times 
faster!
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Outline of  experiments

n Speed vs db size
n Speed vs warping scope W
n Effect of filtering
n Effect of varying-length data sequences
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Effect of  filtering

n Most of data sequences are excluded by coarser 
approximations (t4=128 and t3=32)
q Using multiple granularities has significant advantages

Frequency of approximation use
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Outline of  experiments

n Speed vs db size
n Speed vs warping scope W
n Effect of filtering
n Effect of varying-length sequences
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Difference in Sequence Lengths
n 5 sequence data sets 

Random(2048,0): length 2048 +/- 0
Random(2048,32): length 2048 +/- 16
Random(2048,64), Random(2048,128), Random(2048,256)

Outperform by 
2+ orders of 
magnitude

LB_PAA can not 
handle
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Overview

n Introduction
n Related work
n Main ideas
n Experimental results
n Conclusions
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Conclusions

n Design goals: 
1. Fast
2. No false dismissals
3. No restriction on the sequence length
4. Support for any, as well as for no 

restriction on “warping scope”
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Conclusions

n Design goals: 
1. Fast (up to 220 times faster)
2. No false dismissals
3. No restriction on the sequence length
4. Support for any, as well as for no 

restriction on “warping scope”
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Page Accesses
n Sequential scan of feature data should boost 

performance (speed-up factors SF=5, SF=10)
PAds: page accesses for data sequences

PAfd: page accesses for feature datads
fd

SF PA
SF
PA

PA +=

details


